Citation: Zhenzhen Jiang, Jun Yue, Xia Zhang. Polychromatic colorings of hypergraphs with high balance[J]. AIMS Mathematics, 2020, 5(4): 3010-3018. doi: 10.3934/math.2020195
[1] | N. Alon, R. Berke, K. Buchin, et al. Polychromatic colorings of plane graphs, Discrete Comput. Geom., 42 (2009), 421-442. doi: 10.1007/s00454-009-9171-5 |
[2] | M. Axenovich, J. Goldwasser, R. Hansen, et al. Polychromatic colorings of complete graphs with respect to 1-, 2-factors and Hamiltonian cycles, J. Graph Theory, 87 (2018), 660-671. doi: 10.1002/jgt.22180 |
[3] | V. K. Bagaria, A. Pananjady, R. Vaze, Optimally approximating the coverage lifetime of wireless sensor networks, IEEE ACM T. Network., 25 (2017), 98-111. doi: 10.1109/TNET.2016.2574563 |
[4] | J. Beck and T. Fiala, Integer-making theorems, Discrete Appl. Math., 3 (1981), 1-8. doi: 10.1016/0166-218X(81)90022-6 |
[5] | B. Bollobás, D. Pritchard, T. Rothvoß, et al. Cover-decomposition and polychromatic numbers, SIAM J. Discrete Math., 27 (2013), 240-256. doi: 10.1137/110856332 |
[6] | P. Bose, D. Kirkpatrick, Z. Li, Worst-case-optimal algorithms for guarding planar graphs and polyhedral surfaces, Comput. Geom. Theory Appl., 26 (2003), 209-219. doi: 10.1016/S0925-7721(03)00027-0 |
[7] | A. Buchsbaum, A. Efrat, S. Jain, et al. Restricted strip covering and the sensor cover problem, Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, (2007), 1056-1063. |
[8] | M. Cardei, D. Du, Improving wireless sensor network lifetime through power aware organization, Wirel. Netw., 11 (2005), 333-340. doi: 10.1007/s11276-005-6615-6 |
[9] | X. Chen, Z. Du, J. Meng, Coloring and the Lovász Local Lemma, Appl. Math. Lett., 23 (2010), 219-221. doi: 10.1016/j.aml.2009.02.008 |
[10] | P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions, Colloquia Mathematica Societatis János Bolyai 10. Infinite and finite sets, Keszthely (HUNGARY), 1973. |
[11] | R. Gupta, On decompositions of multigraph into spanning subgraphs, Bull. Amer. Math. Soc., 80 (1974), 500-502. doi: 10.1090/S0002-9904-1974-13468-3 |
[12] | R. Gupta, On the chromatic index and the cover index of a multigraph. In: Theory and Applications of Graphs, Springer, Berlin, 1978. |
[13] | M. Henning, A. Yeo, 2-colorings in k-regular k-uniform hypergraphs, Eur. J. Combin., 34 (2013), 1192-1202. doi: 10.1016/j.ejc.2013.04.005 |
[14] | A. Hilton, Coloring the edges of a multigraph so that each vertex has at most j, or at least j edges of each color on it, J. Lond. Math. Soc., 12 (1975), 123-128. doi: 10.1112/jlms/s2-12.1.123 |
[15] | A. Hilton and D. de Werra, A sufficient condition for equitable edgecoloring of simple graphs, Discrete Math., 128 (1994), 179-201. doi: 10.1016/0012-365X(94)90112-0 |
[16] | S. Ianson, T. Łuczak, A. Rucinski, Random Graphs, Wiley, New York, 2000. |
[17] | T. Li, X. Zhang, Polychromatic colorings and cover decompositions of hypergraphs, Appl. Math. Comput., 339 (2018), 153-157. |
[18] | H. Ma, X. Zhang, Some class 1 graphs on gc-colorings, Acta Math. Sin., English Series, 32 (2016), 1237-1245. doi: 10.1007/s10114-016-5519-y |
[19] | B. Mohar, R. Škrekovski, The Grötzsch theorem for the hypergraph of maximal cliques, Electron. J. Combin., 6 (1999), R26. doi: 10.37236/1458 |
[20] | H. Song and G. Liu, On f-edge cover-coloring of graphs, Acta Math. Sin., 48 (2005), 919-928. |
[21] | S. Vishwanathan, On 2-coloring certain k-uniform hypergraphs, J. Comb. Theory A, 101 (2003), 168-172. doi: 10.1016/S0097-3165(02)00024-9 |
[22] | C. Xu, G. Liu, Edge covered critical multigraphs, Discrete Math., 308 (2008), 6348-6354. doi: 10.1016/j.disc.2007.12.003 |
[23] | C. Xu, G. Liu, A note on edge cover chromatic index of multigraphs, Discrete Math., 308 (2008), 6564-6568. doi: 10.1016/j.disc.2007.11.049 |
[24] | X. Zhang, Disconnected gc-critical graphs, J. Comb. Optim., 34 (2017), 771-780. doi: 10.1007/s10878-016-0108-7 |
[25] | X. Zhang, G. Liu, Equitable edge-colorings of simple graphs, J. Graph Theory, 66 (2011), 175-197. doi: 10.1002/jgt.20499 |
[26] | Y. Zhang, X. Zhang, On gc-colorings of nearly bipartite graphs, Czech. Math. J., 68(2018), 433-444. doi: 10.21136/CMJ.2018.0477-16 |