This paper consider that the following semilinear elliptic equation
$ \begin{equation} \left\{ \begin{array}{ll} -\Delta u = u^{q(x)-1}, &\ \ {\mbox{in}}\ \ B_1,\\ u>0, &\ \ {\mbox{in}}\ \ B_1,\\ u = 0, &\ \ {\mbox{in}}\ \ \partial B_1, \end{array} \right. \end{equation} $
where $ B_1 $ is the unit ball in $ \mathbb{R}^N(N\geq 3) $, $ q(x) = q(|x|) $ is a continuous radial function satifying $ 2\leq q(x) < 2^* = \frac{2N}{N-2} $ and $ q(0) > 2 $. Using variational methods and a priori estimate, the existence of a positive radial solution for (0.1) is obtained.
Citation: Changmu Chu, Shan Li, Hongmin Suo. Existence of a positive radial solution for semilinear elliptic problem involving variable exponent[J]. Electronic Research Archive, 2023, 31(5): 2472-2482. doi: 10.3934/era.2023125
This paper consider that the following semilinear elliptic equation
$ \begin{equation} \left\{ \begin{array}{ll} -\Delta u = u^{q(x)-1}, &\ \ {\mbox{in}}\ \ B_1,\\ u>0, &\ \ {\mbox{in}}\ \ B_1,\\ u = 0, &\ \ {\mbox{in}}\ \ \partial B_1, \end{array} \right. \end{equation} $
where $ B_1 $ is the unit ball in $ \mathbb{R}^N(N\geq 3) $, $ q(x) = q(|x|) $ is a continuous radial function satifying $ 2\leq q(x) < 2^* = \frac{2N}{N-2} $ and $ q(0) > 2 $. Using variational methods and a priori estimate, the existence of a positive radial solution for (0.1) is obtained.
[1] | Y. M. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383–1406. https://doi.org/10.1137/050624522 doi: 10.1137/050624522 |
[2] | M. R$\mathring{ u }$žička, Electrorheological Fluids: Modeling and Mathematical Theory, Springer, Berlin, Germany, 2000. https://doi.org/10.1007/BFb0104029 |
[3] | X. L. Fan, Q. H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problem, Nonlinear Anal., 52 (2003), 1843–1852. https://doi.org/10.1016/S0362-546X(02)00150-5 doi: 10.1016/S0362-546X(02)00150-5 |
[4] | J. Chabrowski, Y. Q. Fu, Existence of solutions for $p(x)$-Laplacian problems on a bounded domain, J. Math. Anal. Appl., 306 (2005), 604–618. https://doi.org/10.1016/j.jmaa.2004.10.028 doi: 10.1016/j.jmaa.2004.10.028 |
[5] | Q. H. Zhang, C. S. Zhao, Existence of strong solutions of a $p(x)$-Laplacian Dirichlet problem without the Ambrosetti-Rabinowitz condition, Comput. Math. Appl., 69 (2015), 1–12. https://doi.org/10.1016/j.camwa.2014.10.022 doi: 10.1016/j.camwa.2014.10.022 |
[6] | G. Li, V. D. R$\breve{a}$dulescu, D. D. Repov$\breve{s}$, Q. H. Zhang, Nonhomogeneous Dirichlet problems without the Ambrosetti-Rabinowitz condition, Topol. Methods Nonlinear Anal., 51 (2018), 55–77. https://doi.org/10.12775/TMNA.2017.037 doi: 10.12775/TMNA.2017.037 |
[7] | C. Ji, F. Fang, Infinitely many solutions for the $p(x)$-Laplacian equations without $(AR)$-type growth condition, Ann. Polonici Math., 105 (2012), 87–99. https://doi.org/10.4064/ap105-1-8 doi: 10.4064/ap105-1-8 |
[8] | Z. Yucedag, Existence of solutions for $p(x)$ Laplacian equations without Ambrosetti-Rabinowitz type condition, Bull. Malays. Math. Sci. Soc., 38 (2015), 1023–1033. https://doi.org/10.1007/s40840-014-0057-1 doi: 10.1007/s40840-014-0057-1 |
[9] | Z. Tan, F. Fang, On superlinear $p(x)$-Laplacian problems without Ambrosetti and Rabinowitz condition, Nonlinear Anal., 75 (2012), 3902–3915. https://doi.org/10.1016/j.na.2012.02.010 doi: 10.1016/j.na.2012.02.010 |
[10] | A. B. Zang, $p(x)$-Laplacian equations satisfying Cerami condition, J. Math. Anal. Appl., 337 (2008), 547–555. https://doi.org/10.1016/j.jmaa.2007.04.007 doi: 10.1016/j.jmaa.2007.04.007 |
[11] | S. Aouaoui, Existence of solutions for eigenvalue problems with nonstandard growth conditions, Electron. J. Differ. Equations, 176 (2013), 1–14. https://doi.org/10.1186/1687-2770-2013-177 doi: 10.1186/1687-2770-2013-177 |
[12] | V. R$\check{a}$dulescu, Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Anal., 121 (2015), 336–369. https://doi.org/10.1016/j.na.2014.11.007 doi: 10.1016/j.na.2014.11.007 |
[13] | J. Garcia-Mellian, J. D. Rossi, J. C. S. De Lis, A variable exponent diffusion problem of concave-convex nature, Topol. Methods Nonlinear Anal., 47 (2016), 613–639. https://doi.org/10.12775/TMNA.2016.019 doi: 10.12775/TMNA.2016.019 |
[14] | C. M. Chu, X.Q. Liu, Y. L. Xie, Sign-changing solutions for semilinear elliptic equation with variable exponent, J. Math. Anal. Appl., 507 (2022), 125748. https://doi.org/10.1016/j.jmaa.2021.125748 doi: 10.1016/j.jmaa.2021.125748 |
[15] | M. Hashizume, M. Sano, Strauss's radial compactness and nonlinear elliptic equation involving a variable critical exponent, J. Funct. Spaces, 2018 (2018), 1–13. https://doi.org/10.1155/2018/5497172 doi: 10.1155/2018/5497172 |
[16] | A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 347–381. https://doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7 |
[17] | J. L. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191–202. https://doi.org/10.1007/BF01449041 doi: 10.1007/BF01449041 |