Processing math: 69%
Review

Synthesis routes of zeolitic imidazolate framework-8 for CO2 capture: A review

  • Received: 01 September 2024 Revised: 06 February 2025 Accepted: 10 February 2025 Published: 06 March 2025
  • Zeolitic imidazole framework-8 (ZIF-8) represents a notable subtype of metal-organic frameworks (MOFs), characterized by tetrahedral and zeolite-like structures interconnected through Imidazolate anions. ZIF-8's outstanding attributes, including its expansive intra-crystalline surface area and robust chemical and thermal stability, have positioned it as a promising contender for carbon dioxide (CO2) capture applications. The application of ZIF-8 in the membrane and composite fields involves utilizing ZIF-8 in the development and enhancement of membranes and composite materials for gas separation, catalysis, and sensing. This article serves as a comprehensive exploration of contemporary CO2 capture technologies, elucidating their respective merits and demerits. Moreover, the review offers insights into the prevailing CO2 adsorption techniques implemented across industries. Delving into ZIF-8 synthesis methods, the discourse encompasses diverse synthetic pathways. Experimental evidence, furnished through X-Ray diffraction patterns and scanning electron microscopy, validates ZIF-8's structure-activity correlation and morphological characteristics. We extend this review to encapsulate the parameters governing CO2 adsorption by ZIF-8, delineating the key factors influencing its capture efficacy. Notably, we encompass CO2 measurement protocols and techniques specific to ZIF-8. Additionally, we appraise the CO2 adsorption potential of ZIF-8 within various composite and filter systems composed of distinct ZIFs. Culminating with an emphasis on ZIF-8's exceptional advantages for CO2 capture, this review serves as a repository of insights into the unparalleled potential of ZIF-8 as a foundational material. Providing a succinct yet comprehensive overview, this article facilitates a rapid understanding of ZIF-8's transformative role in the realm of CO2 capture.

    Citation: Angaraj Singh, Ajitanshu Vedrtnam, Kishor Kalauni, Aman Singh, Magdalena Wdowin. Synthesis routes of zeolitic imidazolate framework-8 for CO2 capture: A review[J]. AIMS Materials Science, 2025, 12(1): 118-164. doi: 10.3934/matersci.2025009

    Related Papers:

    [1] Marta Marulli, Vuk Milišiˊc, Nicolas Vauchelet . Reduction of a model for sodium exchanges in kidney nephron. Networks and Heterogeneous Media, 2021, 16(4): 609-636. doi: 10.3934/nhm.2021020
    [2] Magali Tournus, Aurélie Edwards, Nicolas Seguin, Benoît Perthame . Analysis of a simplified model of the urine concentration mechanism. Networks and Heterogeneous Media, 2012, 7(4): 989-1018. doi: 10.3934/nhm.2012.7.989
    [3] José Antonio Carrillo, Yingping Peng, Aneta Wróblewska-Kamińska . Relative entropy method for the relaxation limit of hydrodynamic models. Networks and Heterogeneous Media, 2020, 15(3): 369-387. doi: 10.3934/nhm.2020023
    [4] Laura Cattaneo, Paolo Zunino . Computational models for fluid exchange between microcirculation and tissue interstitium. Networks and Heterogeneous Media, 2014, 9(1): 135-159. doi: 10.3934/nhm.2014.9.135
    [5] Xavier Litrico, Vincent Fromion, Gérard Scorletti . Robust feedforward boundary control of hyperbolic conservation laws. Networks and Heterogeneous Media, 2007, 2(4): 717-731. doi: 10.3934/nhm.2007.2.717
    [6] Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, Adrian Muntean . Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers. Networks and Heterogeneous Media, 2014, 9(4): 709-737. doi: 10.3934/nhm.2014.9.709
    [7] Jean-Marc Hérard, Olivier Hurisse . Some attempts to couple distinct fluid models. Networks and Heterogeneous Media, 2010, 5(3): 649-660. doi: 10.3934/nhm.2010.5.649
    [8] Avner Friedman . PDE problems arising in mathematical biology. Networks and Heterogeneous Media, 2012, 7(4): 691-703. doi: 10.3934/nhm.2012.7.691
    [9] Piotr Gwiazda, Karolina Kropielnicka, Anna Marciniak-Czochra . The Escalator Boxcar Train method for a system of age-structured equations. Networks and Heterogeneous Media, 2016, 11(1): 123-143. doi: 10.3934/nhm.2016.11.123
    [10] D. Alderson, H. Chang, M. Roughan, S. Uhlig, W. Willinger . The many facets of internet topology and traffic. Networks and Heterogeneous Media, 2006, 1(4): 569-600. doi: 10.3934/nhm.2006.1.569
  • Zeolitic imidazole framework-8 (ZIF-8) represents a notable subtype of metal-organic frameworks (MOFs), characterized by tetrahedral and zeolite-like structures interconnected through Imidazolate anions. ZIF-8's outstanding attributes, including its expansive intra-crystalline surface area and robust chemical and thermal stability, have positioned it as a promising contender for carbon dioxide (CO2) capture applications. The application of ZIF-8 in the membrane and composite fields involves utilizing ZIF-8 in the development and enhancement of membranes and composite materials for gas separation, catalysis, and sensing. This article serves as a comprehensive exploration of contemporary CO2 capture technologies, elucidating their respective merits and demerits. Moreover, the review offers insights into the prevailing CO2 adsorption techniques implemented across industries. Delving into ZIF-8 synthesis methods, the discourse encompasses diverse synthetic pathways. Experimental evidence, furnished through X-Ray diffraction patterns and scanning electron microscopy, validates ZIF-8's structure-activity correlation and morphological characteristics. We extend this review to encapsulate the parameters governing CO2 adsorption by ZIF-8, delineating the key factors influencing its capture efficacy. Notably, we encompass CO2 measurement protocols and techniques specific to ZIF-8. Additionally, we appraise the CO2 adsorption potential of ZIF-8 within various composite and filter systems composed of distinct ZIFs. Culminating with an emphasis on ZIF-8's exceptional advantages for CO2 capture, this review serves as a repository of insights into the unparalleled potential of ZIF-8 as a foundational material. Providing a succinct yet comprehensive overview, this article facilitates a rapid understanding of ZIF-8's transformative role in the realm of CO2 capture.



    In this study, we consider a mathematical model for a particular component of the nephron, the functional unit of kidney [1]. It describes the ionic exchanges through the nephron tubules in the Henle's loop. The main function of kidneys is to filtrate the blood. Through filtration, secretion and excretion of filtered metabolic wastes and toxins, the kidneys are able to maintain a certain homeostatic balance within cells. The first models of nephrons and kidneys were developed in the 1950s with the purpose of explaining the concentration gradient, [10] (or [16] in Chap.3). In their attempt, the authors describe for the first time the urinary concentration mechanism as a consequence of countercurrent transport in the tubules. At a later time the point of view starts to change and a simple mathematical model for a single nephron has been introduced and described, [17]. Furthermore, thanks to the work of J.L. Stephenson [26] it turns out that the formation of a large axial concentration gradient in the kidney depends mainly on the different permeabilities in the tubules and on their counterflow arrangement. Most mathematical models were stationary systems of coupled differential equations. It is possible to find an historical excursus and how these types of models have been developed, referring to [26]. Sophisticated models have been developed to describe the transport of water and electrolyte in the kidney in the recent literature. At the microscopic level of description, cell-based models have been proposed in [23,30,14,31,4] to model small populations of nephrons at equilibrium. Macroscopic models have been also considered in [28,27,21,5,2,9] without accounting for cell-specific transport mechanisms. Despite the development of such sophisticated models, some aspects of the fundamental functions of the kidney remain yet to be fully explained [15]. For example, how a concentrated urine can be produced by the mammalian kidney when the animal is deprived of water remains not entirely clear.

    The loop of Henle and its architecture play an important role in the concentrated or diluted urine formation. In order to explain the regulation of urine's concentration, we analyse the counter-current transport in the 'ascending' and 'descending' tubules. There the ionic exchanges between the cell membrane and the environment where tubules are immersed, take place.

    We consider a simplified model for sodium exchange in the kidney nephron : the nephron is modelled by an ascending (resp. descending) tubule, of length denoted L. Ionic exchanges and transport occur at the interface between the lumen and the epithelial layer (cell membrane) and at the interface between the cells and the interstitium (the surrounding tissue between tubules and blood vessels) c.f. Figure 1. Denoting by t0 (resp. x(0,L)) the time (resp. space) variable, the dynamics of ionic concentrations is modelled by the semi-linear hyperbolic system [19,27,28,29] :

    {a1tu1+αxu1=J1=2πr1P1(q1u1)a2tu2αxu2=J2=2πr2P2(q2u2)a3tq1=J1,e=2πr1P1(u1q1)+2πr1,eP1,e(u0q1)a4tq2=J2,e=2πr2P2(u2q2)+2πr2,eP2,e(u0q2)G(q2)a0tu0=J0=2πr1,eP1,e(q1u0)+2πr2,eP2,e(q2u0)+G(q2), (1)
    Figure 1.  Simplified model of the loop of Henle. q1, q2, u1 and u2 denote solute concentration in the epithelial layer and lumen of the descending/ascending limb, respectively.

    complemented with the boundary and initial conditions

    u1(t,0)=ub(t),u1(t,L)=u2(t,L),t>0u1(0,x)=u01(x),u2(0,x)=u02(x),u0(0,x)=u00(x),q1(0,x)=q01(x),q2(0,x)=q02(x),x(0,L). (2)

    In this model, we have used the following notations :

    ri: denote the radius for the lumen i ([m]).

    ri,e: denote the radius for the tubule i with epithelium layer.

    ● Sodium's concentrations ([mol/m3]) :

    ui(t,x): in the lumen i,

    qi(t,x): in the epithelial layer of lumen i,

    u0(t,x): in the interstitium.

    ● Permeabilities ([m/s]):

    Pi: between the lumen and the epithelium,

    Pi,e: between the epithelium and the interstitium.

    ● Section areas ai ([m2]), i{0,,4} are defined as

    a1=πr21, a2=πr22, a3=π(r21,er21), a4=π(r22,er22), a0=π(r21,e+r22,e2).

    In this work we indicate as lumen the limb under consideration and as tubule the segment together with its epithelial layer. In physiological common language, the term 'tubule' refers to the cavity of lumen together with its related epithelial layer (membrane) as part of it, [16].

    In the ascending tubule, the transport of solutes both by passive diffusion and active re-absorption uses Na+/K+-ATPases pumps, which exchange 3 Na+ ions for 2 K+ ions. This active transport is taken into account in (1) by a non-linear term given by Michaelis-Menten's kinetics :

    G(q2)=Vm,2(q2kM,2+q2)3 (3)

    where kM,2 and Vm,2 are real positive constants. In each tubule, the fluid (mostly water) is assumed to flow at constant rate α and we only consider one generic uncharged solute in two tubules as depicted in Figure 1.

    In a recent paper [19], the authors have studied, from the modelling and biological perspective, the role of the epithelial layer in the ionic transport. The aim of this work is to clarify from the mathematical point of view the link between model (1) taking into account the epithelial layer and models neglecting it. In particular, when the permeability between the epithelium and the lumen is large it is expected that these two regions merge, allowing to reduce system (1) to a model with no epithelial layer. More precisely, as the permeabilities P1 and P2 grow large, we show rigorously that solutions of (1) with boundary conditions (2) relax to solutions of a reduced system with no epithelial layer. From a mathematical and numerical point of view, system (1) may be seen as a hyperbolic system with a stiff source term. The source term is in some sense a relaxation of another hyperbolic system of smaller dimension. Such an approach has been widely studied in the literature, see e.g. [13,22,12,25]. Since the initial data of the starting system for fixed ε has no reason to be compatible with the limit system, the mathematical analysis of this relaxation procedure should account for initial layers. For relaxed convection-diffusion systems, but in the Cauchy case, for ill-prepared data, (out of equilibrium with respect to the reduced manifold), the construction of initial layers and the corresponding error analysis in Sobolev spaces can be found in [6]. The proof of our convergence result is obtained thanks to a BV compactness argument in space and in time. This framework is better suited for purely hyperbolic problems. Another difficulty is due to the presence of the boundary, which must be carefully handled in the a priori estimates, in order to be uniform with respect to ε, the relaxation parameter depending on the permeabilities.

    The outline of the paper is the following. In the next section, we provide the mathematical model and state our main result. Section 3 is devoted to the proof of existence of solution of our model. Then, we focus on the convergence of this solution when permeabilies go to infinity. To this aim, we first establish in section 4 a priori estimates. Using compactness results, we prove convergence in section 5. Numerical illustration of this convergence result is proposed in section 6. Finally an appendix is devoted to a formal computation of the convergence rate at stationary state.

    Before presenting our main result, we list some assumptions which will be used throughout this paper.

    Assumption 2.1. We assume that the initial solute concentrations are non-negative and uniformly bounded in L(0,L) and with respect to the total variation :

    0u01,u02,q01,q02,u00BV(0,L)L(0,L). (4)

    For detailed definitions of the BV setting we refer to the standard text-books [7,32]. A more recent overview gives a global picture in an extensive way [11], it unifies also the diversity of definitions found in the literature dealing with the BV spaces in either the probabilistic or the deterministic context.

    Assumption 2.2. Boundary conditions are such that

    0ubBV(0,T)L(0,T). (5)

    Assumption 2.3. Regularity and boundedness of G.

    We assume that the non-linear function modelling active transport in the ascending limb is an odd and W2,(R) function :

    x0,G(x)=G(x),0G(x)G,0G(x)G. (6)

    We notice that the function G defined on R+ by the expression in (3) may be straightforwardly extended by symmetry on R by a function satisfying (6).

    To simplify our notations in (1), we set 2πri,ePi,e=Ki, i=1,2 and 2πriPi=ki, i=1,2. The orders of magnitude of k1 and k2 are the same even if their values are not definitely equal, we may assume to further simplify the analysis that k1=k2. We consider the case where permeability between the lumen and the epithelium is large and we set, k1=k2=1ε for ε1. Then, we investigate the limit ε goes to zero of the solutions of the following system :

    a1tuε1+αxuε1=1ε(qε1uε1) (7a)
    a2tuε2αxuε2=1ε(qε2uε2) (7b)
    a3tqε1=1ε(uε1qε1)+K1(uε0qε1) (7c)
    a4tqε2=1ε(uε2qε2)+K2(uε0qε2)G(qε2) (7d)
    a0tuε0=K1(qε1uε0)+K2(qε2uε0)+G(qε2) (7e)

    Formally, when ε0, we expect the concentrations uε1 and qε1 to converge to the same function. The same happens for uε2 and qε2. We denote u1, respectively u2, these limits. Adding (7a) to (7c) and (7b) to (7d), we end up with the system

    a1tuε1+a3tqε1+αxuε1= K1(uε0qε1)a2tuε2+a4tqε2αxuε2= K2(uε0qε2)G(qε2).

    Passing formally to the limit when ε goes to 0, we arrive at

    (a1+a3)tu1+αxu1= K1(u0u1) (8)
    (a2+a4)tu2αxu2= K2(u0u2)G(u2), (9)

    coupled to the equation for the concentration in the interstitium obtained by passing into the limit in equation (7e)

    a0tu0=K1(u1u0)+K2(u2u0)+G(u2). (10)

    This system is complemented with the initial and boundary conditions

    u1(0,x)=(a1u01(x)+a3q01(x))(a1+a3),u2(0,x)=(a2u02(x)+a4q02(x))(a2+a4), (11)
    u0(0,x)=u00(x), (12)
    u1(t,0)=ub(t),u2(t,L)=u1(t,L). (13)

    Finally, we recover a simplified system for only three unknowns. From a physical point of view this means fusing the epithelial layer with the lumen. It turns out to merge the lumen and the epithelium into a single domain when we consider the limit of infinite permeability. For ε fixed, the actual speed at which u1 (resp. u2) is convected in (7a) is α/a1 (resp α/a2 in (7b)). When ε goes to zero, since the permeability increases, the lumen and the epithelium layer are merged. Thus, as q1 (resp. q2) are not transported, this results in a slower convection at speed αa1+a3 in the descending tubule (resp. αa2+a4 in the ascending tubule).

    The aim of this paper is to make these formal computations rigorous. For this sake, we define weak solutions associated to the limit system (8)-(10) :

    Definition 2.4. Let u01(x), u02(x), u00(x)L1(0,L)L(0,L) and ub(t)L1(0,T)L(0,T). We say that U(t,x)=(u1(t,x), u2(t,x), u0(t,x))L((0,T);L1(0;L)L(0,L))3 is a weak solution of system (8)-(10) if for all ϕS3, with

    S3:={ϕC1([0,T]×[0,L])3,ϕ(T,x)=0,ϕ1(t,L)=ϕ2(t,L),andϕ2(t,0)=0},

    we have

    T0L0u1((a1+a3)tϕ1+αxϕ1)dxdt+αT0ub(t)ϕ1(t,0)dt+L0(a1+a3)u1(0,x)ϕ1(0,x)dx+T0L0u2((a2+a3)tϕ2αxϕ2)dxdt+L0(a2+a4)u2(0,x)ϕ2(0,x)dx+T0L0{a0u0tϕ3+K1(u1u0)(ϕ3ϕ1)+K2(u2u0)(ϕ3ϕ2)+G(u2)(ϕ3ϕ2)}dxdt+L0a0u00(x)ϕ3(0,x) dx=0. (14)

    More precisely, the main result reads

    Theorem 2.5. Let T>0 and L>0. We assume that initial data and boundary conditions satisfy (4), (5), (6). Then, the weak solution (uε1,uε2,qε1,qε2,uε0) of system (7) with boundary and initial conditions (2) converges, as ε goes to zero, to the weak solution of reduced (or limit) problem (8)–(10) complemented with (11)–(13). More precisely,

    uεiε0uii=0,1,2,stronglyinL1([0,T]×[0,L]),qεjε0ujj=1,2,stronglyinL1([0,T]×[0,L]),

    where (u1,u2,u0) is the unique weak solution of the limit problem (8)–(10) in the sense of Definition 2.4.

    The system (7) can be seen as a particular case of the model without epithelial layer introduced and studied in [28] and [27].

    A priori estimates uniform with respect to the parameter ε (accounting for permeability) are obtained in Section 4. We emphasize that estimates on time derivatives are more subtle due to specific boundary conditions of system and because one has to take care of singular initial layers. Concerning existence and uniqueness of a solution, in previous works [28] and [27], authors proposed a semi-discrete scheme in space in order to show existence. In this work we propose a fixed point theorem giving the same result for any fixed ε>0 in Section 3. The advantage of our approach is that we directly work with weak solutions associated to (7). After recalling the definition of weak solution for problem (1), we report below the statement of Theorem 2.7, and we refer to Section 3 for the proof.

    Definition 2.6. Let (u01(x), u02(x), q01(x), q02(x), u00(x))(L1(0,L)L(0,L))5 and ub(t)L1(0,T)L(0,T). Let ε>0 be fixed. We say that Uε(t,x)=(uε1(t,x), uε2(t,x), qε1(t,x), qε2(t,x), uε0(t,x))L((0,T);L1(0,L)L(0,L))5 is a weak solution of system (7) if for all ϕ=(ϕ1,ϕ2,ϕ3,ϕ4,ϕ5)S5, with

    S5:={ϕC1([0,T]×[0,L])5,ϕ(T,x)=0,ϕ1(t,L)=ϕ2(t,L),andϕ2(t,0)=0}

    we have

    T0L0(uε1(a1tϕ1+αxϕ1)+1ε(qε1uε1)ϕ1)dxdt+αT0uεb(t)ϕ1(t,0)dt+L0a1u01(x)ϕ1(0,x)dx+T0L0(uε2(a2tϕ2αxϕ2)+1ε(qε2uε2)ϕ2)dxdt+L0a1u02(x)ϕ2(0,x)dx+T0L0(a3qε1(tϕ3)+K1(uε0qε1)ϕ31ε(qε1uε1)ϕ3)dxdt+L0a3q01(x)ϕ3(0,x) dx+T0L0(a4qε2(tϕ4)+K2(uε0qε2)ϕ41ε(qε2uε2)ϕ4G(qε2)ϕ4)dxdt+L0a4q02(x)ϕ4(0,x)dx+T0L0(a0uε0(tϕ5)+K1(qε1uε0)ϕ5+K2(qε2uε0)ϕ5+G(qε2)ϕ5)dxdt+L0a0u00(x)ϕ5(0,x) dx=0. (15)

    Theorem 2.7. (Existence). Under assumptions (4), (5), (6) and for every fixed ε>0, there exists a unique weak solution Uε of the problem (7).

    We define the Banach space B:=(L1(0,L)L(0,L))5. We prove existence using the Banach-Picard fixed point theorem (see e.g., [24] for various examples of its application). We consider a time T>0 (to be chosen later) and the map T:XTXT with the Banach space XT=L([0,T];B), and we denote XT=supt(0,T)B. For a given function ˜UXT, with ˜U=(˜u1,˜u2,˜q1,˜q2,˜u0), we define U:=T(˜U) solution to the problem :

    {a1tu1+αxu1=(˜q1u1)ε,a2tu2αxu2=(˜q2u2)ε,a3tq1=(˜u1q1)ε+K1(˜u0q1),a4tq2=(˜u2q2)ε+K2(˜u0q2)G(˜q2),a0tu0=K1(˜q1u0)+K2(˜q2u0)+G(˜q2), (16)

    with initial data u01, u02, q01, q02, u00 in L1(0,L)L(0,L) and with boundary conditions

    u1(t,0)=ub(t)0 ,u2(t,L)=u1(t,L),fort>0,

    where ubL1(0,T)L(0,T).

    First we define the solutions of (16) using Duhamel's formula. Under these hypothesis, we may compute u1 and u2 with the method of characteristics

    u1(t,x)={u01(xαa1t)eta1ε+1a1εt0etsa1ε˜q1(xαa1(ts),s) ds,ifx>αa1t,ub(ta1xα)exεα+1αεx0e1αε(xy)˜q1(ta1(xy)α,y) dy,ifx<αa1t, (17)

    with u01(x), and ub(t) initial and boundary condition, respectively. We have a similar expression for u2(t,x) with u02 instead of u01 and the boundary condition u2(t,L)=u1(t,L) which is well-defined thanks to (17). It reads :

    u2(t,x)={u02(x+αa2t)eta2ε+1a2εt0etsa2ε˜q2(s,x+αa2(ts)) ds,ifx<Lαa2t,u1(t+a2(xL)α,L)exLαε+1αεLxexyεα˜q2(t+a2(xy)α,y)dyifx>Lαa2t. (18)

    Then, for the other unknowns, one simply solves a system of uncoupled ordinary differential equations leading to :

    {q1(t,x)=q01(x)e(1ε+K1)ta3+1a3t0e(1ε+K1)(ts)a3(1ε˜u1+K1˜u0)(s,x) ds,q2(t,x)=q02(x)e(1ε+K2)ta4+1a4t0e(1ε+K2)(ts)a4(1ε˜u2+K1˜u0G(˜q2))(s,x) ds,u0(t,x)=u00(x)e(K1+K2)ta0+1a0t0e(K1+K2)(ts)a0(K1˜q1+K2˜q2+G(˜q2))(s,x) ds. (19)

    Using Theorem B.1, the previous unknowns solve the weak formulation reading :

    {T0L0(u1(a1t+αx)φ1(t,x)+1ε(u1˜q1)φ1(t,x))dxdt+a1[L0u1(t,x)φ1(t,x)dt]t=Tt=0+α[T0u1(t,x)φ1(t,x)]x=Lx=0=0,T0L0(u2(a2tαx)φ2(t,x)+1ε(u2˜q2)φ2(t,x))dxdt+a2[L0u2(t,x)φ2(t,x)dt]t=Tt=0+α[T0u2(t,x)φ2(t,x)]x=Lx=0=0, (20)

    for any (φ1,φ2)C1([0,T]×[0,L])2. Using again Theorem B.1 with Φ=|| show that the same holds true for |u1| (resp. |u2|) :

    T0L0|u1|(a1t+αx)φ1(t,x)+1ε(|u1|sgn(u1)˜q1)φ1(t,x)dxdt+a1[L0|u1|(t,x)φ1(t,x)dt]t=Tt=0+α[T0|u1|(t,x)φ1(t,x)]x=Lx=0=0. (21)

    The same holds also for the other unknowns (qi)i{1,2} and u0, since for the ODE part of the system (19) provides directly similar results. In the rest of the paper, each time that we mention that we are multiplying formally by sgn each function of system (16) in order to get :

    {a1t|u1|+αx|u1|=1ε(sgn(u1)˜q1|u1|)a2t|u2|αx|u2|=1ε(sgn(u2)˜q2|u2|),

    we actually mean that these inequalities hold in the previous sense, i.e. in the sense of (21). The reader should notice that the stronger regularity of the integrated forms (17), (18) and (19) allows to define these solutions on the boundaries of the domain ((0,T)×(0,L)). If these would only belong to L((0,T);L1(0,L)) they would not make sense. Now the meaning of the formal setting is well defined, we then can proceed by writing that one has :

    {a1t|u1|+αx|u1|1ε(|˜q1||u1|)a2t|u2|αx|u2|1ε(|˜q2||u2|)a3t|q1|1ε(|˜u1||q1|)+K1(|˜u0||q1|)a4t|q2|1ε(|˜u2||q2|)+K2(|˜u0||q2|)|G(˜q2)|a0t|u0|K1(|˜q1||u0|)+K2(|˜q2||u0|)+|G(˜q2)|. (22)

    We have used the fact that sgn(G(˜q2))=sgn(˜q2) from (6), which implies in particular G(˜q2) sgn(˜q2)= |G(˜q2)| and G(˜q2)sgn(u0)|G(˜q2)|. In order to obtain inequalities in the weak formulation associated to the latter system it is enough to choose non-negative test functions in C1([0,T]×[0,L]).

    Adding all equations and integrating on [0,L], we obtain formally

    ddtL0(a1|u1|+a2|u2|+a0|u0|+a3|q1|+a4|q2|)α|u1(t,0)|+1εL0(|˜u1|+|˜u2|+|˜q1|+|˜q2|) dx+(K1+K2)L0|˜u0| dx,

    where we use the boundary condition u1(t,L)=u2(t,L) and (6). Let us define U(t,)L1(0,L)5:=L0(|u1|+|u2|+|q1|+|q2|+|u0|)(t,x)dx and integrating with respect to time, we obtain:

    U(t,x)L1(0,L)5 U(0,x)L1(0,L)5+αminiaiT0|ub(s)| ds+ηT0˜U(t,x)L1(0,L)5 dt, (23)

    with η=1miniai(K1+K2+1ε)>0. Here the formal computations are to be understood in the following manner : in the weak formulation associated to (22) we choose the test function φ=(1,1,1,1,1), and the result (23) comes in a straightforward way when neglecting the out-coming characteristic at x=0.

    On the other hand, using (17), (18) and (19), one quickly checks that

    UL((0,T)×(0,L))5max(U0L(0,L)5,ubL(0,T))+CTε˜UL((0,T)×(0,L))5 (24)

    where the generic constant C depends only on (ai)i{0,,4}, (Ki)i{1,2} and GL(R) but not on ˜U nor on the data U0. At this step, T maps XT into itself.

    Let us now prove that T is a contraction. Let (˜U,˜W)X2T, we define U:=T(˜U), W:=T(˜W). Then, by the same token as obtaining (23), we have

    T(˜U)T(˜W)L1(0,L)5=UWL1(0,L)5ηT0˜U˜WL1(0,L)ηT˜U˜WXT.

    Again similar computations as in (24), show that

    UWL((0,T)×(0,L))5CTε˜U˜WL((0,T)×(0,L))5.

    Therefore, as soon as T<min(1/η,ε/C), T is a contraction in XT. It allows to construct a solution on [0,T] for T small enough. The fixed point solves (17) and (19) in an implicit way. Along characteristics solutions have enough regularity to satisfy (7) in a weak sense (20). Choosing then the test functions φ:=(φi)i{1,,5} to belong to S5 shows that the fixed point is a weak solution in the sense of Definition 2.6. Since the solution U(t,x)=(u1(t,x),u2(t,x),q1(t,x),q2(t,x),u0(t,x)) is well defined as on {T}×(0,L) thanks to regularity arguments stated above, U(T,x) becomes the initial condition of a new initial boundary problem. Thus, we may iterate this process on [T,2T], [2T,3T], , since the condition on T does not depend on the iteration.

    As a result of above computations, we have also that if U1 (resp. U2) is a solution with initial data U1,0 (resp. U2,0) and boundary data u1b (resp. u2b). Then we have the comparison principle :

    U1U2L1((0,T)×(0,L))U0,1U0,2L1(0,L)+αminiaiu1bu2bL1(0,T). (25)

    which shows and implies uniqueness as well.

    In order to prove our convergence result, we first establish some uniform a priori estimates. The strategy of the proof of Theorem 2.5 relies on a compactness argument. In this Section we will omit the superscript ε in order to simplify the notation.

    The following lemma establishes that all concentrations of system are non-negative and this is consistent with the biological framework.

    Lemma 4.1. (Non-negativity). Let U(t,x) be a weak solution of system (1) such that the assumptions (4), (5), (6) hold. Then for almost every (t,x)(0,T)×(0,L), U(t,x) is non-negative, i.e.: u1(t,x), u2(t,x), q1(t,x), q2(t,x), u0(t,x) 0.

    Proof. We prove that the negative part of our functions vanishes. Using Stampacchia's method, we formally multiply each equation of system (7) by corresponding indicator function as follows:

    {(a1tu1+αxu1)1{u1<0}=1ε(q1u1)1{u1<0}(a2tu2αxu2)1{u2<0}=1ε(q2u2)1{u2<0}(a3tq1)1{q1<0}=1ε(u1q1)1{q1<0}+K1(u0q1)1{q1<0}(a4tq2)1{q2<0}=1ε(u2q2)1{q2<0}+K2(u0q2)1{q2<0}G(q2)1{q2<0}(a0tu0)1{u0<0}=K1(q1u0)1{u0<0}+K2(q2u0)1{u0<0}+G(q2)1{u0<0}.

    Again as in the proof of existence in Section 3, these computations can be made rigorously using the extra regularity provided along characteristics in the spirit of Lemma 3.1, [20] summarized in Theorem B.1.

    Using again Theorem B.1, one writes formally :

    {a1tu1+αxu11ε(q1u1)a2tu2αxu21ε(q2u2)a3tq11ε(u1q1)+K1(u0q1)a4tq21ε(u2q2)+K2(u0q2)+G(q2)1{q2<0}a0tu0K1(q1u0)+K2(q2u0)G(q2)1{u0<0}.

    Adding the previous expressions, one recovers a single inequality reading

    t(a1u1+a2u2+a3q1+a4q2+a0u0)+αx(u1u2)G(q2)(1{q2<0}1{u0<0}).

    By Assumption 2.3, we have that sgn(G(q2))=sgn(q2). Thus G(q2)(1{q2<0}1{u0<0})= G(q2) (1{G(q2)<0}1{u0<0})0. Then integrating on the interval [0,L], we get :

    ddtL0(a1u1+a2u2+a3q1+a4q2+a0u0)(t,x) dxα(u2(t,L)u2(t,0)u1(t,L)+u1(t,0)).

    Since u1(t,L)=u2(t,L) thanks to condition (5), it follows:

    ddtL0(a1u1+a2u2+a3q1+a4q2+a0u0)(t,x) dxαu1(t,0)=αub(t).

    From Assumptions 2.2 and 2.1, the initial and boundary data are all non-negative. Thus u1(0,x), q1(0,x), q2(0,x), u2(0,x), u0(0,x) are necessarily zero. This proves solutions' non-negativity and concludes the proof.

    Lemma 4.2. (L bound). Let (u1,u2,q1,q2,u0) be the unique weak solution of problem (7). Assume that (4), (5), (6) hold, then it is bounded i.e. for a.e. (t,x)(0,T)×(0,L),

    0u0(t,x)κ(1+t),0ui(t,x)κ(1+t),0qi(t,x)κ(1+t),i=1,2,
    0u2(t,0)κ(1+t),0u1(t,L)κ(1+t),

    where the constant κmax{G,ub,u00,u0i,q0i,i{1,2}}.

    Proof. We use the same method as in the previous lemma for the functions

    wi=(uiκ(1+t)),i=0,1,2,zj=(qjκ(1+t)),j=1,2.

    From system (7) and using the fact that

    zj1{wi0}=z+j1{wi0}zj1{wi0}z+j,wi1{zj0}w+i,

    we get

    {a1tw+1+a1κ1{w10}+αxw+11ε(z+1w+1)a2tw+2+a2κ1{w20}αxw+21ε(z+2w+2)a3tz+1+a3κ1{z10}1ε(w+1z+1)+K1(w+0z+1)a4tz+2+a4κ1{z20}1ε(w+2z+2)+K2(w+0z+2)G(q2)1{z20}a0tw+0+a0κ1{w00}K1(z+1w+0)+K2(z+2w+0)+G(q2)1{w00}. (26)

    Adding expressions above gives

    t(a1w+1+a2w+2+a3z+1+a4z+2+a0w+0)+αx(w+1w+2) κ1{w00} +G(q2)(1{w00}1{z20}).

    Integrating with respect to x yields

    ddtL0(a1w+1+a2w+2+a3z+1+a4z+2+a0w+0)(t,x)dxα(w+2(t,L)w+2(t,0)w+1(t,L)+w+1(t,0))+L0(G(q2)κ)1{w00}dx,

    where we use the fact that G(q2)0 from assumption (6) since q20 thanks to the previous lemma. From the boundary conditions in (1), we have for all t0, w+2(t,L)=[u2(t,L)κ(1+t)]+=[u1(t,L)κ(1+t)]+=w+1(t,L). Then,

    ddtL0(a1w+1+a2w+2+a3z+1+a4z+2+a0w+0)(t,x)dx+αw+2(t,0)α(ub(t)κ(1+t))++(Gκ)L01{w00}dx.

    If we adjust the constant κ such that κmax{G,ub}, it implies that :

    ddtL0(a1w+1+a2w+2+a3z+1+a4z+2+a0w+0)(t,x)dx+αw+2(t,0)0,

    which shows the claim.

    For the last estimate on u1(t,L), we sum the first and the third inequalities of the system (26) and integrate on (0,L),

    ddtL0(a1w+1+a3z+1)dx+αw+1(t,L) αw+1(t,0)+K1L0(w+0z+1)dxκL0(1{w10}+1{z10})dx.

    Integrating on (0,T) and since we have proved above that w+0=0 and z+1=0, we arrive at

    αT0w+1(t,L)dtαT0w+1(t,0)dt=0,

    for κub.

    Lemma 4.3. (LtL1x estimates). Let T>0 and let (u1,u2,q1,q2,u0) be a weak solution of system (1) in (L([0,T];(L1L)(0,L)))5. We define:

    H(t)=L0(a1|u1|+a2|u2|+a0|u0|+a3|q1|+a4|q2|)(t,x)dx.

    Then, under hypothesis (4), (5), (6) the following a priori estimate, uniform in ε>0, holds:

    H(t)αubL1(0,T)+H(0),t>0.

    Moreover the following inequalities hold:

    T0|u2(t,0)|dtubL1(0,T)+1αH(0),

    and

    T0|u1(t,L)|dtL0(|u01(x)|+|q01(x)|)dx+CT

    with C>0 constant.

    Proof. Since from Lemma 4.1 all concentrations are non-negative, we may write from system (7)

    {a1t|u1|+αx|u1|=1ε(|q1||u1|)a2t|u2|αx|u2|=1ε(|q2||u2|)a3t|q1|=1ε(|u1||q1|)+K1(|u0||q1|)a4t|q2|=1ε(|u2||q2|)+K2(|u0||q2|)|G(q2)|a0t|u0|=K1(|q1||u0|)+K2(|q2||u0|)+|G(q2)|. (27)

    Adding all equations and integrating on (0,L), we get, recalling the boundary condition u1(t,L)=u2(t,L),

    ddtH(t)+α|u2(t,0)|=α|u1(t,0)|=α|ub(t)|. (28)

    Integrating now with respect to time, we obtain:

    H(t)+αt0|u2(s,0)|dsαt0|ub(s)| ds+H(0). (29)

    with H(t) previously defined. It gives the first two estimates of the Lemma. Finally, to obtain the last inequality, we add equations (7a) and (7c) and integrate on (0,L) to get

    ddtL0(a1|u1|+a3|q1|) dx+α|u1(t,L)|α|ub(t)|+K1L0|u0| dx.

    Since we have shown that L0|u0|dx1a0H(t)<, we can conclude after integrating with respect to time.

    Here we detail the notion of regularization for BV functions. The C((0,L))-regularization denoted fδ for a BV(0,L) function f follows the steps below [32,Theorem 5.3.3], i.e.

    fδ(x)=k=0ηδk(fζk)

    where {ζk}k=1 is a sequence of regular cut-off functions s.t.

    {ζkCc(Vk),0ζk1,(k=1,2,)k=1ζk1on(0,L)

    where

    {Θ0=,Θk:={x(0,L);dist(x,{0,L})>1k},(k=1,2,)Vk:=Θk+1¯Θk1,(k=1,2,)

    and there exists δk>0 such that

    {Supp(ηδk(ζkf))Vk,(0,L)|ηδk(ζkf)ζkf|dxδ2k,(0,L)|ηδk(ζkf)ζkf|dxδ2k,

    Although fδ converges strongly to f in L1(0,L), one has only that

    limδ0xfδL1(0,L)=λf((0,L)),

    where the right hand side is the total variation of the Radon measure associated to the derivative of f [32,Theorem 5.3.3]. This result comes partly form the estimates from above :

    xfδL1(0,L)fBV(0,L). (30)

    Then we set

    fδc(x):=(1χδ(x))fδ(x)+cχδ(x),x(0,L) (31)

    where c is a given real constant and

    χδ(x):=χ(xδ),χ(x):={1if|x|<10if|x|>2,

    χC(R) being a positive monotone function.

    Lemma 4.4. If fBV(0,L), cR and fδc defined as above, one has :

    xfδcL1(0,L)C(1+fBV(0,L))

    where the generic constant C(c,χ) is independent of δ.

    Proof. Differentiating (31) and integrating in space gives :

    xfδcL1(0,L)2xfδL1(0,L)+1δδ0|fδ(x)c||χ(x/δ)|dx2xfδL1(0,L)+χL(R)(|fδ(0+)c|+1δδ0|fδ(x)fδ(0+)|dx)C(fBV(0,L)+|fδ(0+)c|)C(fBV(0,L)+c+|fδ(0+)|)C(fBV(0,L)+c+fδW1,1(0,L))C(1+fBV(0,L))

    where we used (30).

    Definition 4.5. If (u01,u02,q01,q02,u00) and ub are respectively the initial and boundary data associated to the problem (7), under hypotheses 4 and 5, we define as regular data their regularization in the following manner : we set

    {u0,δ1(x):=(1χδ(x)χδ(Lx))u01,δ+c1χδ(x)+c2χδ(Lx),x[0,L]uδb(t):=(1χδ(t))ub,δ+c1χδ(t),t[0,T]u0,δ2(x):=(1χδ(Lx))u02,δ+c2χδ(Lx),x[0,L]q0,δ1(x):=q01,δ,x[0,L]q0,δ2(x):=q02,δ,x[0,L]u0,δ0(x):=u00,δ,x[0,L]

    where u01,δ is the approximation introduced above, the same notation holding for the rest of the initial data.

    The matching is C in the neighborhood of (0,0) in [0,L]×[0,T]. Indeed, u0,δ1(x)=c1 when x is close enough to 0 and in the same way uδb(t)=c1 when t is near 0, whereas for the derivatives (u0,δ1)(k)(x)=0 when x is close to zero for any derivative of order k, and the same holds for (uδb)(k)(t) when t is sufficiently small. The same holds true in the neighborhood of the point (t,x)=(L,0).

    This regularization procedure allows then to obtain

    Lemma 4.6. Assume hypotheses 2.3, and let Uδ be the solution associated to problem (7) with initial data U0,δ=(u0,δ1,u0,δ2,q0,δ1,q0,δ2,u0,δ0) and the boundary condition uδb. Then tUδ belongs to XT:=L((0,T);(L1(0,L)L(0,L)))5. and solves the problem

    {a1t+αx)uδ1,t=1ε(qδ1,tuδ1,t)a2tαx)uδ2,t=1ε(qδ2,tuδ2,t)a3tqδ1,t=1ε(qδ1,tuδ1,t)+K1(uδ0,tqδ1,t)a4tqδ2,t=1ε(qδ2,tuδ2,t)+K2(uδ0,tqδ2,t)G(qδ2)qδ2,ta0tuδ0,1=K1(qδ1,tuδ0,t)+K2(qδ2,tuδ0,t)G(qδ2)qδ2,t (32)

    where uδi,t=tuδi and so on.

    {uδ1,t(t,0)=tuδb(t),a1uδ1,t(0,x)=αxu0,δ1+1ε(q0,δ1u0,δ1)a2uδ2,t(0,x)=αxu0,δ2+1ε(q0,δ2u0,δ2)a3qδ1,t(0,x)=1ε(q0,δ1u0,δ1)+K1(u0,δ0q0,δ1)a4qδ2,t(0,x)=1ε(q0,δ2u0,δ2)+K2(u0,δ0q0,δ2)G(q0,δ2)a0uδ0,t(0,x)=K1(q0,δ1u0,δ0)+K2(q0,δ2u0,δ0)+G(q0,δ2) (33)

    Proof. The Duhamel's formula obtained by the fixed point method in the proof of Theorem 2.7 provides a solution UδXT. Deriving Uδ with respect to t, one can show that tUδ solves (32) with initial and boundary conditions (33). Applying then the existence result again proves that actually tUδ belongs to XT.

    Remark 1. A priori estimates from previous sections, when applied to the problem (32) complemented with initial-boundary data (33), do not provide a control of tUδ which is uniform with respect to ε.

    This remark motivates next paragraphs.

    At this step we introduce initial layer correctors. For this sake, on the microscopic scale we define for tR+, functions (˜u1,˜u2,˜q1,˜q2) solving

    {a1t˜u1=˜q1˜u1a2t˜u2=˜q2˜u2a3t˜q1=˜u1˜q1a4t˜q2=˜u2˜q2, (34)

    with initial conditions

    ˜u1(0,x)=q0,δ1u0,δ1,˜u2(0,x)=q0,δ2u0,δ2,˜q1(0,x)=0,˜q2(0,x)=0.

    Actually, this system may be solved explicitly and we obtain for i{1,2},

    {˜ui(t,x)=ai+ai+2exp(t(1ai+1ai+2))ai+ai+2(q0,δi(x)u0,δi(x))˜qi(t,x)=ai(1exp(t(1ai+1ai+2)))ai+ai+2(q0,δi(x)u0,δi(x)) (35)

    We introduce the following quantities on the macroscopic time scale t[0,T] :

    {vδ1(t,x)=uδ1(t,x)+˜u1(tε,x)vδ2(t,x)=uδ2(t,x)+˜u2(tε,x)sδ1(t,x)=qδ1(t,x)+˜q1(tε,x)sδ2(t,x)=qδ2(t,x)+˜q2(tε,x) (36)

    Next, we prove uniform bounds on the time derivatives :

    Proposition 1. Let T>0. If the data is regular in the sense of Definition 4.5, setting :

    ˜Ht(t)=L0(a1|tvδ1|+a2|tvδ2|+a3|tsδ1|+a4|tsδ2|+a0|tuδ0|)(t,x) dx,

    with functions v1,v2,sδ1,sδ2 defined in (36), one has :

    ˜Ht(t)+αt0|tvδ2(τ,0)|dτ+αt0|tvδ1(τ,L)|dτC(U0,δW1,1(0,L)+uδbW1,1(0,T)),fora.e.t(0,T), (37)

    where W1,1(0,L) denotes the vector-space W1,1(0,L)5.

    Proof. From system (7) we deduce

    {a1tvδ1+αxvδ1=1ε(sδ1vδ1)+αx˜u1(tε,x)a2tvδ2αxvδ2=1ε(sδ2vδ2)αx˜u2(tε,x)a3tsδ1=1ε(vδ1sδ1)+K1(uδ0sδ1)+K1˜q1(tε,x)a4tsδ2=1ε(vδ2sδ2)+K2(uδ0sδ2)+K2˜q2(tε,x)G(qδ2)a0tuδ0=K1(sδ1uδ0)+K2(sδ2uδ0)K1˜q1(tε,x)K2˜q2(tε,x)+G(qδ2) (38)

    with following initial and boundary conditions:

    vδ1(t,0)=u1(t,0)+˜u1(t,0)=ub(t)+˜u1(tε,0),t(0,T),vδ2(t,L)=vδ2(t,L)+˜u2(tε,L),t(0,T),vδ1(0,x)=uδ1(0,x)+˜u1(0,x)=q01(x),x(0,L),vδ2(0,x)=uδ2(0,x)+˜u2(0,x)=q02(x),sδ1(0,x)=qδ1(0,x)+˜q1(0,x)=q01(x),sδ2(0,x)=qδ2(0,x)+˜q2(0,x)=q02(x). (39)

    As GC2(R), thanks to Lemma 4.6, tUδL((0,T);(L1(0,T)L(0,L)))5, taking the derivative with respect to t in system (38), tVδ=t(vδ1,vδ2,sδ1,sδ2,uδ0) solves

    {a1tvδ1,t+αxvδ1,t=1ε(sδ1,tvδ1,t)+1εx˜u1,ta2tvδ2,tαxvδ2,t=1ε(sδ2,tvδ2,t)1εx˜u2,ta3tsδ1,t=1ε(vδ1,tsδ1,t)+K1(uδ0,tsδ1,t)+1εK1˜q1,ta4tsδ2,t=1ε(vδ2,tsδ2,t)+K2(uδ0,tsδ2,t)+1εK2˜q2,tG(qδ2)q2,ta0tuδ0,t=K1(sδ1,tuδ0,t)+K2(sδ2,tuδ0,t)1εK1˜q1,t1εK2˜q2,t+G(qδ2)q2,t

    in the sense of Definition (2.6). Again formally, we multiply each equation respectively by sgn(vδi,t) with i=1,2, and sgn(sδj,t), for j=1,2, and by sgn(uδ0,t) in the sense explained in the proof of Theorem 2.7. It gives

    {a1t|vδ1,t|+αx|vδ1,t|1ε(|sδ1,t||vδ1,t|)+|1εx˜u1,t|a2t|vδ2,t|αx|vδ2,t|1ε(|sδ2,t||vδ2,t|)+|1εx˜u2,t|a3t|sδ1,t|1ε(|vδ1,t||sδ1,t|)+K1(|uδ0,t||sδ1,t|)+|1εK1˜q1,t|a4t|sδ2,t|1ε(|vδ2,t||sδ2,t|)+K2(|uδ0,t||sδ2,t|)+|1εK2˜q2,t|+|G(qδ2)1ε˜q2,t|G(qδ2)|sδ2,t|a0t|uδ0,t|K1(|sδ1,t||uδ0,t|)+K2(|sδ2,t||uδ0,t|)+|1εK1˜q1,t|+|1εK2˜q2,t|+|G(qδ2)1ε˜q2,t|+G(qδ2)|sδ2,t|. (40)

    Indeed, the right hand side of the 4th and 5th inequalities can be obtained as follows. On the one hand, we have

    G(qδ2)q2,tsgn(sδ2,t)=G(qδ2)(sδ2,t(t,x)1ε˜q2,t(tε,x))sgn(sδ2,t)G(qδ2)|sδ2,t|+1ε|G(qδ2)˜q2,t|.

    On the other hand

    G(qδ2)q2,tsgn(uδ0,t)=G(qδ2)(sδ2,t(t,x)1ε˜q2,t(tε,x))sgn(u0,t)G(qδ2)|sδ2,t|+1ε|G(qδ2)˜q2,t|,

    since G is non-decreasing by assumption (6). Summing all inequalities in (40) and integrating with respect to space on (0,L), we obtain formally

    ddt˜Ht(t)+α|vδ2,t(t,0)|F1(t)+F2(t)+F3(t)+F4(t), (41)

    where

    F1(t):=α(|vδ2,t(t,L)||vδ1,t(t,L)|);F2(t):=α|vδ1,t(t,0)|,F3(t):=1εL0|x˜u2,t(tε,x)|dx+1εL0|x˜u1,t(tε,x)|dx,F4(t):=2K1εL0|˜q1,t(tε,x)|dx+2ε(G+K2)L0|˜q2,t(tε,x)|dx.

    Integrating (41) in time, we get

    ˜Ht(t)+αT0|vδ2,t(t,0)|dtT0(F1(t)+F2(t)+F3(t)+F4(t))dt+˜Ht(0). (42)

    Let us consider each term of the right hand side of (42) separately:

    F1: On the right boundary x=L, one has

    T0(|vδ2,t(t,L)||vδ1,t(t,L)|)dt1εT0|(˜u2,t˜u1,t)(tε,L)|dtTε0|(˜u2,t˜u1,t)(τ,L)|dτ12{|u0,δ1(0)q0,δ1(0)|+|u0,δ2(0)qδ,02(0)|}CU0,δW1,1(0,L)

    where we used trace operator's continuity for W1,1(0,L) functions (using integration by parts, one shows as well that the constant C does not depend on δ).

    F2: On the other hand at x=0, the boundary condition can be estimated as

    T0|vδ1,t(t,0)| dtT0|(uδb)(s)|ds+Tε0|(u0,δ1(0)q0,δ1(0))e2τ| dτC(uδbW1,1(0,T)+U0,δW1,1(0,L))

    as above.

    F3: With the change of variable τ=tε, we have, using again (35),

    T0L0|1εx˜ui,t(tε,x)|dxdt=Tε0L0|x˜ui,t(τ,x)|dxdτCU0,δW1,1(0,L),

    which is uniformly bounded with respect to ε.

    F4: similarly, we have

    \begin{align*} \int_0^T\int_0^L \left|\frac{1}{ \varepsilon} \tilde{q}_{i, t}\left(\frac{t}{ \varepsilon}, x\right)\right|\, dxdt = \int_{0}^{\frac{T}{ \varepsilon}}\int_{0}^{L} | \tilde{q}_{i, t}(\tau, x)|\ dxd\tau \leq C \left\lVert{U^{0, \delta}}\right\rVert_{{ {\mathbf W}^{1, 1}(0, L)}} \end{align*}

    thanks to the fact that {{\partial}}_t \tilde{q}_{i}(\tau, x) = (q_i^{0}(x)-u_i^{0}(x))e^{-2\tau} with i = 1, 2.

    It remains to estimate \tilde{\mathcal{H}}_{t}(0) in (42). Indeed, using (38) at t = 0 in order to convert time derivatives into expressions involving only the data and its space derivatives, one obtains

    \begin{align*} \tilde{\mathcal{H}}_{t}(0) & = \int_0^L \left(a_1 |v_{1, t}^\delta(0, x)| + a_2 |v_{2, t}^\delta(0, x)| + a_3 |s_{1, t}^\delta(0, x)| + a_4 |s_{2, t}^\delta(0, x)| + a_0 |u_{0, t}^\delta(0, x)| \right)\, dx \\ & \leq C \left\lVert{U^{0, \delta}}\right\rVert_{{ {\mathbf W}^{1, 1}(0, L)}} \end{align*}

    So, for instance, for the first term of the sum, we use the first equation in (38) and we write

    a_1 {{\partial}}_t v_1^\delta(0, x) = \frac{1}{ \varepsilon} (s_1^\delta(0, x)-v_1^\delta(0, x)) + \alpha{{\partial}}_x\tilde{u}_1(0, x) - \alpha {{\partial}}_x v_1^\delta(0, x).

    Recalling that s_1^\delta(0, x) = q_1^{0}(x) and v_1^\delta(0, x) = q_1^{0}(x) as defined in (39) we get: a_1 {{\partial}}_t v_1^\delta(0, x) = \alpha {{\partial}}_x (q_1^{0}(x)-u_1^{0}(x))-\alpha {{\partial}}_x v_1^\delta(0, x) = -\alpha{{\partial}}_x u_1^{0}(x), then

    \int_{0}^{L}|{{\partial}}_t v_1^\delta(0, x)|\ dx \leq \frac{\alpha}{a_1}\int_{0}^{L}|{{\partial}}_x u_1^{0, \delta}(x)|\ dx < C \left\lVert{U^{0, \delta}}\right\rVert_{{ {\mathbf W}^{1, 1}(0, L)}},

    The rest follows exactly the same way. We conclude from (42) and the above calculations that

    \begin{aligned} \tilde{\mathcal{H}}_{t}(t) + \alpha \int_0^T |v_{2, t}^\delta(t, 0)|\, dt & \leq \tilde{\mathcal{H}}_{t}(0)+\int_{0}^{t} (F_1+F_2+F_3+F_4)(s)\ ds \\ & \leq C\left(\left\lVert{U^{0, \delta}}\right\rVert_{{ {\mathbf W}^{1, 1}(0, L)}}+\left\lVert{u^\delta_b}\right\rVert_{{W^{1, 1}(0, T)}}\right). \end{aligned}

    Finally, in order to recover (37), we add the first and third inequalities in (40) and integrate on (0, T)\times(0, L) , we get

    \begin{align*} &\int_0^L (a_1|v_{1, t}^\delta(T, x)|+a_3|s_{1, t}^\delta(T, x)|)\, dx + \alpha \int_0^T |v_{1, t}^\delta(t, L)|\, dt \\ & \leq\ \alpha \int_0^T |v_{1, t}^\delta(t, 0)|\, dt + \int_0^L (a_1 |v_{1, t}^\delta(0, x)| + a_3|s_{1, t}^\delta(0, x)|)\, dx \\ &\quad + \int_0^T\!\!\int_0^L \left(K_1|u^\delta_{0, t}(t, x)| + \frac{K_1}{ \varepsilon}\left|\tilde{q}_{1, t}\left(\frac{t}{ \varepsilon}, x\right)\right| + \frac{1}{ \varepsilon}\left|{{\partial}}_x\tilde{u}_{1, t}\left(\frac{t}{ \varepsilon}, x\right)\right| \right)\, dxdt. \end{align*}

    We have already proved that the second term of the right hand side is bounded. We have also proved above that u^\delta_{0, t} is uniformly bounded in L^\infty((0, T);L^1(0, L)) . From (39), we have v_{1, t}^\delta(t, 0) = u_b'(t) + \frac{1}{ \varepsilon} \tilde{u}_{1, t}(\frac{t}{ \varepsilon}, 0) . As above, we use the expressions of \tilde{u}_1 and \tilde{q}_1 and a change of variable to bound each term of the right hand side.

    As a consequence, we deduce the following estimates on the time derivatives of the original unknowns (u_1^\delta, u_2^\delta, q_1^\delta, q_2^\delta, u_0^\delta) :

    Corollary 1. Let T>0 , under the same assumptions, there exists a constant C_T>0 depending only on the W^{1, 1} norm of the data but independent on \varepsilon , such that :

    \begin{equation} \begin{aligned} & \int_0^T \int_{0}^{L} (|{{\partial}}_{t}u_{1}^\delta|+|{{\partial}}_{t}u_{2}^\delta|+|{{\partial}}_{t}u_{0}^\delta|+|{{\partial}}_{t}q_{1}^\delta|+|{{\partial}}_{t}q_{2}^\delta|)(t, x)\, dx \, dt \leq C \left\lVert{U^{0, \delta}}\right\rVert_{{ {\mathbf W}^{1, 1}(0, L)}}, \\ & \int_{0}^{T} |{{\partial}}_{t}u_{2}^\delta(t, 0) |\ dt \leq C\left\lVert{U^{0, \delta}}\right\rVert_{{ {\mathbf W}^{1, 1}(0, L)}}, \quad \int_{0}^{T} |{{\partial}}_{t} u_{1}^\delta(t, L)|\ dt \leq C\left\lVert{U^{0, \delta}}\right\rVert_{{ {\mathbf W}^{1, 1}(0, L)}}. \end{aligned} \end{equation} (43)

    Proof. We recall the expressions

    v^\delta_1 = u^\delta_1+\tilde{u}_1, \quad v^\delta_2 = u^\delta_2+\tilde{u}_2, \quad s^\delta_1 = q^\delta_1+\tilde{q}_1, \quad s^\delta_2 = q^\delta_2+\tilde{q}_2.

    By the triangle inequality, we have for i\in \{1, 2\} ,

    \begin{align*} \|{{\partial}}_t u^\delta_i\|_{L^1([0, T]\times[0, L]) }\leq \|{{\partial}}_t v^\delta_i\|_{L^1([0, T]\times[0, L]) }+\frac 1 \varepsilon \|{{\partial}}_t \tilde{u}_i(t/ \varepsilon, x) \|_{L^1([0, T]\times[0, L]) }, \\ \|{{\partial}}_t q^\delta_i\|_{L^1([0, T]\times[0, L]) }\leq \|{{\partial}}_t s^\delta_i\|_{L^1([0, T]\times[0, L]) }+\frac 1 \varepsilon \|{{\partial}}_t \tilde{q}_i(t/ \varepsilon, x) \|_{L^1([0, T]\times[0, L]) }. \end{align*}

    The first terms of the latter right hand side are bounded from Proposition 1. For the second terms, we have, as above,

    \begin{align*} \int_{0}^{T}\int_{0}^{L} \frac 1 \varepsilon \left|{{\partial}}_t \tilde{q}_{i}\left(\frac{t}{ \varepsilon}, x\right)\right|\ dxdt = \ & \frac{1}{ \varepsilon} \int_{0}^{T}\int_{0}^{L} \left|(q_i^{0}(x)-u_i^{0}(x))e^{-2\frac{t}{ \varepsilon}}\right|\ dxdt \\ & < C \left\lVert{U^{0, \delta}}\right\rVert_{{ {\mathbf W}^{1, 1}(0, L)}}, \\ \int_{0}^{T}\int_{0}^{L} \frac{1}{ \varepsilon}\left|{{\partial}}_t \tilde{u}_{i}\left(\frac{t}{ \varepsilon}, x\right)\right|\ dxdt = \ & \frac{1}{ \varepsilon} \int_{0}^{T}\int_{0}^{L}\left|(u_i^{0}(x)-q_i^{0}(x))e^{-2\frac{t}{ \varepsilon}}\right|\ dxdt \\ & < C' \left\lVert{U^{0, \delta}}\right\rVert_{{ {\mathbf W}^{1, 1}(0, L)}}. \end{align*}

    Furthermore, from (42), we get

    \int_{0}^{T} \left|v^\delta_{2, t}(t, 0)\right|\ dt \leq C_T \left\lVert{U^{0, \delta}}\right\rVert_{{ {\mathbf W}^{1, 1}(0, L)}}.

    By the triangle inequality, it implies the second estimate in (43) To recover the third claim in (43), we notice that by definition of v_1^\delta and a triangle inequality, we have

    |u^\delta_{1, t}(t, L)|\leq |v^\delta_{1, t}(t, L)| + \frac 1 \varepsilon \left|\tilde{u}_{1, t}\left(\frac{t}{ \varepsilon}, L\right)\right| \leq |v^\delta_{1, t}(t, L)| + \frac 1 \varepsilon \|q^{0, \delta}_ 1- u^{0, \delta}_1\|_{W^{1, 1}(0, L)} e^{-2\frac{t}{ \varepsilon}}.

    where again we use the continuity of the trace operator on W^{1, 1}(0, L) functions in order to recover the dependence between the values at x = L and the W^{1, 1}(0, L) -norm of the initial data. Integrating in time and using (37) allows to conclude.

    Lemma 4.7. Let T>0 . If the data is regular in the sense of Definition 4.5, then, the space derivatives of functions u^\delta_1 , u^\delta_2 satisfy the following estimates :

    \int_0^T\int_{0}^{L} \left(\sum\limits_{i = 0}^2 |{{\partial}}_{x}u^\delta_{i}(t, x)|+\sum\limits_{i = 1}^2 |{{\partial}}_{x}q^\delta_{i}(t, x)|\right) \, dxdt \leq C_T \left\lVert{U^{0, \delta}}\right\rVert_{{W^{1, 1}((0, L))}},

    for some non-negative constant C_T uniformly bounded with respect to \varepsilon .

    Proof. Adding equation (7a) with (7c) and also (7b) with (7d) we get

    \begin{align*} \alpha {{\partial}}_x u^\delta_1 & = K_1(u^\delta_0-q^\delta_1) - a_1 {{\partial}}_t u^\delta_1 - a_3 {{\partial}}_t q^\delta_1, \\ -\alpha {{\partial}}_x u^\delta_2 & = K_2(u^\delta_0-q^\delta_2) - a_2 {{\partial}}_t u^\delta_2 - a_4 {{\partial}}_t q^\delta_2 - G(q^\delta_2). \end{align*}

    Using Corollary 1 and (6), the right hand sides are uniformly bounded in L^1((0, T)\times(0, L)) . Deriving the ODE part of (7) with respect to the space variable and using the latter estimates provides the results for u_0^\delta , q_1^\delta and q_2^\delta .

    We show here how to use Corollary 1 and Lemma 4.7 in order to obtain {{{\rm{BV}}}} compactness.

    Theorem 4.8. Under hypotheses (2.1)-(2.3), there exists a uniform bound such that the \varepsilon -dependent solutions of system (7) satisfy

    \sum\limits_{i = 0}^2 \left\lVert{u_i}\right\rVert_{{BV((0, T)\times(0, L))}} + \sum\limits_{i = 1}^2 \left\lVert{q_i}\right\rVert_{{BV((0, T)\times(0, L))}} \leq C \left(\left\lVert{U^0}\right\rVert_{{ {{{\rm{}}}{\mathbf B}{\mathbf V}}(0, L)}} + \left\lVert{u_b}\right\rVert_{{ {{{\rm{BV}}}}(0, T)}} \right)

    where the generic constant C is independent on \varepsilon .

    Proof. Setting U^\delta(t, x) : = (u_1^\delta(t, x) , u_2^\delta(t, x) , q_1^\delta(t, x) , q_2^\delta(t, x) , u_0^\delta(t, x) ) , one has from the previous estimates :

    \left\lVert{U^\delta}\right\rVert_{{ {\mathbf W}_{t, x}^{1, 1}((0, T)\times(0, L))}} \leq C \left( \left\lVert{U^{0, \delta}}\right\rVert_{{ {\mathbf W}_{x}^{1, 1}(0, L)}} + \left\lVert{u_b^\delta}\right\rVert_{{W^{1, 1}(0, T)}} \right)

    Now thanks to Lemma 4.4, one estimates the right hand side with respect to the {{{\rm{BV}}}} norm of the data :

    \left\lVert{U^{0, \delta}}\right\rVert_{{ {\mathbf W}_{x}^{1, 1}(0, L)}} \leq C\left(1+\left\lVert{U^0}\right\rVert_{{{ {{{\rm{}}}{\mathbf B}{\mathbf V}}}(0, L)}} \right), \quad \left\lVert{u_b^\delta}\right\rVert_{{W^{1, 1}(0, T)}} \leq C (1+\left\lVert{u_b}\right\rVert_{{ {{{\rm{BV}}}}(0, T)}} )

    We are in the hypotheses of [32,Theorem 5.2.1. p. 222] : by L^1 -continuity, shown in Theorem 2.7, U^\delta tends to U : = (u_1, u_2, q_1, q_2, u_0) in L^1((0, T)\times(0, L)) strongly, when \delta vanishes. Then for any open set V \subset (0, T)\times(0, L) one has

    \left\lVert{U}\right\rVert_{{ {{{\rm{}}}{\mathbf B}{\mathbf V}}_{t, x}(V)}} \leq \liminf\limits_{\delta \to 0} \left\lVert{U^\delta}\right\rVert_{{ {{{\rm{}}}{\mathbf B}{\mathbf V}}_{t, x}((0, T)\times(0, L))}} = \liminf\limits_{\delta \to 0} \left\lVert{U^\delta}\right\rVert_{{ {\mathbf W}^{1, 1}_{t, x}((0, T)\times(0, L))}}

    and since the {{{\rm{}}}{\mathbf B}{\mathbf V}} bound of the sequence (U^\delta)_{\delta} is uniformly bounded with respect to \delta , the result extends by [32,Remark 5.2.2. p. 223] to the whole set (0, T)\times(0, L) .

    It is divided into two steps.

    1. Convergence : From Lemma 4.2, Lemma 4.3 and Corollary 1, sequences (u_1^ \varepsilon)_ \varepsilon and (u_2^ \varepsilon)_ \varepsilon are uniformly bounded in L^\infty\cap BV((0, T)\times (0, L)) . Thanks to the Helly's theorem [3,18], we deduce that, up to extraction of a subsequence,

    \begin{aligned} & u_{1}^{ \varepsilon} \xrightarrow[ \varepsilon \to 0]{} u_1 {\rm{ strongly in }} L^1([0, T]\times[0, L]), \\ & u_{2}^{ \varepsilon} \xrightarrow[ \varepsilon \to 0]{} u_2 {\rm{ strongly in }} L^1([0, T]\times[0, L]), \end{aligned}

    with limit function u_1, u_2 \in L^\infty\cap BV((0, T)\times(0, L)) .

    By equations (7a), one shows by testing with the appropriate C^1 compactly supported functions in (0, T)\times(0, L) and using the definition of the {{{\rm{BV}}}} norm (cf for instance, [32,p. 220-221]):

    \|q_1^{ \varepsilon}- u_1^{ \varepsilon}\|_{L^1((0, T)\times(0, L))}\leq C \varepsilon \left\lVert{u_1^ \varepsilon}\right\rVert_{{BV((0, T)\times(0, L))}}

    which tends to zero as \varepsilon goes to 0 thanks to the bounds in Corollary 1 and Lemma 4.7. Therefore, q_{1}^{ \varepsilon} \xrightarrow[ \varepsilon \to 0] u_1 strongly in L^{1}((0, T)\times(0, L)) . By the same argument, we show that q_{2}^{ \varepsilon} \xrightarrow[ \varepsilon \to 0] u_2 strongly in L^{1}((0, T)\times(0, L)) . Moreover, since G is Lipschitz-continuous, we have, when \varepsilon goes to zero,

    \|G(q_2^{ \varepsilon})-G(u_2)\|_{L^{1}((0, T)\times(0, L))} \longrightarrow 0.

    For the convergence of u_0^{ \varepsilon} , let us first denote u_0 a solution to the equation

    a_0 {{\partial}}_{t}u_0 = K_1(u_1-u_0) + K_2(u_2-u_0) + G(u_2).

    Then, taking the last equation of system (7), subtracting by this latter equation and multiplying by {\rm{sgn}}(u_0^{ \varepsilon}-u_0) , we get in a weak sense that

    \begin{align*} a_0 {{\partial}}_{t}|u_0^{ \varepsilon}-u_0| & \leq K_1|q_1^{ \varepsilon}-u_1| + K_2|q_2^{ \varepsilon}-u_2| +(K_1+K_2)|u_0-u_0^{ \varepsilon}| + |G(q_2^{ \varepsilon})-G(u_2)| \\ & \leq K_1|q_1^{ \varepsilon}-u_1| + K_2|q_2^{ \varepsilon}-u_2| +(K_1+K_2)|u_0-u_0^{ \varepsilon}| + \|G'\|_\infty |q_2^{ \varepsilon}- u_2|. \end{align*}

    Using Grönwall's Lemma, we get, after an integration on [0, L] ,

    \begin{align*} \int_{0}^{L}|u_0^{ \varepsilon}-u_0|(t, x)\, dx \leq &\ \int_{0}^{L} e^{\frac{(K_1+K_2)}{a_0}t}|u_0-u_0^{ \varepsilon}|(0, x)\, dx \\ & + \frac{K_{1}}{a_0}\int_{0}^{L}\!\!\int_{0}^{T}e^{\frac{(K_1+K_2)}{a_0}(t-s)}|q_1^{ \varepsilon}-u_1|(s, x)\, dsdx \\ & + \frac{(\|G'\|_\infty+ K_2)}{a_0}\int_{0}^{L}\!\!\int_{0}^{T}e^{\frac{(K_1+K_2)}{a_0}(t-s)}|q_2^{ \varepsilon}-u_2|(s, x)\, dsdx. \end{align*}

    Thus, one concludes that

    u_{0}^{ \varepsilon} \xrightarrow[ \varepsilon \to 0]{} u_0 {\rm{ strongly in }} L^1((0, T)\times(0, L)).

    2. The limit system :

    We pass to the limit in (15), the weak formulation of system (7). Suppose that {\boldsymbol{\phi} } \in {\mathcal S}_5 . Taking \phi_1 = \phi_3 and \phi_{2} = \phi_{4} in (15) we may pass to the limit \varepsilon\to 0 and we obtain

    \begin{aligned} &\int_{0}^{T}\!\!\int_{0}^{L} u_1((a_1+a_3) {{\partial}}_t \phi_1+\alpha {{\partial}}_x \phi_1)\, dxdt + \alpha\int_{0}^{T} u_b(t)\phi_1(t, 0)\, dt \\ & + \int_{0}^{L} (a_1 u_1^0(x) + a_3 q_1^0(x))\phi_1(0, x)\, dx \\ &+ \int_{0}^{T}\!\!\int_{0}^{L} u_2( (a_2+a_4){{\partial}}_t \phi_2-\alpha {{\partial}}_x \phi_2)\, dxdt + \int_{0}^{L} (a_2 u_2^0(x) + a_4 q_2^0(x))\phi_2(0, x)\, dx \\ & + \int_{0}^{T}\!\!\int_{0}^{L} \Big(a_0 u_0 {{\partial}}_t \phi_3 +K_1(u_1-u_0) (\phi_3 -\phi_1 ) +K_2 (u_2-u_0) (\phi_3 -\phi_2 ) \\ &+ G(u_2) (\phi_3- \phi_2)\Big)\, dxdt +\int_{0}^{L} a_0 u_0(0, x) \phi_3(0, x)\, dx = 0. \\ \end{aligned}

    which is exactly (14) with initial data coming from system (7). Finally, since the solution of the limit system is unique, we deduce that the whole sequence converges. This concludes the proof of Theorem 2.5.

    For the sake of simplicity, we assume, in what follows that a_i = 1 , for i\in \{0, 4\} when we discretise problems (7) and (8)-(10). We discretize the domain (0, L) with a uniform mesh in space of size N_x setting :

    \Delta x : = L/N_x,

    In order to avoid an \varepsilon -dependent CFL, we discretize the linear parts of the source term in (7) in an implicit way, while we keep the transport part explicit and use a MUSCL second order discretization in space [8]. This leads to write the scheme, for i \in \{1, N_x-1\}

    \begin{equation} \left\{ \begin{aligned} \left( 1 + \frac{\Delta t}{ \varepsilon} \right)& u^{n+1}_{i, 1} - \frac{\Delta t}{ \varepsilon} q^{n+1}_{i, 1} \\ & = (1-\lambda_5) u^{n}_{i, 1} + \lambda_5 u^n_{i-1, 1} - \frac{\lambda_5(1-\lambda_5)}{2} \left( \phi_{i+1/2, 1}^n- \phi_{i-1/2, 1}^n\right) \\ \left( 1 + \frac{\Delta t}{ \varepsilon} \right)& u^{n+1}_{i, 2} - \frac{\Delta t}{ \varepsilon} q^{n+1}_{i, 2} \\ & = (1-\lambda_5) u^{n}_{i, 2} + \lambda_5 u^n_{i+1, 2} - \frac{\lambda_5(1-\lambda_5)}{2} \left( \phi_{i+1/2, 2}^n- \phi_{i-1/2, 2}^n\right)\\ - \frac{\Delta t}{ \varepsilon} u^{n+1}_{i, 1} + & \left( 1 + \frac{\Delta t}{ \varepsilon} + \Delta t K_1 \right) q^{n+1}_{i, 1} - \Delta t K_1 u^{n+1}_{i, 0} = q^n_{i, 1} \\ - \frac{\Delta t}{ \varepsilon} u^{n+1}_{i, 2} + & \left( 1 + \frac{\Delta t}{ \varepsilon} + \Delta t K_2 \right) q^{n+1}_{i, 2} - \Delta t K_2 u^{n+1}_{i, 0} = q^n_{i, 2} - \Delta t G(q^n_{i, 2}) \\ - \Delta t K_1 q^{n+1}_{i, 1}& - \Delta t K_2 q^{n+1}_{i, 2} + (1+\Delta t (K_1+K_2) ) u^{n+1}_{i, 0} = u^{n}_{i, 0} + \Delta t G(q^n_{i, 2}) \end{aligned} \right. \end{equation} (44)

    where the time step is chosen s.t.

    \lambda_5 : = \frac{\Delta t}{\Delta x} \alpha

    is less than 1, and the flux limiters are defined as

    \begin{align*} \phi^n_{i+1/2, 1} : = {\rm minmod} \left(u^{n}_{i+1, 1} - u^n_{i, 1}, u^n_{i, 1}-u^n_{i-1, 1}\right), \\ \phi^n_{i+1/2, 2} : = {\rm minmod} \left(u^{n}_{i+2, 2} - u^n_{i+1, 2}, u^n_{i+1, 2}-u^n_{i, 2}\right), \end{align*}

    and the {\rm minmod} function is defined in a Generalised minmod limiter [8] :

    {\rm minmod}(1, r): = \max\left(0, \min\left(2r, \frac{1+r}{2}, 2\right)\right).

    We complement the scheme with initial and boundary conditions :

    u^{0}_{i, j} : = \frac{1}{\Delta x} \int_{i \Delta x}^{(i+1)\Delta x} u^0_{j}, \quad \forall j\in\{0, 1, 2\}, \quad q^{0}_{i, j} : = \frac{1}{\Delta x} \int_{i \Delta x}^{(i+1)\Delta x} q^0_{j}, \quad \forall j\in\{1, 2\}

    and

    \begin{equation} u^{n+1}_{0, 1} : = u^b_n = \frac{1}{\Delta t} \int_{n\Delta t}^{(n+1)\Delta t} u_b(t) dt, \quad u^{n+1}_{N_x, 2} : = u^{n+1}_{N_x-1, 1}, \quad \forall n \in \{0, N_t-1\}. \end{equation} (45)

    Proposition 2. Under the CFL condition : \lambda_5 \in (0, 1] which is independent of \varepsilon , the scheme (44) preserves positivity and the discrete version of the L^\infty ((0, T);L^\infty\cap L^1((0, L)) ) -norm. Moreover, under the same condition, it is possible to prove that

    \Delta t \sum\limits_{n = 1}^{N_t-1} \sum\limits_{i = 1}^{N_x-1} \left\{ \sum\limits_{j = 0}^2 \left| u^{n+1}_{i, j}- u^n_{i, j}\right| + \sum\limits_{j = 1}^2 \left|q^{n+1}_{i, j}- q^n_{i, j} \right|\right\} < C

    For the first part, the proof uses at the discrete level similar ideas as in Lemmas 4.1 and 4.2. For the second part, one adds the initial layer (19) to the numerical solutions for each time step and proceeds as in Proposition 1 and Lemma 1. Since the ideas are very similar and the properties of the transport part are rather standard once it is written in a convex form [8,Harten's Lemma], the proof is left to the reader for the sake of concision.

    For various values of \varepsilon , we compare the solutions provided by (44) with a similar discretisation of (8)-(10), reading :

    \left\{ \begin{aligned} \left( 1 + \frac{\Delta t K_1}{2} \right)& v^{n+1}_{i, 1} - \frac{\Delta t K_1}{2} v^{n+1}_{i, 0} \\ & = (1-\lambda_3) v^{n}_{i, 1} + \lambda_3 v^n_{i-1, 1} - \frac{\lambda_3(1-\lambda_3)}{4} \left( \phi_{i+1/2, 1}^n- \phi_{i-1/2, 1}^n\right) \\ \left( 1 + \frac{\Delta t K_2}{2} \right)& v^{n+1}_{i, 2} - \frac{\Delta t K_2}{2} v^{n+1}_{i, 0} \\ & = (1-\lambda_3) v^{n}_{i, 2} + \lambda_3 v^n_{i+1, 2} - \frac{\lambda_3(1-\lambda_3)}{4} \left( \phi_{i+1/2, 2}^n- \phi_{i-1/2, 2}^n\right) - \Delta t G(v^n_{i, 1})\\ - \Delta t K_1 v^{n+1}_{i, 1}& - \Delta t K_2 v^{n+1}_{i, 2} + (1+\Delta t (K_1+K_2) ) v^{n+1}_{i, 0} = v^{n}_{i, 0} + \Delta t G(v^n_{i, 1}) \end{aligned} \right.

    where

    \lambda_3 : = \frac{\Delta t}{2 \Delta x} \alpha = \frac{\lambda_5}{2}

    We initialize the data setting :

    v^0_{i, 1} = \frac{u^0_{i, 1}+q^0_{i, 1}}{2}, \quad v^0_{i, 2} = \frac{u^0_{i, 2}+q^0_{i, 2}}{2}, \quad v^0_{i, 0} = u^0_{i, 0}.

    and boundary conditions are similar to (45). We compare (u^n_{i, j})_{n, i, j} and (v^n_{i, j})_{n, i, j} using the discrete L^1 norm in space and time. Indeed we compute

    E_{ \varepsilon, \Delta x}: = \Delta t \Delta x \sum\limits_{n = 0}^{N_t} \sum\limits_{i = 0}^{N_x} \left\{\sum\limits_{j = 1}^2 \left| 2 v^n_{i, j} - (u^n_{i, j}+q^n_{i, j}) \right| + \left| v^n_{i, 0} - u^{n}_{i, 0}\right| \right\},

    the results are displayed in Fig. 2.

    Figure 2.  Numerical error estimates.

    Although the study of the rate of convergence for the dynamical system is quite complicated, explicit computations may be performed for the stationary system. This system reads, for x\in(0, L) ,

    \begin{align} & \alpha {{\partial}}_x \bar{u}_1 = \frac{1}{ \varepsilon} (\bar{q}_1 - \bar{u}_1) \end{align} (46a)
    \begin{align} & -\alpha {{\partial}}_x \bar{u}_2 = \frac{1}{ \varepsilon} (\bar{q}_2 - \bar{u}_2) \end{align} (46b)
    \begin{align} & 0 = \frac{1}{ \varepsilon} (\bar{u}_1-\bar{q}_1) + K_1 (\bar{u}_0-\bar{q}_1) \end{align} (46c)
    \begin{align} & 0 = \frac{1}{ \varepsilon} (\bar{u}_2-\bar{q}_2) + K_2 (\bar{u}_0-\bar{q}_2) - G(\bar{q}_2) \end{align} (46d)
    \begin{align} & 0 = K_1 (\bar{q}_1-\bar{u}_0) + K_2 (\bar{q}_2-\bar{u}_0) + G(\bar{q}_2), \end{align} (46e)

    completed with the boundary conditions

    \bar{u}_1(0) = u_b, \qquad \bar{u}_2(L) = \bar{u}_1(L).

    This system may be reduced by noticing that, after adding the equations in (46), we obtain

    \alpha {{\partial}}_x (\bar{u}_1-\bar{u}_2) = 0.

    From the boundary condition at x = L , we deduce that \bar{u}_1 = \bar{u}_2 , we denote \bar{u}: = \bar{u}_1 = \bar{u}_2 . With (46a)–(46b), we get

    \begin{equation} 2\bar{u} = \bar{q}_1 + \bar{q}_2. \end{equation} (47)

    From (46e), we deduce

    \begin{equation} \bar{u}_0 = \frac{K_1 \bar{q}_1 + K_2 \bar{q}_2}{K_1+K_2} + \frac{G(\bar{q}_2)}{K_1+K_2}. \end{equation} (48)

    Injecting this latter expression and (47) into (46c), we obtain

    \bar{q}_1\left(1+2 \varepsilon \frac{K_1 K_2}{K_1+K_2}\right) = \frac{2 \varepsilon K_1}{K_1+K_2}(K_2 \bar{q}_2 + G(\bar{q}_2)) + \bar{q}_2.

    With (46e), we deduce

    \begin{equation} \bar{u} = \bar{q}_2 + \frac{ \varepsilon K_1}{K_1+K_2+2 \varepsilon K_1 K_2} G(\bar{q}_2). \end{equation} (49)

    Using also (46a), we obtain the following Cauchy problem

    \begin{equation} \left\{ \begin{array}{l} \alpha \Big( K_1 + K_2 + \varepsilon (2 K_1 K_2 + K_1 G'(\bar{q}_2))\Big) {{\partial}}_x \bar{q}_2 = K_1 G(\bar{q}_2), \\ \bar{q}_2(x = 0) = \bar{q}_2^0, \quad {\rm{ with }}\ \bar{q}_2^0 + \frac{ \varepsilon K_1}{K_1+K_2+2 \varepsilon K_1 K_2} G(\bar{q}_2^0) = u_b. \end{array} \right. \end{equation} (50)

    Solving this system, we deduce \bar{q}_2 , then we compute \bar{u} , \bar{q}_1 , and \bar{u}_0 thanks to relations (49), (47), and (48).

    When, \varepsilon = 0 , system (50) reads

    \begin{equation} \left\{ \begin{array}{l} \alpha ( K_1 + K_2 ) {{\partial}}_x \bar{q}_{2, 0} = K_1 G(\bar{q}_{2, 0}), \\ \bar{q}_{2, 0}(x = 0) = u_b. \end{array} \right. \end{equation} (51)

    In order to have semi-explicit expression, we introduce an antiderivative of 1/G denoted \mathcal{G} , i.e. \mathcal{G}' = \frac{1}{G} . Then, integrating (50) we get

    \begin{align*} &\alpha \Big( K_1 + K_2 + 2 \varepsilon K_1 K_2 \Big) \mathcal{G}(\bar{q}_{2}) + \alpha \varepsilon \ln \mathcal{G}(\bar{q}_{2}) \\ & = K_1 x + \alpha \Big( K_1 + K_2 + 2 \varepsilon K_1 K_2 \Big) \mathcal{G}(\bar{q}_{2}^0) + \alpha \varepsilon \ln \mathcal{G}(\bar{q}_{2}^0). \end{align*}

    By the same token on (51), we have

    \alpha (K_1+K_2) \mathcal{G}(\bar{q}_{2, 0}) = K_1 x + \alpha (K_1+K_2) \mathcal{G}(u_b).

    Subtracting the last two equalities, we obtain

    \begin{align*} (K_1+K_2) (\mathcal{G}(\bar{q}_{2})-\mathcal{G}(\bar{q}_{2, 0})) = & (K_1+K_2) (\mathcal{G}(\bar{q}_{2}^0)-\mathcal{G}(u_b)) + 2 \varepsilon K_1K_2 \big(\mathcal{G}(\bar{q}_2^0) -\mathcal{G}(\bar{q}_2)\big) \\ & + \varepsilon (\ln \mathcal{G}(\bar{q}_2^0) - \ln \mathcal{G}(\bar{q}_2)). \end{align*}

    Thanks to a Taylor expansion, there exist \zeta_2 between \bar{q}_2 and \bar{q}_{2, 0} and \zeta_2^0 between \bar{q}_2^0 and u_b such that

    \begin{align*} \bar{q}_2 - \bar{q}_{2, 0} & = \frac{G(\zeta_2)}{G(\zeta_2^0)}(\bar{q}_2^0-u_b) + 2 \varepsilon K_1K_2 \big(\mathcal{G}(\bar{q}_2^0) -\mathcal{G}(\bar{q}_2)\big) + \varepsilon (\ln \mathcal{G}(\bar{q}_2^0) - \ln \mathcal{G}(\bar{q}_2)) \\ & = - \frac{ \varepsilon K_1 G(\zeta_2) G(\bar{q}_2^0) }{ (K_1+K_2+2 \varepsilon K_1 K_2)G(\zeta_2^0)} + 2 \varepsilon K_1K_2 \big(\mathcal{G}(\bar{q}_2^0) -\mathcal{G}(\bar{q}_2)\big) \\ & \quad + \varepsilon (\ln \mathcal{G}(\bar{q}_2^0) - \ln \mathcal{G}(\bar{q}_2)), \end{align*}

    where we use (50) for the last equality. Hence we conclude that, formally, the convergence of \bar{q}_2 towards \bar{q}_2^0 is of order \varepsilon .

    We define the problem :

    \begin{equation} \left\{ \begin{aligned} & {\partial_t} u + \alpha {\partial_x} u = \omega (w-u) & (t, x) \in (0, T)\times(0, L) \\ & {\partial_t} v - \alpha {\partial_x} v = \omega (z-v) & (t, x) \in (0, T)\times(0, L) \\ & u(t, 0) = u_b(t), \; v(t, L) = v_b(t) & t \in (0, T)\\ & u(0, x) = u_0(x), \; v(0, x) = v_0(x)& (t, x) \in \{0\}\times (0, L)\\ \end{aligned} \right. \end{equation} (52)

    where the data (w, z, u_0, v_0, u_b, v_b) satisfy

    \begin{aligned} (w, z) \in L^\infty((0, T)\times(0, L))^2, \quad (u_0, v_0 )\in L^\infty(0, L)^2, \quad (u_b, v_b) \in L^\infty(0, T)^2, \end{aligned}

    and (\alpha, \omega) \in ( {\mathbb R}_+)^2 . We define by Duhamel's formula

    \begin{equation} u(t, x) : = \begin{cases} \left. \begin{aligned} u_b&(t-x / \alpha) \exp \left( -\omega x /\alpha \right) + \\ &+ \omega \int_{-x/\alpha}^0 \exp( - \omega (s+x/\alpha)) w(t+s, x+\alpha s) ds \end{aligned} \right\} & {\rm{if}} \; t > x/\alpha \\ u_0(x-\alpha t) \exp( - \omega t) + \omega \int_{-t}^0 \exp(-\omega(s+t)) w(t+s, x+\alpha s)ds &{\rm{otherwise}} \end{cases} \end{equation} (53)

    and v is similarly defined as a function of (v_0, v_b, z) . Then one has, as in [20,Theorem 2.1,Lemma 2.1 and Lemma 3.1], that

    Theorem B.1. Let (u, v) be solutions of (52) defined in the sense of characteristics through Duhamel's formula (53), then u (resp. v ) satisfies (52) in the weak sense :

    \begin{aligned} \int_0^T &\int_0^L \Phi(u(t, x)) \left( - {\partial_t} - {\partial_x} + \omega \right) \varphi \; dx \; dt + \left[ \int_0^L \Phi(u(t, x)) \varphi (t, x) dx \right]_{t = 0}^{t = T} \\ &+ \left[ \int_0^T \Phi(u(t, x)) \varphi(t, x) dt \right]_{x = 0}^{x = L} = \int_0^T \Phi'(u(t, x)) \omega w(t, x) \varphi(t, x) \; dx \; dt \end{aligned}

    for all \varphi \in C^\infty([0, T]\times[0, L]) and every \Phi\in{\rm Lip}( {\mathbb R}) .

    The authors acknowledge the unkonwn referees for their comments and remarks which help in improving the paper.



    [1] Keshavarz L, Ghaani MR, MacElroy JMD, et al. (2021) A comprehensive review on the application of aerogels in CO2-adsorption: Materials and characterisation. Chem Eng J 412: 128604. https://doi.org/10.1016/j.cej.2021.128604 doi: 10.1016/j.cej.2021.128604
    [2] Rybak A, Rybak A, Boncel S, et al. (2022) Hybrid organic-inorganic membranes based on sulfonated poly (ether ether ketone) matrix and iron-encapsulated carbon nanotubes and their application in CO2 separation. RSC Adv 12: 13367–13380. https://doi.org/10.1039/d2ra01585d doi: 10.1039/d2ra01585d
    [3] Sun Z, Dong J, Chen C, et al. (2021) Photocatalytic and electrocatalytic CO2 conversion: From fundamental principles to design of catalysts. J Chem Technol Biotechnol 96: 1161–1175. https://doi.org/10.1002/jctb.6653 doi: 10.1002/jctb.6653
    [4] Goda MN, Abdelhamid HN, Said AEAA (2020) Zirconium oxide sulfate-carbon (ZrOSO4@C) derived from carbonized UiO-66 for selective production of dimethyl ether. ACS Appl Mater Interfaces 12: 646–653. https://doi.org/10.1021/acsami.9b17520 doi: 10.1021/acsami.9b17520
    [5] Takht Ravanchi M, Sahebdelfar S (2021) Catalytic conversions of CO2 to help mitigate climate change: Recent process developments. Process Saf Environ Prot 145: 172–194. https://doi.org/10.1016/j.psep.2020.08.003 doi: 10.1016/j.psep.2020.08.003
    [6] Abdelhamid HN, Mathew AP (2022) Cellulose-based nanomaterials advance biomedicine: A review. Int J Mol Sci 23: 5405. https://doi.org/10.3390/ijms23105405 doi: 10.3390/ijms23105405
    [7] Younas M, Rezakazemi M, Daud M, et al. (2020) Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs). Prog Energy Combust Sci 80: 100849. https://doi.org/10.1016/j.pecs.2020.100849 doi: 10.1016/j.pecs.2020.100849
    [8] Kayal S, Sun B, Chakraborty A (2015) Study of metal-organic framework MIL-101(Cr) for natural gas (methane) storage and compare with other MOFs (metal-organic frameworks). Energy 91: 772–781. https://doi.org/10.1016/j.energy.2015.08.096 doi: 10.1016/j.energy.2015.08.096
    [9] Qin JS, Yuan S, Alsalme A, et al. (2017) Flexible zirconium MOF as the crystalline sponge for coordinative alignment of dicarboxylates. ACS Appl Mater Interfaces 9: 33408–33412. https://doi.org/10.1021/acsami.6b16264 doi: 10.1021/acsami.6b16264
    [10] Joharian M, Morsali A (2019) Ultrasound-assisted synthesis of two new fluorinated metal-organic frameworks (F-MOFs) with the high surface area to improve the catalytic activity. J Solid State Chem 270: 135–146. https://doi.org/10.1016/j.jssc.2018.10.046 doi: 10.1016/j.jssc.2018.10.046
    [11] Bux H, Liang F, Li Y, et al. (2009) Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J Am Chem Soc 131: 16000–16001. https://doi.org/10.1021/ja907359t doi: 10.1021/ja907359t
    [12] Park KS, Ni Z, Côté AP, et al. (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 103: 10186–10191. https://doi.org/10.1073/pnas.0602439103 doi: 10.1073/pnas.0602439103
    [13] Sorribas S, Zornoza B, Teílez C, et al. (2012) Ordered mesoporous silica-(ZIF-8) core-shell spheres. Chem Commun 48: 9388–9390. https://doi.org/10.1039/C2CC34893D doi: 10.1039/C2CC34893D
    [14] Sánchez-Laínez J, Zornoza B, Friebe S, et al. (2016) Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test. J Membr Sci 515: 45–53. https://doi.org/10.1016/j.memsci.2016.05.039 doi: 10.1016/j.memsci.2016.05.039
    [15] Kim D, Kim W, Buyukcakir O, et al. (2017) Highly hydrophobic ZIF-8/carbon nitride foam with hierarchical porosity for oil capture and chemical fixation of CO2. Adv Funct Mater 27: 1700706. https://doi.org/10.1002/adfm.201700706 doi: 10.1002/adfm.201700706
    [16] Gong X, Wang Y, Kuang T (2017) ZIF-8-based membranes for carbon dioxide capture and separation. ACS Sustain Chem Eng 5: 11204–11214. https://doi.org/10.1021/acssuschemeng.7b03613 doi: 10.1021/acssuschemeng.7b03613
    [17] Zhang Z, Xian S, Xi H, et al. (2011) Improvement of CO2 adsorption on ZIF-8 crystals modified by enhancing basicity of surface. Chem Eng Sci 66: 4878–4888. https://doi.org/10.1016/j.ces.2011.06.051 doi: 10.1016/j.ces.2011.06.051
    [18] Yahia M, Phan Le QN, Ismail N, et al. (2021) Effect of incorporating different ZIF-8 crystal sizes in the polymer of intrinsic microporosity, PIM-1, for CO2/CH4 separation. Microporous Mesoporous Mater 312: 110761. https://doi.org/10.1016/j.micromeso.2020.110761 doi: 10.1016/j.micromeso.2020.110761
    [19] Bux H, Chmelik C, Krishna R, et al. (2011) Ethene/ethane separation by the MOF membrane ZIF-8: Molecular correlation of permeation, adsorption, diffusion. J Membr Sci 369: 284–289. https://doi.org/10.1016/j.memsci.2010.12.001 doi: 10.1016/j.memsci.2010.12.001
    [20] Shi Q, Song Z, Kang X, et al. (2012) Controlled synthesis of hierarchical zeolitic imidazolate framework-GIS (ZIF-GIS) architectures. Cryst Eng Comm 14: 8280–8285. https://doi.org/10.1039/C2CE26170G doi: 10.1039/C2CE26170G
    [21] Lai LS, Yeong YF, Ani NC, et al. (2014) Effect of synthesis parameters on the formation of Zeolitic Imidazolate Framework 8 (ZIF-8) nanoparticles for CO2 adsorption. Sep Sci Technol 49: 520–528. https://doi.org/10.1080/02726351.2014.920445 doi: 10.1080/02726351.2014.920445
    [22] Zeng X, Huang L, Wang C, et al. (2016) Sonocrystallization of ZIF-8 on electrostatic spinning TiO2 nanofibers surface with enhanced photocatalysis property through synergistic effect. ACS Appl Mater Interfaces 8: 20274–20282. https://doi.org/10.1021/acsami.6b05746 doi: 10.1021/acsami.6b05746
    [23] Venna SR, Jasinski JB, Carreon MA (2010) Structural evolution of Zeolitic Imidazolate Framework-8. J Am Chem Soc 132: 7. https://doi.org/10.1021/ja109268m doi: 10.1021/ja109268m
    [24] Xiang L, Sheng L, Wang C, et al. (2017) Amino-functionalized ZIF-7 nanocrystals: Improved intrinsic separation ability and interfacial compatibility in mixed-matrix membranes for CO2/CH4 separation. Adv Mater 29: 1–8. https://doi.org/10.1002/adma.201606999 doi: 10.1002/adma.201606999
    [25] Abdelhamid HN (2020) UiO-66 as a catalyst for hydrogen production via the hydrolysis of sodium borohydride. Dalton Trans 49: 10851. https://doi.org/10.1039/D0DT01688H doi: 10.1039/D0DT01688H
    [26] Abdelhaleem A, Abdelhamid HN, Ibrahim MG, et al. (2022) Photocatalytic degradation of paracetamol using photo-Fenton-like metal-organic framework-derived CuO@C under visible LED. J Clean Prod 379: 134571. https://doi.org/10.1016/j.jclepro.2022.134571 doi: 10.1016/j.jclepro.2022.134571
    [27] Madejski P, Chmiel K, Subramanian N, et al. (2022) Methods and techniques for CO2 capture: Review of potential solutions and applications in modern energy technologies. Energies 15: 887. https://doi.org/10.3390/en15030887 doi: 10.3390/en15030887
    [28] Gładysz P, Stanek W, Czarnowska L, et al. (2018) Thermo-ecological evaluation of an integrated MILD oxy-fuel combustion power plant with CO2 capture, utilization, and storage—A case study in Poland. Energy 144: 379–392. https://doi.org/10.1016/j.energy.2017.11.133 doi: 10.1016/j.energy.2017.11.133
    [29] Tramošljika B, Blecich P, Bonefačić I, et al. (2021) Advanced ultra-supercritical coal-fired power plant with post-combustion carbon capture: Analysis of electricity penalty and CO2 emission reduction. Sustainability 13: 1–20. https://doi.org/10.3390/su13020801 doi: 10.3390/su13020801
    [30] Holz F, Scherwath T, Crespo del Granado P, et al. (2021) A 2050 perspective on the role for carbon capture and storage in the European power system and industry sector. Energy Econ 104: 105631. https://doi.org/10.1016/j.eneco.2021.105631 doi: 10.1016/j.eneco.2021.105631
    [31] Prat D, Wells A, Hayler J, et al. (2015) CHEM21 selection guide of classical-and less classical-solvents. Green Chem 18: 288. https://doi.org/10.1039/C5GC01008J doi: 10.1039/C5GC01008J
    [32] Kato M, Essaki K, Nakagawa K, et al. (2005) CO2 absorption properties of lithium ferrite for application as a high-temperature CO2 absorbent. J Ceram Soc Jpn 113: 684–686. https://doi.org/10.2109/jcersj.113.684 doi: 10.2109/jcersj.113.684
    [33] Samanta A, Zhao A, Shimizu GKH, et al. (2012) Post-combustion CO2 capture using solid sorbents: A review. Ind Eng Chem Res 51: 1438–1463. https://doi.org/10.1021/ie200686q doi: 10.1021/ie200686q
    [34] Omoregbe O, Mustapha AN, Steinberger-Wilckens R, et al. (2020) Carbon capture technologies for climate change mitigation: A bibliometric analysis of the scientific discourse during 1998–2018. Energy Rep 6: 1200–1212. https://doi.org/10.1016/j.egyr.2020.05.003 doi: 10.1016/j.egyr.2020.05.003
    [35] Yamauchi K, Murayama N, Shibata J (2007) Absorption and release of carbon dioxide with various metal oxides and hydroxides. Mater Trans 48: 2739–2742. https://doi.org/10.2320/matertrans.M-MRA2007877 doi: 10.2320/matertrans.M-MRA2007877
    [36] Spataru CI, Ianchis R, Petcu C, et al. (2016) Synthesis of non-toxic silica particles stabilized by molecular complex oleic-acid/sodium oleate. Int J Mol Sci 17: 4–8. https://doi.org/10.3390/ijms17111936 doi: 10.3390/ijms17111936
    [37] Pimenidou P, Dupont V (2015) Dolomite study for in situ CO2 capture for chemical looping reforming. Int J Ambient Energy 36: 170–182. https://doi.org/10.1080/01430750.2013.841590 doi: 10.1080/01430750.2013.841590
    [38] Bhown AS, Freeman BC (2011) Analysis and status of post-combustion carbon dioxide capture technologies. Environ Sci Technol 45: 23. https://doi.org/10.1021/es104291d doi: 10.1021/es104291d
    [39] Feron PHM, Hendriks CA (2005) CO2 capture process principles and costs. Oil Gas Sci Technol 60: 451–459. https://doi.org/10.2516/ogst:2005027 doi: 10.2516/ogst:2005027
    [40] Yampolskii Y, Topchiev AV (2012) Polymeric gas separation membranes. Russ Chem Rev 81: 483–500. https://doi.org/10.1021/ma300213b doi: 10.1021/ma300213b
    [41] Siqueira RM, Freitas GR, Peixoto HR, et al. (2017) Carbon dioxide capture by pressure swing adsorption. Energy Procedia 114: 2182–2192. https://doi.org/10.1016/j.egypro.2017.03.1355 doi: 10.1016/j.egypro.2017.03.1355
    [42] Yang MW, Chen NC, Huang CH, et al. (2014) Temperature swing adsorption process for CO2 capture using polyaniline solid sorbent. Energy Procedia 63: 2351–2358. https://doi.org/10.1016/j.egypro.2014.11.256 doi: 10.1016/j.egypro.2014.11.256
    [43] Saenz Cavazos PA, Hunter-Sellars E, Iacomi P, et al. (2023) Evaluating solid sorbents for CO2 capture: Linking material properties and process efficiency via adsorption performance. Front Energy Res 11: 1–22. https://doi.org/10.3389/fenrg.2023.1167043 doi: 10.3389/fenrg.2023.1167043
    [44] Tsai CW, Langner EHG, Harris RA (2019) Computational study of ZIF-8 analogues with electron donating and withdrawing groups for CO2 adsorption. Microporous Mesoporous Mater 288: 109613. https://doi.org/10.1016/j.micromeso.2019.109613 doi: 10.1016/j.micromeso.2019.109613
    [45] Junaidi MUM, Khoo CP, Leo CP, et al. (2014) The effects of solvents on the modification of SAPO-34 zeolite using 3-aminopropyl trimethoxy silane for the preparation of asymmetric polysulfone mixed matrix membrane in the application of CO2 separation. Microporous Mesoporous Mater 192: 52–59. https://doi.org/10.1016/j.micromeso.2013.10.006 doi: 10.1016/j.micromeso.2013.10.006
    [46] Song C, Liu Q, Deng S, et al. (2019) Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges. Renew Sustain Energy Rev 101: 265–278. https://doi.org/10.1016/j.rser.2018.11.018 doi: 10.1016/j.rser.2018.11.018
    [47] Ahmed R, Liu G, Yousaf B, et al. (2020) Recent advances in carbon-based renewable adsorbent for selective carbon dioxide capture and separation—A review. J Clean Prod 242: 118409. https://doi.org/10.1016/j.jclepro.2019.118409 doi: 10.1016/j.jclepro.2019.118409
    [48] Zulkurnai NZ, Mohammad Ali UF, Ibrahim N, et al. (2017) Carbon dioxide (CO2) adsorption by activated carbon functionalized with deep eutectic solvent (DES). IOP Conf Ser Mater Sci Eng 206: 012030. https://dx.doi.org/10.1088/1757-899X/206/1/012001 doi: 10.1088/1757-899X/206/1/012001
    [49] Ngoy JM, Wagner N, Riboldi L, et al. (2014) A CO2 capture technology using multi-walled carbon nanotubes with polyaspartamide surfactant. Energy Procedia 63: 2230–2248. https://doi.org/10.1016/j.egypro.2014.11.242 doi: 10.1016/j.egypro.2014.11.242
    [50] Singh S, Varghese AM, Reinalda D, et al. (2021) Graphene-based membranes for carbon dioxide separation. J CO2 Util 49: 101544. https://doi.org/10.1016/j.jcou.2021.101544 doi: 10.1016/j.jcou.2021.101544
    [51] Agrafioti E, Bouras G, Kalderis D, et al. (2013) Biochar production by sewage sludge pyrolysis. J Anal Appl Pyrolysis 101: 72–78. https://doi.org/10.1016/j.jaap.2013.02.010 doi: 10.1016/j.jaap.2013.02.010
    [52] Liu Y, Ren Y, Ma H, et al. (2022) Advanced organic molecular sieve membranes for carbon capture: Current status, challenges and prospects. Adv Membr 2: 100028. https://doi.org/10.1016/j.advmem.2022.100028 doi: 10.1016/j.advmem.2022.100028
    [53] Yin M, Zhang L, Wei X, et al. (2022) Detection of antibiotics by electrochemical sensors based on metal-organic frameworks and their derived materials. Microchem J 183: 107946. https://doi.org/10.1016/j.microc.2022.107946 doi: 10.1016/j.microc.2022.107946
    [54] Rui Z, James JB, Lin YS (2018) Highly CO2 perm-selective metal-organic framework membranes through CO2 annealing post-treatment. J Membr Sci 555: 97–104. https://doi.org/10.1016/j.memsci.2018.03.036 doi: 10.1016/j.memsci.2018.03.036
    [55] Lee YR, Kim J, Ahn WS (2013) Synthesis of metal-organic frameworks: A mini review. Korean J Chem Eng 30: 1667–1680. https://doi.org/10.1007/s11814-013-0140-6 doi: 10.1007/s11814-013-0140-6
    [56] Demir H, Aksu GO, Gulbalkan HC, et al. (2022) MOF membranes for CO2 capture: Past, present and future. Carbon Capture Sci Technol 2: 100026. https://doi.org/10.1016/j.ccst.2021.100026 doi: 10.1016/j.ccst.2021.100026
    [57] Schaate A, Roy P, Godt A, et al. (2011) Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals. Chem Eur J 17: 6643–6651. https://doi.org/10.1002/chem.201003211 doi: 10.1002/chem.201003211
    [58] Bux H, Feldhoff A, Cravillon J, et al. (2011) Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation. Chem Mater 23: 2262–2269. https://doi.org/10.1021/cm200555s doi: 10.1021/cm200555s
    [59] Chen Y, Tang S (2019) Solvothermal synthesis of porous hydrangea-like zeolitic imidazolate framework-8 (ZIF-8) crystals. J Solid State Chem 276: 68–74. https://doi.org/10.1016/j.jssc.2019.04.034 doi: 10.1016/j.jssc.2019.04.034
    [60] Ejeromedoghene O, Oderinde O, Okoye CO, et al. (2022) Microporous metal-organic frameworks based on deep eutectic solvents for adsorption of toxic gases and volatile organic compounds: A review. Chem Eng J Adv 12: 100361. https://doi.org/10.1016/j.ceja.2022.100361 doi: 10.1016/j.ceja.2022.100361
    [61] Park JH, Park SH, Jhung SH (2009) Microwave-syntheses of zeolitic imidazolate framework material, ZIF-8. J Korean Chem Soc 53: 553–559. https://doi.org/10.5012/jkcs.2009.53.5.553 doi: 10.5012/jkcs.2009.53.5.553
    [62] Cravillon J, Münzer S, Lohmeier SJ, et al. (2009) Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem Mater 21: 1410–1412. https://doi.org/10.1021/cm900166h doi: 10.1021/cm900166h
    [63] Mullin JW (2001) Crystallization: Chapter 5—Nucleation, In: Mullin JW, Crystallization, Oxford: Butterworth-Heinemann, 181–215. https://doi.org/10.1016/B978-075064833-2/50007-3
    [64] Bazzi L, Ayouch I, Tachallait H, et al. (2022) Ultrasound and microwave assisted-synthesis of ZIF-8 from zinc oxide for the adsorption of phosphate. Results Eng 13: 100378. https://doi.org/10.1016/j.rineng.2022.100378 doi: 10.1016/j.rineng.2022.100378
    [65] Beldon PJ, Fábián L, Stein RS, et al. (2010) Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry. Angew Chem Int Ed 49: 9640–9643. https://doi.org/10.1002/anie.201005547 doi: 10.1002/anie.201005547
    [66] Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22: 1039–1059. https://doi.org/10.1002/adma.200904093 doi: 10.1002/adma.200904093
    [67] Cho HY, Kim J, Kim SN, et al. (2012) High yield 1-L scale synthesis of ZIF-8 via a sonochemical route. Microporous Mesoporous Mater 156: 171–177. https://doi.org/10.1016/j.micromeso.2012.11.012 doi: 10.1016/j.micromeso.2012.11.012
    [68] Chalati T, Horcajada P, Gref R, et al. (2010) Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A. J Mater Chem 20: 7676–7681. https://doi.org/10.1039/C0JM03563G doi: 10.1039/C0JM03563G
    [69] Pichon A, Lazuen-Garay A, James SL (2006) Solvent-free synthesis of a microporous metal-organic framework. CrystEngComm 8: 211–214. https://doi.org/10.1039/B513750K doi: 10.1039/B513750K
    [70] Carson CG, Brown AJ, Sholl DS, et al. (2022) Sonochemical synthesis and characterization of submicrometer crystals of the metal-organic framework Cu[(hfipbb)(H2hfipbb)0.5]. J Mater Chem 19: 18. https://doi.org/10.1021/cg200728b doi: 10.1021/cg200728b
    [71] Seyedin S, Zhang J, Usman KAS, et al. (2019) Facile solution processing of stable MXene dispersions towards conductive composite fibers. Glob Chall 3: 1900037. https://doi.org/10.1002/gch2.201900037 doi: 10.1002/gch2.201900037
    [72] Venna SR, Carreon MA (2010) Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. J Am Chem Soc 132: 76–78. https://doi.org/10.1021/ja909263x doi: 10.1021/ja909263x
    [73] Son WJ, Choi JS, Ahn WS (2008) Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous Mesoporous Mater 113: 31–40. https://doi.org/10.1016/j.micromeso.2007.10.049 doi: 10.1016/j.micromeso.2007.10.049
    [74] Klimakow M, Klobes P, Thünemann AF, et al. (2010) Mechanochemical synthesis of metal-organic frameworks: a fast and facile approach toward quantitative yields and high specific surface areas. Chem Mater 22: 5216–5221. https://doi.org/10.1021/cm1012119 doi: 10.1021/cm1012119
    [75] Yue Y, Qiao ZA, Li X, et al. (2013) Nanostructured zeolitic imidazolate frameworks derived from nanosized zinc oxide precursors. Cryst Growth Des 13: 1002–1005. https://doi.org/10.1021/cg4002362 doi: 10.1021/cg4002362
    [76] Usman KAS, Maina JW, Seyedin S, et al. (2020) Downsizing metal–organic frameworks by bottom-up and top-down methods. NPG Asia Mater 12: 58. https://doi.org/10.1038/s41427-020-00240-5 doi: 10.1038/s41427-020-00240-5
    [77] Ogura M, Nakata SI, Kikuchi E, et al. (2001) Effect of NH4+ exchange on hydrophobicity and catalytic properties of Al-free Ti–Si–beta zeolite. J Catal 199: 41–47. https://doi.org/10.1006/jcat.2000.3156 doi: 10.1006/jcat.2000.3156
    [78] Gökpinar S, Diment T, Janiak C (2017) Environmentally benign dry-gel conversions of Zr-based UiO metal–organic frameworks with high yield and the possibility of solvent re-use. Dalton Trans 46: 9895. https://doi.org/10.1039/C7DT01717K doi: 10.1039/C7DT01717K
    [79] Awadallah-F A, Hillman F, Al-Muhtaseb SA, et al. (2019) Nano-gate opening pressures for the adsorption of isobutane, n-butane, propane, and propylene gases on bimetallic Co–Zn based zeolitic imidazolate frameworks. Microporous Mesoporous Mater 48: 4685. https://doi.org/10.1039/C9DT00222G doi: 10.1039/C9DT00222G
    [80] Tannert N, Gökpinar S, Hastürk E, et al. (2018) Microwave-assisted dry-gel conversion—A new sustainable route for the rapid synthesis of metal-organic frameworks with solvent re-use. Dalton Trans 47: 9850–9860. https://doi.org/10.1039/C8DT02029A doi: 10.1039/C8DT02029A
    [81] Ahmed I, Jeon J, Khan NA, et al. (2012) Synthesis of a metal−organic framework, iron-benezenetricarboxylate, from dry gels in the absence of acid and salt. Cryst Growth Des. 12: 5878–5881. https://doi.org/10.1021/cg3014317 doi: 10.1021/cg3014317
    [82] Jahn A, Reiner JE, Vreeland WN, et al. (2008) Preparation of nanoparticles by continuous-flow microfluidics. J Nanopart Res 10: 925–934. https://doi.org/10.1007/s11051-007-9340-5 doi: 10.1007/s11051-007-9340-5
    [83] Lee YR, Jang MS, Cho HY, et al. (2015) ZIF-8: A comparison of synthesis methods. Chem Eng J 271: 276–280. https://doi.org/10.1016/j.cej.2015.02.094 doi: 10.1016/j.cej.2015.02.094
    [84] Kolmykov O, Commenge JM, Alem H, et al. (2017) Microfluidic reactors for the size-controlled synthesis of ZIF-8 crystals in aqueous phase. Mater Des 122: 31–41. https://doi.org/10.1016/j.matdes.2017.03.002 doi: 10.1016/j.matdes.2017.03.002
    [85] Schejn A, Frégnaux M, Commenge JM, et al. (2014) Size-controlled synthesis of ZnO quantum dots in microreactors. Nanotechnology 25. https://iopscience.iop.org/article/10.1088/0957-4484/25/14/145606/data
    [86] Gross AF, Sherman E, Vajo JJ (2012) Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks. Dalton Trans 41: 5458–5460. https://doi.org/10.1039/C2DT30174A doi: 10.1039/C2DT30174A
    [87] Faustini M, Kim J, Jeong GY, et al. (2013) Microfluidic approach toward continuous and ultrafast synthesis of metal−organic framework crystals and hetero structures in confined microdroplets. J Am Chem Soc 135: 14619–14626. https://doi.org/10.1021/ja4039642 doi: 10.1021/ja4039642
    [88] Yamamoto D, Maki T, Watanabe S, et al. (2013) Synthesis and adsorption properties of ZIF-8 nanoparticles using a micromixer. Chem Eng J 227: 145–150. https://doi.org/10.1016/j.cej.2012.08.065 doi: 10.1016/j.cej.2012.08.065
    [89] Butova VV, Soldatov MA, Guda AA, et al. (2016) Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russ Chem Rev 85: 280–307. https://iopscience.iop.org/article/10.1070/RCR4554
    [90] Butova VV, Budnyk AP, Bulanova EA, et al. (2017) Hydrothermal synthesis of high surface area ZIF-8 with minimal use of TEA. Solid State Sci 69: 13–21. https://doi.org/10.1016/j.solidstatesciences.2017.05.002 doi: 10.1016/j.solidstatesciences.2017.05.002
    [91] Riley BJ, Vienna JD, Strachan DM, et al. (2016) Materials and processes for the effective capture and immobilization of radioiodine: A review. J Nucl Mater 470: 307–326. https://doi.org/10.1016/j.jnucmat.2015.11.038 doi: 10.1016/j.jnucmat.2015.11.038
    [92] Saini K, Yadav S, Jain M, et al. (2021) Recent advances and challenges in selective environmental applications of metal-organic frameworks. ACS Symp Ser 1394: 223–245. http://dx.doi.org/10.1021/bk-2021-1394.ch009 doi: 10.1021/bk-2021-1394.ch009
    [93] Lestari G (2012) Hydrothermal synthesis of zeolitic imidazolate frameworks-8 (ZIF-8) crystals with controllable size and morphology. MS Thesis, King Abdullah University of Science and Technology. https://doi.org/10.25781/KAUST-461G0
    [94] Pan Y, Liu Y, Zeng G, et al. (2011) Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem Commun 47: 2071–2073. https://doi.org/10.1039/C0CC05002D doi: 10.1039/C0CC05002D
    [95] Huang XC, Lin YY, Zhang JP, et al. (2006) Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(ii) imidazolates with unusual zeolitic topologies. Angew Chem Int Ed 45: 1557–1559. https://doi.org/10.1002/anie.200503778 doi: 10.1002/anie.200503778
    [96] Chiang YC, Chin WT, Huang CC (2021) The application of hollow carbon nanofibers prepared by electrospinning to carbon dioxide capture. J Mater Sci 56: 2490–2502. https://doi.org/10.3390/polym13193275 doi: 10.3390/polym13193275
    [97] Malekmohammadi M, Fatemi S, Razavian M, et al. (2019) A comparative study on ZIF-8 synthesis in aqueous and methanolic solutions: Effect of temperature and ligand content. Solid State Sci 91: 108–112. https://doi.org/10.1016/j.solidstatesciences.2019.03.022 doi: 10.1016/j.solidstatesciences.2019.03.022
    [98] Xian S, Xu F, Ma C, et al. (2015) Vapor-enhanced CO2 adsorption mechanism of composite PEI@ZIF-8 modified by polyethyleneimine for CO2/N2 separation. Chem Eng J 280: 363–369. https://doi.org/10.1016/j.cej.2015.06.042 doi: 10.1016/j.cej.2015.06.042
    [99] Hao F, Yan XP (2022) Nano-sized zeolite-like metal-organic frameworks induced hematological effects on red blood cell. J Hazard Mater 424: 127353. https://doi.org/10.1016/j.jhazmat.2021.127353 doi: 10.1016/j.jhazmat.2021.127353
    [100] Zheng W, Ding R, Yang K, et al. (2019) ZIF-8 nanoparticles with tunable size for enhanced CO2 capture of Pebax based MMMs. Sep Purif Technol 214: 111–119. https://doi.org/10.1016/j.seppur.2018.04.010 doi: 10.1016/j.seppur.2018.04.010
    [101] Jiang HL, Liu B, Akita T, et al. (2009) Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. J Am Chem Soc 131: 11302–11303. https://doi.org/10.1021/ja9047653 doi: 10.1021/ja9047653
    [102] Kong X, Yu Y, Ma S, et al. (2018) Adsorption mechanism of H2O molecule on the Li4SiO4 (010) surface from first principles. Chem Phys Lett 691: 1–7. https://doi.org/10.1016/j.cplett.2017.10.054 doi: 10.1016/j.cplett.2017.10.054
    [103] Chen B, Yang Z, Zhu Y, et al. (2014) Zeolitic imidazolate framework materials: recent progress in synthesis and applications J Mater Chem A 2: 16811–16831. https://doi.org/10.1039/C4TA02984D doi: 10.1039/C4TA02984D
    [104] Chiang YC, Chin WT (2022) Preparation of zeolitic imidazolate framework-8-based nanofiber composites for carbon dioxide adsorption. Nanomaterials 12: 1492. https://doi.org/10.3390/nano12091492 doi: 10.3390/nano12091492
    [105] Aulia W, Ahnaf A, Irianto MY, et al. (2020) Synthesis and characterization of zeolitic imidazolate framework-8 (ZIF-8)/Al2O3 composite. IPTEK 31: 18–24. https://doi.org/10.12962/j20882033.v31i1.5511 doi: 10.12962/j20882033.v31i1.5511
    [106] Su Z, Zhang M, Lu Z, et al. (2018) Functionalization of cellulose fiber by in situ growth of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals for preparing a cellulose-based air filter with gas adsorption ability. Cellulose 25: 1997–2008. https://doi.org/10.1007/s10570-018-1696-4 doi: 10.1007/s10570-018-1696-4
    [107] Payra S, Challagulla S, Indukuru RR, et al (2018) The structural and surface modification of zeolitic imidazolate frameworks towards reduction of encapsulated CO2. New J Chem 42: 19205–19213. https://doi.org/10.1039/C8NJ04247K doi: 10.1039/C8NJ04247K
    [108] Chen R, Yao J, Gu Q, et al. (2013) A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption. Chem Commun 49: 9500. https://doi.org/10.1039/C3CC44342F doi: 10.1039/C3CC44342F
    [109] Awadallah-F A, Hillman F, Al-Muhtaseb SA, et al. (2019) On the nanogate-opening pressures of copper-doped zeolitic imidazolate framework ZIF-8 for the adsorption of propane, propylene, isobutane, and n-butane. J Mater Sci 54: 5513–5527. https://doi.org/10.1007/s10853-018-03249-y doi: 10.1007/s10853-018-03249-y
    [110] Cho HY, Kim J, Kim SN, et al. (2013) High yield 1-L scale synthesis of ZIF-8 via a sonochemical route. Micropor Mesopor Mat 169: 180–184. https://doi.org/10.1016/j.micromeso.2012.11.012 doi: 10.1016/j.micromeso.2012.11.012
    [111] Fu F, Zheng B, Xie LH, et al. (2018) Size-controllable synthesis of zeolitic imidazolate framework/carbon nanotube composites. Crystals 8: 367. https://doi.org/10.3390/cryst8100367 doi: 10.3390/cryst8100367
    [112] Du PD, Hieu NT, Thien TV (2021) Ultrasound-assisted rapid ZIF-8 synthesis, porous ZnO preparation by heating ZIF-8, and their photocatalytic activity. J Nanomater 2021: 9988998. https://doi.org/10.1155/2021/9988998 doi: 10.1155/2021/9988998
    [113] Modi A, Jiang Z, Kasher R (2022) Hydrostable ZIF-8 layer on polyacrylonitrile membrane for efficient treatment of oilfield produced water. Chem Eng J 434: 133513. https://doi.org/10.1016/j.cej.2021.133513 doi: 10.1016/j.cej.2021.133513
    [114] Mphuthi LE, Erasmus E, Langner EHG (2021) Metal exchange of ZIF-8 and ZIF-67 nanoparticles with Fe(Ⅱ) for enhanced photocatalytic performance. ACS Omega 6: 31632–31645. https://doi.org/10.1021/acsomega.1c04142 doi: 10.1021/acsomega.1c04142
    [115] Wu T, Dong J, De France K, et al. (2020) Porous carbon frameworks with high CO2 capture capacity derived from hierarchical polyimide/zeolitic imidazolate frameworks composite aerogels. Chem Eng J 395: 124927. https://doi.org/10.1016/j.cej.2020.124927 doi: 10.1016/j.cej.2020.124927
    [116] Aceituno Melgar VM, Ahn H, Kim J, et al. (2015) Zeolitic imidazolate framework membranes for gas separation: A review of synthesis methods and gas separation performance. J Ind Eng Chem 28: 1–15. https://doi.org/10.1016/j.jiec.2015.03.006 doi: 10.1016/j.jiec.2015.03.006
    [117] Drobek M, Bechelany M, Vallicari C, et al. (2015) An innovative approach for the preparation of confined ZIF-8 membranes by conversion of ZnO ALD layers. J Membr Sci 475: 39–46. https://doi.org/10.1016/j.memsci.2014.10.011 doi: 10.1016/j.memsci.2014.10.011
    [118] Kenyotha K, Chanapattharapol KC, McCloskey S (2020) Water based synthesis of ZIF-8 assisted by hydrogen bond acceptors and enhancement of CO2 uptake by solvent assisted ligand exchange. Crystals 10: 599. https://doi.org/10.3390/cryst10070599 doi: 10.3390/cryst10070599
    [119] Ding B, Wang X, Xu Y, et al. (2018) Hydrothermal preparation of hierarchical ZIF-L nanostructures for enhanced CO2 capture. J Colloid Interface Sci 519: 38–43. https://doi.org/10.1016/j.jcis.2018.02.047 doi: 10.1016/j.jcis.2018.02.047
    [120] Chen Y, Wang B, Zhao L, et al. (2015) New Pebax®/zeolite Y composite membranes for CO2 capture from flue gas. J Membr Sci 495: 415–423. https://doi.org/10.1016/j.memsci.2015.08.045 doi: 10.1016/j.memsci.2015.08.045
    [121] McEwen J, Hayman JD, Ozgur Yazaydin A, et al. (2013) A comparative study of CO2, CH4 and N2 adsorption in ZIF-8, Zeolite-13X and BPL activated carbon. Chem Phys 412: 72–76. https://doi.org/10.1016/j.chemphys.2012.12.012 doi: 10.1016/j.chemphys.2012.12.012
    [122] Papchenko K, Risaliti G, Ferroni M, et al. (2021) An analysis of the effect of ZIF-8 addition on the separation properties of polysulfone at various temperatures. Membranes 11: 427. https://doi.org/10.3390/membranes11060427 doi: 10.3390/membranes11060427
    [123] Ma H, Wang Z, Zhang XF, et al. (2021) In situ growth of amino-functionalized ZIF-8 on bacterial cellulose foams for enhanced CO2 adsorption. Carbohydr Polym 270: 118376. https://doi.org/10.1016/j.carbpol.2021.118376 doi: 10.1016/j.carbpol.2021.118376
    [124] Korelskiy D, Ye P, Fouladvand S, et al. (2015) Efficient ceramic zeolite membranes for CO2/H2 separation. J Mater Chem A 3: 12500–12506. https://doi.org/10.1039/C5TA02152A doi: 10.1039/C5TA02152A
    [125] Ban Y, Li Y, Peng Y, et al. (2014) Metal-substituted zeolitic imidazolate framework ZIF-108: Gas-sorption and membrane-separation properties. Chem Eur J 20: 11402–11409. https://doi.org/10.1002/chem.201402287 doi: 10.1002/chem.201402287
    [126] Al Abdulla S, Sabouni R, Ghommem M, et al. (2023) Synthesis and performance analysis of zeolitic imidazolate frameworks for CO2 sensing applications. Heliyon 9: e21349. https://doi.org/10.1016/j.heliyon.2023.e21349 doi: 10.1016/j.heliyon.2023.e21349
    [127] Wang B, Côté AP, Furukawa H, et al. (2008) Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453: 207–211. https://doi.org/10.1038/nature06900 doi: 10.1038/nature06900
    [128] Banerjee R, Phan A, Wang B, et al. (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319: 939–943. https://doi.org/10.1126/science.1152516 doi: 10.1126/science.1152516
    [129] Chen C, Kim J, Yang DA, et al. (2011) Carbon dioxide adsorption over zeolite-like metal-organic frameworks (ZMOFs) having a sod topology: Structure and ion-exchange effect. Chem Eng J 168: 1134–1139. https://doi.org/10.1016/j.cej.2011.01.096 doi: 10.1016/j.cej.2011.01.096
    [130] Shieh FK, Wang SC, Leo SY, et al. (2013) Water-based synthesis of zeolitic imidazolate framework-90 (ZIF-90) with a controllable particle size. Chem Eng J 19: 11139–11142 https://doi.org/10.1002/chem.201301560 doi: 10.1002/chem.201301560
    [131] Tien-Binh N, Rodrigue D, Kaliaguine S (2018) In-situ cross interface linking of PIM-1 polymer and UiO-66-NH2 for outstanding gas separation and physical aging control. J Membr Sci 548: 429–438. https://doi.org/10.1016/j.memsci.2017.11.054 doi: 10.1016/j.memsci.2017.11.054
    [132] Vedrtnam A, Kalauni K, Dubey S, et al. (2020) A comprehensive study on structure, properties, synthesis, and characterization of ferrites. AIMS Mater Sci 7: 800–835. https://doi.org/10.3934/matersci.2020.6.800 doi: 10.3934/matersci.2020.6.800
    [133] Vendite AC, Soares TA, Coutinho K (2022) The effect of surface composition on the selective capture of atmospheric CO2 by ZIF nanoparticles: The case of ZIF-8. J Chem Inf Model 62: 6530–6543. https://doi.org/10.1021/acs.jcim.2c00579 doi: 10.1021/acs.jcim.2c00579
    [134] Railey P, Song Y, Liu T, et al. (2017) Metal-organic frameworks with immobilized nanoparticles: Synthesis and applications in photocatalytic hydrogen generation and energy storage. Mater Res Bull 96: 385–394. https://doi.org/10.1016/j.materresbull.2017.04.020 doi: 10.1016/j.materresbull.2017.04.020
    [135] Keskin S, van Heest TM, Sholl DS (2010) Can metal-organic framework materials play a useful role in large-scale carbon dioxide separations? ChemSusChem 3: 879–891. https://doi.org/10.1002/cssc.201000114 doi: 10.1002/cssc.201000114
    [136] Abraha YW, Tsai CW, Niemantsverdriet JWH, et al. (2021) Optimized CO2 capture of the zeolitic imidazolate framework ZIF-8 modified by solvent-assisted ligand exchange. ACS Omega 6: 21850–21860. https://doi.org/10.1021/acsomega.1c01130 doi: 10.1021/acsomega.1c01130
    [137] Karagiaridi O, Lalonde MB, Bury W, et al. (2012) Opening ZIF-8: A catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers. J Am Chem Soc 134: 18790–18796. https://doi.org/10.1021/ja308786r doi: 10.1021/ja308786r
    [138] Jayachandrababu KC, Sholl DS, Nair S (2017) Structural and mechanistic differences in mixed-linker zeolitic imidazolate framework synthesis by solvent-assisted linker exchange and de novo routes. J Am Chem Soc 139: 5906–5915. https://doi.org/10.1021/jacs.7b01660 doi: 10.1021/jacs.7b01660
    [139] Wang P, Liu J, Liu C, et al. (2016) Electrochemical synthesis and catalytic properties of encapsulated metal clusters within zeolitic imidazolate frameworks. Chem Eur J 22: 16613–16620. https://doi.org/10.1002/chem.201602924 doi: 10.1002/chem.201602924
    [140] Phan A, Doonan CJ, Uribe-Romo FJ, et al. (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43: 58–67. https://doi.org/10.1021/ar900116g doi: 10.1021/ar900116g
    [141] Marti AM, Wickramanayake W, Dahe G, et al. (2017) Continuous flow processing of ZIF-8 membranes on polymeric porous hollow fiber supports for CO2 capture. ACS Appl Mater Interfaces 9: 5678–5682. https://doi.org/10.1021/acsami.6b15619 doi: 10.1021/acsami.6b15619
    [142] Chen B, Bai F, Zhu Y, et al. (2014) A cost-effective method for the synthesis of zeolitic imidazolate framework-8 materials from stoichiometric precursors via aqueous ammonia modulation at room temperature. Microporous Mesoporous Mater 193: 7–14. https://doi.org/10.1016/j.micromeso.2014.03.006 doi: 10.1016/j.micromeso.2014.03.006
    [143] Lai LS, Yeong YF, Lau KK, et al. (2016) Effect of synthesis parameters on the formation of ZIF-8 under microwave-assisted solvothermal conditions. Procedia Eng 148: 35–42. https://doi.org/10.1016/j.proeng.2016.06.481 doi: 10.1016/j.proeng.2016.06.481
    [144] Jiang S, Liu J, Guan J, et al. (2023) Enhancing CO2 adsorption capacity of ZIF-8 by synergetic effect of high pressure and temperature. Sci Rep 13: 1–10. https://doi.org/10.1038/s41598-023-44960-4 doi: 10.1038/s41598-023-44960-4
    [145] Pouramini Z, Mousavi SM, Babapoor A, et al. (2023) Effect of metal atom in zeolitic imidazolate frameworks. Catalysts 13: 155. https://doi.org/10.3390/catal13010155 doi: 10.3390/catal13010155
    [146] Latrach Z, Moumen E, Kounbach S, et al. (2022) Mixed-ligand strategy for the creation of hierarchical porous ZIF-8 for enhanced adsorption of copper ions. ACS Omega 7: 12345–12354. https://doi.org/10.1021/acsomega.2c00980 doi: 10.1021/acsomega.2c00980
    [147] Hu J, Liu Y, Liu J, et al. (2017) Effects of water vapor and trace gas impurities in flue gas on CO2 capture in zeolitic imidazolate frameworks: The significant role of functional groups. Fuel 200: 244–251. https://doi.org/10.1016/j.fuel.2017.03.079 doi: 10.1016/j.fuel.2017.03.079
    [148] Liu Y, Kasik A, Linneen N, et al. (2014) Adsorption and diffusion of carbon dioxide on ZIF-68. Chem Eng Sci 118: 32–40. https://doi.org/10.1016/j.ces.2014.07.030 doi: 10.1016/j.ces.2014.07.030
    [149] Liu Y, Liu J, Chang M, et al. (2012) Theoretical studies of CO2 adsorption mechanism on linkers of metal–organic frameworks. Fuel 95: 521–527. https://doi.org/10.1016/j.fuel.2011.09.057 doi: 10.1016/j.fuel.2011.09.057
    [150] Gu C, Liu Y, Wang W, et al. (2021) Effects of functional groups for CO2 capture using metal-organic frameworks. Front Chem Sci Eng 15: 437–449 https://doi.org/10.1007/s11705-020-1961-6 doi: 10.1007/s11705-020-1961-6
    [151] Yang F, Ge T, Zhu X, et al. (2022) Study on CO2 capture in humid flue gas using amine-modified ZIF-8. Sep Purif Technol 287: 120535. https://doi.org/10.1016/j.seppur.2022.120535 doi: 10.1016/j.seppur.2022.120535
    [152] Ji Y, Liu X, Li H, et al. (2023) Hydrophobic ZIF-8 covered active carbon for CO2 capture from humid gas. J Ind Eng Chem 121: 331–337. https://doi.org/10.1016/j.jiec.2023.01.036 doi: 10.1016/j.jiec.2023.01.036
    [153] Xu H, Cheng W, Jin X, et al. (2013) Effect of the particle size of quartz powder on the synthesis and CO2 absorption properties of Li4SiO4 at high temperature. Ind Eng Chem Res 52: 1886–1891. https://doi.org/10.1021/ie301178p doi: 10.1021/ie301178p
    [154] Li Z, Cao Z, Grande C, et al. (2021) A phase conversion method to anchor ZIF-8 onto a PAN nanofiber surface for CO2 capture. RSC Adv 12: 664–670. https://doi.org/10.1039/D1RA06480K doi: 10.1039/D1RA06480K
    [155] Åhlén M, Jaworski A, Strømme M, et al. (2021) Selective adsorption of CO2 and SF6 on mixed-linker ZIF-7–8s: The effect of linker substitution on uptake capacity and kinetics. Chem Eng J 422: 130117. https://doi.org/10.1016/j.cej.2021.130117 doi: 10.1016/j.cej.2021.130117
    [156] Asadi E, Ghadimi A, Hosseini SS, et al. (2022) Surfactant-mediated and wet-impregnation approaches for modification of ZIF-8 nanocrystals: Mixed matrix membranes for CO2/CH4 separation. Microporous Mesoporous Mater 329: 111539. https://doi.org/10.1016/j.micromeso.2021.111539 doi: 10.1016/j.micromeso.2021.111539
    [157] Zhang H, Duan C, Li F, et al. (2018) Green and rapid synthesis of hierarchical porous zeolitic imidazolate frameworks for enhanced CO2 capture. Inorg Chim Acta 482: 358–363. https://doi.org/10.1016/j.ica.2018.06.034 doi: 10.1016/j.ica.2018.06.034
    [158] Martinez Joaristi A, Juan-Alcañiz J, Serra-Crespo P, et al. (2012) Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal-organic frameworks. Cryst Growth Des 12: 3489–3498. https://doi.org/10.1021/cg300552w doi: 10.1021/cg300552w
    [159] Zhang X, Yuan N, Chen T, et al. (2022) Fabrication of hydrangea-shaped Bi2WO6/ZIF-8 visible-light responsive photocatalysts for degradation of methylene blue. Chemosphere 307: 135678. https://doi.org/10.1016/j.chemosphere.2022.135949 doi: 10.1016/j.chemosphere.2022.135949
    [160] Liu X, Gao F, Xu J, et al. (2016) Zeolite@mesoporous silica-supported-amine hybrids for the capture of CO2 in the presence of water. Microporous Mesoporous Mater 222: 113–119. https://doi.org/10.1016/j.micromeso.2015.10.006 doi: 10.1016/j.micromeso.2015.10.006
    [161] Sebastián V, Kumakiri I, Bredesen R, et al. (2007) Zeolite membrane for CO2 removal: Operating at high pressure. J Membr Sci 292: 92–97. https://doi.org/10.1016/j.memsci.2007.01.017 doi: 10.1016/j.memsci.2007.01.017
    [162] Erkartal M, Incekara K, Sen U (2022) Synthesis of benzotriazole functionalized ZIF-8 by postsynthetic modification for enhanced CH4 and CO2 uptakes. Inorg Chem Commun 142: 109696. https://doi.org/10.1016/j.inoche.2022.109696 doi: 10.1016/j.inoche.2022.109696
    [163] Bolotov VA, Kovalenko KA, Samsonenko DG, et al. (2018) Enhancement of CO2 uptake and selectivity in a metal–organic framework by the incorporation of thiophene functionality. Inorg Chem 57: 5074–5082. https://doi.org/10.1021/acs.inorgchem.8b00138 doi: 10.1021/acs.inorgchem.8b00138
    [164] Shi GM, Yang T, Chung TS (2012) Polybenzimidazole (PBI)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of alcohols. J Membr Sci 415–416: 577–586. https://doi.org/10.1016/j.memsci.2012.05.052 doi: 10.1016/j.memsci.2012.05.052
    [165] Yang T, Chung TS (2013) High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor. Int J Hydrogen Energy 38: 229–239. https://doi.org/10.1016/j.ijhydene.2012.10.045 doi: 10.1016/j.ijhydene.2012.10.045
    [166] Abdelhamid HN, Mathew AP (2021) In-situ growth of zeolitic imidazolate frameworks into a cellulosic filter paper for the reduction of 4-nitrophenol. Carbohydr Polym 274: 118657. https://doi.org/10.1016/j.carbpol.2021.118657 doi: 10.1016/j.carbpol.2021.118657
    [167] Ding M, Flaig RW, Jiang HL, et al. (2019) Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem Soc Rev 48: 2783–2828. https://doi.org/10.1039/C8CS00829A doi: 10.1039/C8CS00829A
    [168] Liu D, Ma X, Xi H, et al. (2014) Gas transport properties and propylene/propane separation characteristics of ZIF-8 membranes. J Membr Sci 451: 85–93. https://doi.org/10.1016/j.memsci.2013.09.029 doi: 10.1016/j.memsci.2013.09.029
    [169] Reza Abbasi A, Moshtkob A, Shahabadi N, et al. (2019) Synthesis of nano zinc-based metal–organic frameworks under ultrasound irradiation in comparison with solvent-assisted linker exchange: Increased storage of N2 and CO2. Ultrason Sonochem 59: 104729. https://doi.org/10.1016/j.ultsonch.2019.104729 doi: 10.1016/j.ultsonch.2019.104729
    [170] Hu Z, Zhang H, Zhang XF, et al. (2022) Polyethylenimine grafted ZIF-8@cellulose acetate membrane for enhanced gas separation. J Membr Sci 662: 120996. https://doi.org/10.1016/j.memsci.2022.120996 doi: 10.1016/j.memsci.2022.120996
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(426) PDF downloads(43) Cited by(0)

Figures and Tables

Figures(12)  /  Tables(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog