Research article Topical Sections

A modeling strategy for G-protein coupled receptors

  • Received: 30 December 2015 Accepted: 16 March 2016 Published: 20 March 2016
  • Cell responses can be triggered via G-protein coupled receptors (GPCRs) that interact with small molecules, peptides or proteins and transmit the signal over the membrane via structural changes to activate intracellular pathways. GPCRs are characterized by a rather low sequence similarity and exhibit structural differences even for functionally closely related GPCRs. An accurate structure prediction for GPCRs is therefore not straightforward. We propose a computational approach that relies on the generation of several independent models based on different template structures, which are subsequently refined by molecular dynamics simulations. A comparison of their conformational stability and the agreement with GPCR-typical structural features is then used to select a favorable model. This strategy was applied to predict the structure of the herpesviral chemokine receptor US28 by generating three independent models based on the known structures of the chemokine receptors CXCR1, CXCR4, and CCR5. Model refinement and evaluation suggested that the model based on CCR5 exhibits the most favorable structural properties. In particular, the GPCR-typical structural features, such as a conserved water cluster or conserved non-covalent contacts, are present to a larger extent in the model based on CCR5 compared to the other models. A final model validation based on the recently published US28 crystal structure confirms that the CCR5-based model is the most accurate and exhibits 80.8% correctly modeled residues within the transmembrane helices. The structural agreement between the selected model and the crystal structure suggests that our modeling strategy may also be more generally applicable to other GPCRs of unknown structure.

    Citation: Anna Kahler, Heinrich Sticht. A modeling strategy for G-protein coupled receptors[J]. AIMS Biophysics, 2016, 3(2): 211-231. doi: 10.3934/biophy.2016.2.211

    Related Papers:

    [1] Kenneth H. Karlsen, Süleyman Ulusoy . On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks and Heterogeneous Media, 2016, 11(1): 181-201. doi: 10.3934/nhm.2016.11.181
    [2] Piotr Biler, Grzegorz Karch, Jacek Zienkiewicz . Morrey spaces norms and criteria for blowup in chemotaxis models. Networks and Heterogeneous Media, 2016, 11(2): 239-250. doi: 10.3934/nhm.2016.11.239
    [3] José Antonio Carrillo, Yingping Peng, Aneta Wróblewska-Kamińska . Relative entropy method for the relaxation limit of hydrodynamic models. Networks and Heterogeneous Media, 2020, 15(3): 369-387. doi: 10.3934/nhm.2020023
    [4] Panpan Xu, Yongbin Ge, Lin Zhang . High-order finite difference approximation of the Keller-Segel model with additional self- and cross-diffusion terms and a logistic source. Networks and Heterogeneous Media, 2023, 18(4): 1471-1492. doi: 10.3934/nhm.2023065
    [5] Raul Borsche, Axel Klar, T. N. Ha Pham . Nonlinear flux-limited models for chemotaxis on networks. Networks and Heterogeneous Media, 2017, 12(3): 381-401. doi: 10.3934/nhm.2017017
    [6] Elisabeth Logak, Isabelle Passat . An epidemic model with nonlocal diffusion on networks. Networks and Heterogeneous Media, 2016, 11(4): 693-719. doi: 10.3934/nhm.2016014
    [7] Patrick Henning, Mario Ohlberger . The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Networks and Heterogeneous Media, 2010, 5(4): 711-744. doi: 10.3934/nhm.2010.5.711
    [8] Toyohiko Aiki, Kota Kumazaki . Uniqueness of solutions to a mathematical model describing moisture transport in concrete materials. Networks and Heterogeneous Media, 2014, 9(4): 683-707. doi: 10.3934/nhm.2014.9.683
    [9] Junjie Wang, Yaping Zhang, Liangliang Zhai . Structure-preserving scheme for one dimension and two dimension fractional KGS equations. Networks and Heterogeneous Media, 2023, 18(1): 463-493. doi: 10.3934/nhm.2023019
    [10] Jinyi Sun, Weining Wang, Dandan Zhao . Global existence of 3D rotating magnetohydrodynamic equations arising from Earth's fluid core. Networks and Heterogeneous Media, 2025, 20(1): 35-51. doi: 10.3934/nhm.2025003
  • Cell responses can be triggered via G-protein coupled receptors (GPCRs) that interact with small molecules, peptides or proteins and transmit the signal over the membrane via structural changes to activate intracellular pathways. GPCRs are characterized by a rather low sequence similarity and exhibit structural differences even for functionally closely related GPCRs. An accurate structure prediction for GPCRs is therefore not straightforward. We propose a computational approach that relies on the generation of several independent models based on different template structures, which are subsequently refined by molecular dynamics simulations. A comparison of their conformational stability and the agreement with GPCR-typical structural features is then used to select a favorable model. This strategy was applied to predict the structure of the herpesviral chemokine receptor US28 by generating three independent models based on the known structures of the chemokine receptors CXCR1, CXCR4, and CCR5. Model refinement and evaluation suggested that the model based on CCR5 exhibits the most favorable structural properties. In particular, the GPCR-typical structural features, such as a conserved water cluster or conserved non-covalent contacts, are present to a larger extent in the model based on CCR5 compared to the other models. A final model validation based on the recently published US28 crystal structure confirms that the CCR5-based model is the most accurate and exhibits 80.8% correctly modeled residues within the transmembrane helices. The structural agreement between the selected model and the crystal structure suggests that our modeling strategy may also be more generally applicable to other GPCRs of unknown structure.


    In this paper, we consider the global solution to the Cauchy problem of fractional drift diffusion system with power-law nonlinearity,

    $ {tv+Λαv=(vmϕ),t>0,xRN,tw+Λαw=(wmϕ),t>0,xRN,Δϕ=vw,t>0,xRN,v(x,0)=v0(x),w(x,0)=w0(x),xRN,
    $
    (1.1)

    where $ m\geq 1 $ is an integer, $ v(x, t), w(x, t) $ are the densities of negatively and positively charged particles, $ \phi(x, t) $ is the electric potential determined by the Poisson equation $ \Delta\phi = v-w $. The difficulties mainly come from higher-order nonlinear couplings.

    By the fundamental solution of Laplacian:

    $ ΦN(x)={12|x|,N=1,12πln|x|,N=2,1N(N2)ω(N)|x|N2,N3,
    $
    (1.2)

    where $ \omega(N) $ denotes the volume of the unit ball in $ \mathbb{R}^N $, the electric potential $ \phi $ can be expressed by the convolution:

    $ ϕ=(Δ)1(wv)=ΦN(wv)=RNΦN(xy)(wv)(y)dy.
    $
    (1.3)

    $ \Lambda = \sqrt{-\Delta} $ is the Calderón-Zygmund operator, and the fractional Laplacian $ \Lambda^{\alpha} = (-\Delta)^{\frac{\alpha}{2}} $ with $ 1 < \alpha < 2N $ is a non-local fractional differential operator defined as Eq (1.4)

    $ Λαv(x)=F1|ξ|αFv(ξ),
    $
    (1.4)

    where $ \mathcal{F} $ and $ \mathcal{F}^{-1} $ are the Fourier transform and its inverse [1].

    In probabilistic terms, replacing the Laplacian $ \Delta $ with its fractional power $ -\Lambda^{\alpha} = -(-\Delta)^{\frac{\alpha}{2}} $, it leads to interesting and largely open questions of extensions of results for Brownian motion driven stochastic equations to those driven by Lévy $ \alpha- $stable flights.

    In the physical literature, such fractal anomalous diffusions have been recently enthusiastically embraced by a slew of investigators in the context of hydrodynamics, acoustics, trapping effects in surface diffusion, statistical mechanics, relaxation phenomena, and biology [2].

    An important technical difficulty is that the densities of the semigroups generated by $ -\Lambda^{\alpha} = -(-\Delta)^{\frac{\alpha}{2}} $ do not decay rapidly in $ x\in \mathbb{R}^{N} $ as is the case of the heat semigroup $ S(t) = e^{t\Delta} $ $ (\alpha = 2) $, the Gauss-Weierstrass kernel $ K_{t}(x) = \mathcal{F}^{-1}(e^{-t|\xi|^{2}}) $ decays exponentially while the densities $ \mathcal{F}^{-1}(e^{-t|\xi|^{\alpha}})(0 < \alpha < 2) $ of non-Gaussian Lévy $ \alpha- $stable semigroups $ S_{\alpha}(t) = e^{-t(-\Delta)^{\frac{\alpha}{2}}} $ have only an algebraic decay rate $ |x|^{-N-\alpha} $.

    For a more general nonlinear term in Eq (1.1), the motivation is the Keller-Segel model [3,4], a prototype of cross-diffusion models related to pattern formation, it describes the time and space dynamics of the density of cells (or organisms) $ n(t, x) $ interacting with a chemoattractant $ S(t, x) $ according to the following system:

    $ {tn=x(Dn(n,s)xnχ(n,s)nxs)+F(n,s),ts=Ds(n,s)Δs+G(n,s),
    $
    (1.5)

    where $ F $ and $ G $ are the source terms related to interactions [5]. The positive definite nonlinear terms $ D_{n}(n, s) $ and $ D_{s}(n, s) $ are the diffusivity of the chemoattractant and of the cells, respectively. In many applications the cross-diffusion function $ \chi(n, s) $ has a complicated structure, and even it has a very simple structure, for example, a polynomial $ \chi(n, s) = n^{m} $, it fails to satisfy a global Lipschitz condition.

    For $ m = 1 $, Eq (1.1) becomes a fractional drift-diffusion system Eq (1.6),

    $ {tv+Λαv=(vϕ),t>0,xRN,tw+Λαw=(wϕ),t>0,xRN,Δϕ=vw,t>0,xRN,v(x,0)=v0(x),w(x,0)=w0(x),xRN,
    $
    (1.6)

    Zhao-Liu [6] established global well-posedness and asymptotic stability of mild solutions for the Cauchy problem Eq (1.5) with small initial data in critical Besov spaces, and proved the regularizing-decay rate estimates which imply that mild solutions are analytic in space variables. Ogawa-Yamamoto [7] considered the global existence and asymptotic behavior of solutions for the Cauchy problem Eq (1.5), they showed that the time- global existence of the solutions with large initial data in Lebesgue space $ L^{p}(\mathbb{R}^N) $ and Sobolev space $ W^{\alpha, p}(\mathbb{R}^N) $ and obtained the asymptotic expansion of the solution up to the second terms as $ t\rightarrow +\infty $.

    For $ \alpha = 2 $, Eq (1.6) corresponds to the usual drift-diffusion system,

    $ {tvΔv=(vϕ),t>0,xRN,twΔw=(wϕ),t>0,xRN,Δϕ=vw,t>0,xRN,v(x,0)=v0(x),w(x,0)=w0(x),xRN,
    $
    (1.7)

    it has been studied widely [8,9,10,11,12,13,14]. Karch [15] considered the Cauchy problem of a scalar equation with a bilinear operator $ B $

    $ {tu=Δu+B(u,u),t>0,xRN,u(x,0)=u0(x),xRN.
    $

    For $ w = 0 $, Eq (1.6) corresponds to the generalized Keller-Segel model of chemotaxis:

    $ {tv+Λαv=(vϕ),t>0,xRN,Δϕ=v,t>0,xRN,v(x,0)=v0(x),xRN.
    $
    (1.8)

    For $ 1 < \alpha < 2 $, Escudero [16] proved that Eq (1.8) admits a one-dimensional global solution (the same result also holds for $ \alpha = 2 $), Biler-Karch [17] studied the Blowup solutions to generalized Keller-Segel model, and Biler-Wu [18] considered two-dimensional chemotaxis models with fractional diffusion. For $ \alpha = 2 $, Biler-Boritchev-Karch et al., considered the concentration phenomena [19] and gave sharp Sobolev estimates for concentration of solution [20] to the diffusive aggregation model:

    $ tvεΔv=(vKv)
    $

    with the Poisson kernel function $ K $ from the equation $ \Delta\phi = v $.

    Wu-Zheng [21] considered the parabolic-parabolic system corresponding to the parabolic-elliptic system Eq (1.8), the Keller-Segel system with fractional diffusion generalizing the Keller-Segel model of chemotaxis

    $ {tu+Λαu=±(uϕ),t>0,xRN,εtϕ+Λαϕ=u,t>0,xRN,u(x,0)=u0(x),v(x,0)=v0(x),xRN,
    $
    (1.9)

    for initial data $ (u_{0}, v_{0}) $ in the critical Fourier-Herz space $ \dot{B}^{2-2\alpha}_{q}(\mathbb{R}^N)\times \dot{B}^{2-\alpha}_{q}(\mathbb{R}^N) $ with $ 2\leq q\leq \infty $ for $ \varepsilon > 0 $ and $ 1 < \alpha\leq 2 $.

    For the fractional evolution equations with higher order nonlinearity, Miao-Yuan-Zhang [22] studied the Cauchy problem for the semilinear fractional power dissipative equation

    $ {tu+Λαu=F(u),t>0,xRN,u(x,0)=u0(x),xRN,
    $
    (1.10)

    with the nonlinear term $ F(u) = f(u) $ or $ F(u) = Q(D)f(u) $, where $ Q(D) $ is a homogeneous pseudo differential operator and $ f(u) = |u|^{b}u $ or $ |u|^{b_{1}}u+|u|^{b_{2}}u $ with $ b > 0, b_{1} > 0 $ and $ b_{2} > 0 $. For example, the equation in Eq (1.10) contains the semilinear fractional power dissipative equation $ \partial_t u+\Lambda^{\alpha}u = \pm |u|^{b}u $, the generalized convection-diffusion equation $ \partial_t u+\Lambda^{\alpha}u = a\cdot\nabla(|u|^{b}u) $, and so on.

    Following the idea of Karch [15], due to the fractional heat semigroup $ S_{\alpha}(t) = e^{-t\Lambda^{\alpha}} $ and the well-known Duhamel principle, we rewrite the system Eq (1.1) as a system of integral equations

    $ {v(t)=Sα(t)v0+B(v,,v,w),w(t)=Sα(t)w0+B(w,,w,v),
    $
    (1.11)

    where

    $ B(v,,vm,w)=t0Sα(tτ)(vmϕ)(τ)dτ,ϕ=(Δ)1(wv).
    $
    (1.12)

    A solution of Eq (1.11) and Eq (1.12) is called a mild solution of Eq (1.1).

    Inspired by the contributions summarized in the above items, we aim to extend the results to the system Eq (1.1) with higher-order nonlinear terms $ \nabla\cdot(v^m \nabla \phi) $ and $ \nabla\cdot(w^m \nabla \phi) $. The goal of this article is to prove the global well-posedness of mild solutions to the Cauchy problem Eq (1.1) with small initial data in critical Besov spaces. When $ m = 1 $ in the higher order nonlinear term $ \nabla\cdot(v^m \nabla \phi) $, we recover the result proved in [6]. The outline of the rest of the article is as follows. In Section 2 we give the definition of homogeneous Besov space by the fractional heat semigroup operator and present some useful estimates. In Section 3 we establish the global existence and uniqueness of the mild solution. In Section 4 we discuss the asymptotic stability of the mild solution. In Section 5 we give the regularizing-decay rate estimates of the mild solution. In Section 6 we consider a fractional drift diffusion system with a generalized electric potential equation and we also give the global existence and asymptotic stability of the mild solution.

    Let $ \mathcal{S}(\mathbb{R}^N) $ be the Schwartz space and $ \mathcal{S}'(\mathbb{R}^N) $ be its dual. Now, we introduce a definition of the homogeneous Besov space by the semigroup operator $ S_{\alpha}(t) = e^{-t\Lambda^{\alpha}} $.

    Definition 2.1. [6] Let $ l > 0 $ and $ 1\leq p\leq \infty $. Define

    $ ˙Blp,(RN)={fS(RN):SαfC((0,+),Lp),supt>0tlα||Sαf||Lp<}
    $
    (2.1)

    with the norm

    $ ||f||˙Blp,(RN)=supt>0tlα||Sα(t)f||Lp.
    $
    (2.2)

    $ (\dot{B}^{-l}_{p, \infty}(\mathbb{R}^N), ||\cdot||_{\dot{B}^{-l}_{p, \infty}}) $ is a Banach space.

    If $ (v(x, t), w(x, t)) $ is a solution of the Cauchy problem Eq (1.1), for any $ \lambda > 0 $, denote

    $ vλ(x,t)=λαmv(λx,λαt),wλ(x,t)=λαmw(λx,λαt),
    $
    (2.3)

    $ (v_{\lambda}(x, t), w_{\lambda}(x, t)) $ is also a solution of the Cauchy problem Eq (1.1) with the initial data

    $ (v_{\lambda}(x, 0), w_{\lambda}(x, 0)) = (\lambda^{\frac{\alpha}{m}}v_{0}(\lambda x), \lambda^{\frac{\alpha}{m}}w_{0}(\lambda x)), $

    then $ (v_{\lambda}(x, t), w_{\lambda}(x, t)) $ is called a self-similar solution to Eq (1.1). We can verify that $ \dot{B}^{-\frac{\alpha}{m}+\frac{n}{p}}_{p, \infty}(\mathbb{R}^n) $ is a critical space, i.e., the self-similar solution is invariant under the norm $ ||\cdot||_{\dot{B}^{-\frac{\alpha}{m}+\frac{n}{p}}_{p, \infty}} $, which defined in [6], for initial data $ (v_{0}(x), w_{0}(x)) $ of the system Eq (1.1). In the case the index $ s_c: = \frac{n}{p}-\frac{\alpha}{m} $ provides the minimal regularity for the initial data to ensure the well-posedness of the Cauchy problem Eq (1.1). In order to find a critical space for the solutions of the Cauchy problem Eq (1.1), we define some time-weighted space-time space.

    Let $ X $ be a Banach space and $ I $ be a finite or infinite interval. We define the time-weighted space-time Banach space,

    $ Cσ(I;X)={fC(I;X):supt>0t1σ||f(t)||X<}
    $
    (2.4)

    with the norm $ ||f||_{C_{\sigma}(I; X)} = \sup_{t > 0}t^{\frac{1}{\sigma}}||f(t)||_{X} $. The corresponding homogeneous time-weighted space-time Banach space,

    $ ˙Cσ(I;X)={fCσ(I;X):limt0t1σ||f(t)||X=0}.
    $
    (2.5)

    We denote $ C_{*}([0, \infty); X) $ by the set of bounded maps from $ [0, \infty) $ to $ X $ which are continuous for $ t > 0 $ and weakly continuously for $ t = 0 $.

    For initial data $ (v_{0}(x), w_{0}(x)) $ in critical homogeneous Besov space $ \dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N) $ with minimal regularity, we want to find a mild solution of the Cauchy problem Eq (1.1) and discuss the global existence of mild solution in the following critical space,

    $ X=C([0,),˙Bαm+Npp,(RN))CmαpαpmN([0,),Lp(RN))
    $
    (2.6)

    with the norm

    $ ||u||X=supt>0||u(t)||˙Bαm+Npp,(RN)+supt>0t1mNαp||u(t)||Lp(RN).
    $
    (2.7)

    For the Laplacian operator $ \Delta $ and the Calderón-Zygmund operator $ \Lambda = \sqrt{-\Delta} $, we have the following classical Hardy-Littlewood-Sobolev inequality.

    Lemma 2.2. [23,24] Let $ 1 < p < N $, the nonlocal operator $ (-\Delta)^{-\frac{1}{2}} $ is bounded from $ L^{p}(\mathbb{R}^N) $ to $ L^{\frac{Np}{N-p}}(\mathbb{R}^N) $, i.e., $ \forall f\in L^{p}(\mathbb{R}^N) $,

    $ ||(Δ)12f||LNpNp(RN)C(N,p)||f||Lp(RN),
    $
    (2.8)
    $ ||(Δ)1f||LNpNp(RN)C(N,p)||f||Lp(RN).
    $
    (2.9)

    For the fractional power operator $ \Lambda^{\alpha} = (-\Delta)^{\frac{\alpha}{2}} $ and the semigroup operator $ S_{\alpha}(t) = e^{-t\Lambda^{\alpha}} $, we first consider the Cauchy problem for the homogeneous linear fractional heat equation

    $ {tu+Λαu=0,t>0,xRN,u(x,0)=u0(x),xRN.
    $
    (2.10)

    By the Fourier transform the solution can be written as:

    $ u(t,x)=F1(et|ξ|αFu0(ξ))=F1(et|ξ|α)u0(x)=Kt(x)u0(x)=Sα(t)u0(x),
    $
    (2.11)

    where the fractional heat kernel Eq (2.12),

    $ Kt(x)=(2π)N2RNeixξet|ξ|αdξ=tNαK(xt1α),
    $
    (2.12)

    the function $ K(x)\in L^{\infty}(\mathbb{R}^N)\cap C_{0}(\mathbb{R}^N) $, where $ C_{0}(\mathbb{R^{N}}) $ denotes the space of functions $ f\in C(\mathbb{R}^{N}) $ satisfying that $ \lim_{|x|\rightarrow \infty}f(x) = 0 $.

    For the semigroup operator $ S_{\alpha}(t) $ we have $ L^{p}-L^{q} $ estimates

    Lemma 2.3. [9] Let $ 1\leq p\leq q\leq\infty $. Then, $ \forall f\in L^{p}(\mathbb{R}^N) $,

    $ ||Sα(t)f||LqC(N,α)tNα(1p1q)||f||Lp,
    $
    (2.13)
    $ ||ΛγSα(t)f||LqC(N,α)tγαNα(1p1q)||f||Lp,
    $
    (2.14)

    for $ \alpha > 0 $ and $ \gamma > 0 $.

    Following the work of Kato [25,26] and Lemarie-Rieusset [23] for the Navier-Stokes problem, Miao-Yuan [27] gave a general existence and uniqueness result for an abstract operator equation via a contraction argument.

    Lemma 2.4. [27] Let $ X $ be a Banach space and $ B: X\times X\times\cdots\times X\rightarrow X $ be a $ (m+1)- $linear continuous operator satisfying

    $ ||B(u1,u2,,um+1)||XK||u1||X||u2||X||um+1||X,
    $
    (2.15)

    $ \forall u_{1}, u_{2}, \cdots, u_{m+1}\in X $ for some constant $ K > 0 $. Let $ \varepsilon > 0 $ be such that $ (m+1)(2\varepsilon)^{m}K < 1 $. Then for every $ y\in X $ with $ ||y||_{X}\leq \varepsilon $ the equation

    $ u=y+B(u,u,,u)
    $
    (2.16)

    has a unique solution $ u\in X $ satisfying that $ ||u||_{X}\leq 2\varepsilon $. Moreover, the solution $ u $ depends continuously on $ y $ in the sense that, if $ ||y||_{X}\leq \varepsilon $ and $ v = y_{1}+B(v, v, \cdots, v) $, $ ||v||_{X}\leq 2\varepsilon $, then

    $ ||uv||X11(m+1)(2ε)mK||yy1||X.
    $
    (2.17)

    We will use the Lemma to prove the global-in-time existence and uniqueness of the mild solutions to the Cauchy problem Eq (1.1) in the mixed time-space Besov space.

    In this section we give the global existence and uniqueness of mild solution to the Cauchy problem Eq (1.1).

    Theorem 3.1. Let $ N\geq2 $ be a positive integer, $ 1 < \alpha\leq 2N $ and

    $ max{1,mNα}<p<min{N,m(m+1)Nα}.
    $
    (3.1)

    If $ (v_{0}, w_{0})\in \dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N) $, there exists $ \varepsilon > 0 $ such that if $ ||(v_{0}, w_{0})||_{\dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}}\leq\varepsilon $, the Cauchy problem Eq (1.1) has a unique global mild solution $ (v, w)\in \mathcal{X} $ such that $ ||(v, w)||_{\mathcal{X}}\leq2\varepsilon $. Moreover, the solution depends continuously on initial data in the following sense: let $ (\tilde{v}, \tilde{w})\in \mathcal{X} $ be the solution of Eq (1.1) with initial data $ (\tilde{v}_{0}, \tilde{w}_{0}) $ such that $ ||(\tilde{v}_{0}, \tilde{w}_{0})||_{\dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N)}\leq\varepsilon $, then there is a constant $ C $ such that

    $ ||(v˜v,w˜w)||XC||(v0˜v0,w0˜w0)||˙Bαm+Npp,(RN).
    $

    For the integral system Eqs (1.11) and (1.12) we first consider the term $ S_{\alpha}(t)v_{0} = e^{-t\Lambda^{\alpha}}v_{0} $.

    Lemma 3.2. Let $ v_{0}(x)\in \dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N) $ and Eq (3.1) hold true. Then $ S_{\alpha}(t)v_{0}\in \mathcal{X} $ and

    $ ||Sα(t)v0||XC(N,α)||v0||˙Bαm+Npp,(RN).
    $
    (3.2)

    Proof. According to the definition of the norm $ ||\cdot||_{\dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N)} $ and $ L^{p}-L^{q} $ estimates for the semigroup operator $ S_{\alpha}(t) = e^{-t\Lambda^{\alpha}} $, we have

    $ ||Sα(t)v0||˙Bαm+Npp,(RN)=sups>0s1mNαp||Sα(s)Sα(t)v0||Lp=sups>0s1mNαp||Sα(t)Sα(s)v0||LpC(N,α)sups>0s1mNαp||Sα(s)v0||Lp=C(N,α)||v0||˙Bαm+Npp,(RN),
    $

    and

    $ supt>0t1mNαp||Sα(t)v0||Lp=||v0||˙Bαm+Npp,(RN).
    $

    Therefore, we have

    $ Sα(t)v0L((0,),˙Bαm+Npp,(RN)),t1mNαpSα(t)v0L((0,),Lp(RN)).
    $

    Moreover, following the method of [23] (Proposition 4.4, P33) we obtain that

    $ Sα(t)v0C([0,),˙Bαm+Npp,(RN)).
    $

    On the other hand, from $ v_{0}(x)\in \dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N) $ and Definition 2.1, we have

    $ Sα(t)v0C((0,),Lp(RN)),t1mNαpSα(t)v0C((0,),Lp(RN)).
    $

    Hence, we have $ S_{\alpha}(t)v_{0}\in \mathcal{X} $ and Eq (3.2) holds true.

    Lemma 3.3. Let $ (v, w)\in \mathcal{X} $ and Eq (3.1) hold true. Then $ B(v, \cdots, v, w)\in \mathcal{X} $ and

    $ ||B(v,,v,w)||XC(N,α,p)||v||mX||vw||X.
    $
    (3.3)

    Proof. According to the definition of the norm $ ||\cdot||_{\dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N)} $, we have

    $ ||B(v,,v,w)(t)||˙Bαm+Npp,(RN)=sups>0s1mNαp||Sα(s)B(v,,v,w)(t)||Lp,
    $

    by the expression Eq (1.12) of $ B(v, \cdots, v, w)(t) $, that is,

    $ B(v,,vm,w)=t0Sα(tτ)(vmϕ)(τ)dτ,ϕ=(Δ)1(wv),
    $
    (3.4)

    hence, by the Minkowski inequality, we get

    $ ||B(v,,v,w)(t)||˙Bαm+Npp,(RN)=sups>0s1mNαp||Sα(s)t0Sα(tτ)(vmϕ)(τ)dτ||Lpt0sups>0s1mNαp||Sα(s)Sα(tτ)(vmϕ)(τ)||Lpdτ.
    $
    (3.5)

    For $ 0 < s\leq t-\tau $, using the $ L^{p}-L^{q} $ estimates Eq (2.13) and Eq (2.14) for the semigroup operator $ S_{\alpha}(t) = e^{-t\Lambda^{\alpha}} $, we have

    $ sup0<stτs1mNαp||Sα(s)Sα(tτ)(vmϕ)(τ)||LpC(N,α)(tτ)1mNαp||Sα(tτ)(vmϕ)(τ)||Lp=C(N,α)(tτ)1mNαp||Sα(tτ)(vmϕ)(τ)||LpC(N,α,p)(tτ)1mNαp(tτ)mNαp||(vmϕ)](τ)||LNp(m+1)NpC(N,α,p)(tτ)1m(m+1)Nαp||v||mLp||ϕ(τ)||LNpNp,
    $

    the last inequality comes from the Hölder inequality for the product $ v\cdot v\cdots v\cdot (v-w) $ and $ \frac{m}{p}+\frac{N-p}{Np} = \frac{(m+1)N-p}{Np} $. Using the classical Hardy-Littlewood-Sobolev inequality Eq (2.8) and Eq (2.9), we have Eq (3.6):

    $ sup0<stτs1mNαp||Sα(s)Sα(tτ)[vm(Δ)1(vw)](τ)||LpC(N,α,p)(tτ)1m(m+1)Nαp||v(τ)||mLp||(vw)(τ)||Lp.
    $
    (3.6)

    For $ s > t-\tau $, using the $ L^{p}-L^{q} $ estimates Eq (2.13) and Eq (2.14) for the semigroup operator $ S_{\alpha}(t) = e^{-t\Lambda^{\alpha}} $, we have

    $ sups>tτs1mNαp||Sα(s)Sα(tτ)(vmϕ)(τ)||Lp=sups>tτs1mNαp||Sα(t+sτ)(vmϕ)(τ)||LpC(N,α)sups>tτs1mNαp(t+sτ)mNαp||vmϕ(τ)||LNp(m+1)NpC(N,α)sups>tτs1mNαp(t+sτ)mNαp||v||mLp||ϕ(τ)||LNpNp.
    $

    From the condition Eq (3.1): $ \max\{1, \frac{mN}{\alpha}\} < p < \min\{N, \frac{m(m+1)N}{\alpha}\} $ and $ s > t-\tau $, the function $ f(s) = s^{\frac{1}{m}-\frac{N}{\alpha p}}(t+s-\tau)^{-\frac{mN}{\alpha p}} $ has the maximum

    $ maxs>tτf(s)=f(1mNαp(m+1)Nαp1m(tτ))=C(tτ)1m(m+1)Nαp,
    $

    where $ C $ is a constant, by Eq (2.9) we have

    $ sups>tτs1mNαp||Sα(s)Sα(tτ)[vm(Δ)1(vw)](τ)||LpC(N,α,p)(tτ)1m(m+1)Nαp||v(τ)||mLp||(vw)(τ)||Lp.
    $
    (3.7)

    Together with Eq (3.6) and Eq (3.7) we have:

    $ sups>0s1mNαp||Sα(s)Sα(tτ)[vm(Δ)1(vw)](τ)||LpC(N,α,p)(tτ)1m(m+1)Nαp||v(τ)||mLp||(vw)(τ)||Lp.
    $
    (3.8)

    Putting Eq (3.8) into Eq (3.5), we have

    $ ||B(v,,v,w)(t)||˙Bαm+Npp,(RN)C(N,α,p)t0(tτ)1m(m+1)Nαp||v(τ)||mLp||(vw)(τ)||LpdτC(N,α,p)supτ>0(τ1mNαp||v(τ)||Lp)msupτ>0(τ1mNαp||(vw)(τ)||Lp)×t0(tτ)1m(m+1)Nαpτ(m+1)Nαp1m1dτC(N,α,p)||v||mX||vw||Xt0(tτ)1m(m+1)Nαpτ(m+1)Nαp1m1dτC(N,α,p)||v||mX||vw||X,
    $

    in the last inequality we use the fact that the Beta function

    $ t0(tτ)1m(m+1)Nαpτ(m+1)Nαp1m1dτ=B(m+1m(m+1)Nαp,(m+1)Nαp1m)
    $

    converges to a constant, since the condition Eq (3.1) implies that

    $ m+1m(m+1)Nαp=m+1mp(pmNα)>0,(m+1)Nαp1m=1mp(m(m+1)Nαp)>0.
    $

    Therefore, we have

    $ ||B(v,,v,w)(t)||˙Bαm+Npp,(RN)C(N,α,p)||v||mX||vw||X.
    $
    (3.9)

    Next, we consider the estimate of $ ||B(v, \cdots, v, w)(t)||_{L^{p}} $. From Eq (1.12) we have

    $ ||B(v,,v,w)(t)||Lp=||t0Sα(tτ)(vmϕ)(τ)dτ||LpC(N,α)t0(tτ)mNαp||vm(Δ)1(vw)](τ)||LNp(m+1)NpdτC(N,α)t0(tτ)mNαp||v||mLp||(Δ)1(vw)](τ)||LNpNpdτC(N,α,p)||v||mX||vw||Xt0(tτ)mNαpτ1m1+(m+1)NαpdτC(N,α,p)||v||mX||vw||Xt1m+Nαp,
    $

    thus,

    $ supt>0t1mNαp||B(v,,v,w)(t)||LpC(N,α,p)||v||mX||vw||X.
    $
    (3.10)

    In order to prove that $ B(v, \cdots, v, w)\in \mathcal{X} $, it suffices to prove that $ B(v, \cdots, v, w) $ is continuous for $ t > 0 $ and weakly continuous for $ t = 0 $ in $ \dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N) $, and it is continuous for $ t\geq0 $ in $ L^{p}(\mathbb{R}^N) $.

    For any $ 0 < t_{1} < t_{2} $, due to Eq (3.4) we have

    $ B(v,,v,w)(t2)B(v,,v,w)(t1)=t10[Sα(t2τ)Sα(t1τ)][vm(Δ)1(vw)](τ)dτ+t2t1Sα(t2τ)[vm(Δ)1(vw)](τ)dτ:=I(t1,t2)+II(t1,t2).
    $
    (3.11)

    Similar to the estimate of $ ||B(v, \cdots, v, w)(t)||_{\dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N)} $, we have

    $ ||II(t1,t2)||˙Bαm+Npp,(RN)=sups>0s1mNαp||Sα(s)II(t1,t2)||Lpt2t1sups>0s1mNαp||Sα(s)Sα(t2τ)[vm(Δ)1(vw)](τ)||LpdτC(N,α,p)||v||mX||vw||Xt2t1(t2τ)1m(m+1)Nαpτ(m+1)Nαp1m1dτC(N,α,p)||v||mX||vw||Xt11m+(m+1)Nαp1t2t1(t2τ)1m(m+1)NαpdτC(N,α,p)||v||mX||vw||Xt11m+(m+1)Nαp1(t2t1)1+1m(m+1)Nαp,
    $

    the condition Eq (3.1) implies that $ 1+\frac{1}{m}-\frac{(m+1)N}{\alpha p} > 0 $, hence as $ t_{2}\rightarrow t_{1} $,

    $ ||II(t1,t2)||˙Bαm+Npp,(RN)=sups>0s1mNαp||Sα(s)II(t1,t2)||Lp0.
    $
    (3.12)

    According to the property of semigroup,

    $ Sα(t2τ)Sα(t1τ)=[Sα(t2t1)I]Sα(t1τ),
    $
    (3.13)

    for $ \phi = (-\Delta)^{-1}(w-v) $ we get

    $ ||I(t1,t2)||˙Bαm+Npp,(RN)=sups>0s1mNαp||Sα(s)I(t1,t2)||Lpt10sups>0s1mNαp||Sα(s)[Sα(t2t1)I]Sα(t1τ)(vmϕ)(τ)||Lpdτ=t10sups>0s1mNαp||t2t10ΛαSα(μ)Sα(s)Sα(t1τ)(vmϕ)(τ)dμ||Lpdτ=t10sups>0s1mNαp||t2t10Sα(μ)ΛαSα(s)Sα(t1τ)(vmϕ)(τ)dμ||Lpdτt10sups>0s1mNαpt2t10||Sα(μ)ΛαSα(s)Sα(t1τ)(vmϕ)(τ)||Lpdμdτ,
    $
    (3.14)

    by the $ L^{p}-L^{q} $ estimates Eq (2.13) and Eq (2.14) for the semigroup operator $ S_{\alpha}(t) = e^{-t\Lambda^{\alpha}} $, we have

    $ t2t10||Sα(μ)ΛαSα(s)Sα(t1τ)(vmϕ)(τ)||LpdμC(N,α)t2t10μmNαpdμ||ΛαSα(s)Sα(t1τ)(vmϕ)(τ)||LNp(m+1)Np=C(N,α)(t2t1)1mNαp||ΛαSα(s)Sα(t1τ)(vmϕ)(τ)||LNp(m+1)Np.
    $
    (3.15)

    For $ 0 < s\leq t_{1}-\tau $, we have

    $ sup0<st1τs1mNαp||ΛαSα(s)Sα(t1τ)(vmϕ)(τ)||LNp(m+1)Np=sup0<st1τs1mNαp||Sα(s)ΛαSα(t1τ)(vmϕ)(τ)||LNp(m+1)NpC(N,α)sup0<st1τs1mNαp(t1τ)1||(vmϕ)(τ)||LNp(m+1)NpC(N,α)(t1τ)1mNαp1||v||mLp||ϕ||LNpNpC(N,α,p)(t1τ)1mNαp1||v||mLp||vw||Lp.
    $
    (3.16)

    For $ s > t_{1}-\tau $, we have

    $ sups>t1τs1mNαp||ΛαSα(s)Sα(t1τ)(vmϕ)(τ)||LNp(m+1)Np=sups>t1τs1mNαp||ΛαSα(t1τ+s)(vmϕ)(τ)||LNp(m+1)NpC(N,α)sups>t1τs1mNαp(t1τ+s)1||vmϕ||LNp(m+1)NpC(N,α,p)(t1τ)1mNαp1||v||mLp||vw||Lp.
    $
    (3.17)

    Putting Eqs (3.15)–(3.17) into Eq (3.14), we have

    $ ||I(t1,t2)||˙Bαm+Npp,(RN)C(t2t1)1mNαpt10(t1τ)1mNαp1||v(τ)||mLp||(vw)(τ)||LpdτC(t2t1)1mNαpsupτ>0(τ1mNαp||v(τ)||Lp)msupτ>0(τ1mNαp||(vw)(τ)||Lp)×t10(t1τ)1mNαp1τ(m+1)Nαp1m1dτC(t2t1)1mNαp||v||mX||vw||XBtmNαp11,
    $
    (3.18)

    where $ C = C(N, \alpha, p) $ the Beta function $ B = \mathcal{B}(\frac{1}{m}-\frac{N}{\alpha p}, \frac{(m+1)N}{\alpha p}-\frac{1}{m}) $ converges due to the condition Eq (3.1), thus we have

    $ ||I(t1,t2)||˙Bαm+Npp,(RN)C||v||mX||vw||X(t2t1)1mNαptmNαp11,
    $
    (3.19)

    that is,

    $ ||I(t1,t2)||˙Bαm+Npp,(RN)=sups>0s1mNαp||Sα(s)I(t1,t2)||Lp0ast2t1.
    $
    (3.20)

    Putting Eq (3.12) and Eq (3.20) into Eq (3.11) we have

    $ ||B(v,,v,w)(t1)B(v,,v,w)(t2)||˙Bαm+Npp,(RN)0ast2t1.
    $
    (3.21)

    This means that $ B(v, \cdots, v, w) $ is continuous for $ t > 0 $ in $ \dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N) $.

    Similarly, we can prove that $ B(v, \cdots, v, w) $ is weakly continuous for $ t = 0 $ in $ \dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N) $ and it is continuous for $ t\geq0 $ in $ L^{p}(\mathbb{R}^N) $. Therefore, we have

    $ B(v,,v,w)C([0,),˙Bαm+Npp,(RN))CmαpαpmN([0,),Lp(RN)),
    $
    (3.22)

    that is, $ B(v, \cdots, v, w)\in \mathcal{X} $ and Eq (3.3) holds true, i.e.,

    $ ||B(v,,v,w)||XC(N,α,p)||v||mX||vw||X.
    $
    (3.23)

    This ends the proof of Lemma 3.3.

    The proof of Theorem 3.1. Now for the integral system Eq (1.11) and Eq (1.12) from the Cauchy problem Eq (1.1), we have

    $ (v(t),w(t))=Sα(t)(v0,w0)+(B(v,,v,w),B(w,,w,v)),
    $
    (3.24)

    in Lemma 3.2 and Lemma 3.3 we deal with the terms $ S_{\alpha}(t)(v_{0}, w_{0}) $ and

    $ B(v,,v,w)=t0Sα(tτ)[vm(Δ)1(vw)](τ)dτ,B(w,,w,v)=t0Sα(tτ)[wm(Δ)1(wv)](τ)dτ,
    $

    respectively. For the Banach space $ \mathcal{X} $ and multi-linear operator $ B(v, \cdots, v, w) $, which satisfies the estimate Eq (3.23), following the Lemma 2.4, for every $ (v_{0}, w_{0})\in \dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N) $, there exists $ \varepsilon > 0 $ such that $ (m+1)(2\varepsilon)^{m}C(N, \alpha, p) < 1 $, then Eq (3.24) has a unique solution $ (v, w)\in \mathcal{X} $ such that $ ||(v, w)||_{X}\leq 2\varepsilon $. Therefore, the Cauchy problem Eq (1.1) has a unique global-in-time mild solution in the mixed time-space Besov space. This completes the proof of Theorem 3.1.

    Theorem 4.1. Let $ N $ be a positive integer, $ 1 < \alpha\leq 2N $ and Eq (3.1) hold true and $ (v, w) $ and $ (\tilde{v}, \tilde{w}) $ be two mild solutions of the Cauchy problem Eq (1.1) described in Theorem 3.1 corresponding to initial conditions $ (v_{0}, w_{0}) $ and $ (\tilde{v}_{0}, \tilde{w}_{0}) $, respectively. If $ (v_{0}, w_{0}), (\tilde{v}_{0}, \tilde{w}_{0})\in \dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N) $ such that

    $ limt||Sα(t)(v0˜v0,w0˜w0)||˙Bαm+Npp,(RN)=0,
    $
    (4.1)

    then, we have the following asymptotic stability

    $ limt(||(v˜v,w˜w)||˙Bαm+Npp,(RN)+tαmNp||(v˜v,w˜w)||Lp(RN))=0.
    $
    (4.2)

    Proof. Since $ (v_{0}, w_{0}), (\tilde{v}_{0}, \tilde{w}_{0})\in \dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N) $, by Theorem 3.1, there exists a constant $ \varepsilon > 0 $ such that if $ ||(v_{0}, w_{0}), (\tilde{v}_{0}, \tilde{w}_{0})||_{\dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}}\leq\varepsilon $, then the mild solutions $ (v, w) $ and $ (\tilde{v}, \tilde{w}) $ satisfy that $ ||(v, w), (\tilde{v}, \tilde{w})||_{\mathcal{X}}\leq2\varepsilon $. From Eq (1.11) and Eq (1.12) we have

    $ {v˜v=Sα(t)(v0˜v0)+m1k=0Bk(v˜v,v,˜v,vw)+Bm(˜v,(v˜v)(w˜w)),w˜w=Sα(t)(w0˜w0)+m1k=0Bk(w˜w,w,˜w,wv)+Bm(˜w,(w˜w)(v˜v)),
    $

    where

    $ Bk(v˜v,v,˜v,vw)=B(v˜v,v,,vk,˜v,,˜vm1k,vw)=t0Sα(tτ)[(v˜v)vk˜vm1k(Δ)1(vw)](τ)dτ,
    $
    (4.3)
    $ Bm(˜v,(v˜v)(w˜w))=B(˜v,,˜vm,(v˜v)(w˜w))=t0Sα(tτ)[˜vm(Δ)1((v˜v)(w˜w))](τ)dτ.
    $
    (4.4)

    By the definition of $ \dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N)- $norm, we have

    $ ||v˜v||˙Bαm+Npp,(RN)||Sα(t)(v0˜v0)||˙Bαm+Npp,(RN)+m1k=0Ik+Im,
    $
    (4.5)

    where

    $ (Ik,Im)=||(Bk(v˜v,v,˜v,vw),B(˜v,(v˜v)(w˜w)))||˙Bαm+Npp,(RN).
    $

    For a constant $ \theta\in (0, 1) $ determined in later we have

    $ Ik=sups>0s1mNαp||Sα(s)t0Sα(tτ)[(v˜v)vk˜vm1k(Δ)1(vw)](τ)dτ||Lpt0sups>0s1mNαp||Sα(s)Sα(tτ)[(v˜v)vk˜vm1k(Δ)1(vw)](τ)||Lpdτ(θt0+tθt)sups>0s1mNαp||Sα(t+sτ)[(v˜v)vk˜vm1k(Δ)1(vw)]||Lpdτ:=Ik1+Ik2.
    $
    (4.6)

    In the procedure of estimate of Eq (3.5), instead of the product $ v\cdot v\cdots v\cdot (v-w) $ with $ m+1 $ exponents such that $ \frac{m}{p}+\frac{N-p}{Np} = \frac{(m+1)N-p}{Np} $, use the Hölder inequality for the product $ (v-\tilde{v})v^k\tilde{v}^{m-1-k}(v-w) $ with $ m+1 $ exponents such that $ \frac{1}{p}+\frac{k}{p}+\frac{m-1-k}{p}+\frac{N-p}{Np} = \frac{(m+1)N-p}{Np} $, we can prove that

    $ Ik1Cθt0(tτ)1m(m+1)Nαp||v˜v||Lp||v||kLp||˜v||m1kLp||vw||LpdτCεmθ0(1η)1m(m+1)Nαpη11m+(m+1)Nαp(tη)1mNαp||v(tη)˜v(tη)||Lpdη,
    $
    (4.7)

    and

    $ Ik2Ctθt(tτ)1m(m+1)Nαp||v˜v||Lp||v||kLp||˜v||m1kLp||vw||LpdτCεmtθt(tτ)1m(m+1)Nαpτ11m+(m+1)Nαp(τ1mNαp||v˜v||Lp)dτCεm[supθtτtτ1mNαp||v(τ)˜v(τ)||Lp].
    $
    (4.8)

    Together Eq (4.7) with Eq (4.8) we have

    $ IkCεmθ0(1η)1m(m+1)Nαpη11m+(m+1)Nαp((tη)1mNαp||v(tη)˜v(tη)||Lp)dη+Cεm[supθtτtτ1mNαp||v(τ)˜v(τ)||Lp],k=1,2,,m1.
    $
    (4.9)

    Similarly we have

    $ ImCεmθ0(1η)1m(m+1)Nαpη1+1m(m+1)Nαp((tη)1mNαp||((v˜v)(tη),(w˜w)(tη))||Lp)dη+Cεm[supθtτtτ1mNαp||((v˜v)(τ),(w˜w)(τ))||Lp].
    $
    (4.10)

    We next consider the term $ ||v-\tilde{v}||_{L^{p}(\mathbb{R}^N)} $:

    $ ||v˜v||Lp(RN)||Sα(t)(v0˜v0)||Lp(RN)+m1k=0Jk+Jm,
    $
    (4.11)

    where

    $ (Jk,Jm)=||(Bk(v˜v,v,˜v,vw),B(˜v,(v˜v)(w˜w)))||Lp(RN).
    $

    For the first term we have

    $ t1mNαp||Sα(t)(v0˜v0)||Lp(RN)21mNαpsupt>0(t2)1mNαp||Sα(t2)(v0˜v0)||Lp(RN)21mNαp||Sα(t)(v0˜v0)||˙Bαm+Npp,(RN).
    $
    (4.12)

    For the term $ J_{k} $ and $ \phi = (-\Delta)^{-1}(w-v) $, we have

    $ Jk=||t0Sα(tτ)[(v˜v)vk˜vm1kϕ](τ)dτ||LpC(θt0+tθt)(tτ)mNαp||v˜v||Lp||v||kLp||˜v||m1kLp||ϕ||LNpNpdτC(θt0+tθt)(tτ)mNαp||v˜v||Lp||v||kLp||˜v||m1kLp||vw||LpdτCεm(θt0+tθt)(tτ)mNαpτ11m+(m+1)Nαp(τ1mNαp||v˜v||Lp)dτCεmt1m+Nαpθ0(1η)mNαpη11m+(m+1)Nαp((tη)1mNαp||v(tη)˜v(tη)||Lp)dη+Cεmt1m+Nαp[supθtτtτ1mNαp||v(τ)˜v(τ)||Lp],k=1,2,,m1.
    $
    (4.13)

    Similarly, for the term $ J_{m} $ we have

    $ JmCεmt1m+Nαpθ0(1η)mNαpη1+1m(m+1)Nαp((tη)1mNαp||((v˜v)(tη),(w˜w)(tη))||Lp)dη+Cεmt1m+Nαp[supθtτtτ1mNαp||((v˜v)(τ),(w˜w)(τ))||Lp].
    $
    (4.14)

    Together Eq (4.5) with Eq (4.11) we have

    $ ||v˜v||˙Bαm+Npp,(RN)+t1mNαp||v˜v||Lp(RN)C||Sα(t)(v0˜v0)||˙Bαm+Npp,(RN)+Cεmθ0(1η)1m(m+1)Nαpη1+1m(m+1)Nαp((tη)1mNαp||((v˜v)(tη),(w˜w)(tη))||Lp)dη+Cεmθ0(1η)mNαpη1+1m(m+1)Nαp((tη)1mNαp||((v˜v)(tη),(w˜w)(tη))||Lp)dη+Cεm[supθtτtτ1mNαp||((v˜v)(τ),(w˜w)(τ))||Lp].
    $
    (4.15)

    For $ w-\tilde{w} $ we can get the same estimate similar to Eq (4.15).

    For the convenience we denote

    $ Q(θ)=θ0(1η)1m(m+1)Nαpη11m+(m+1)Nαpdη+θ0(1η)mNαpη11m+(m+1)Nαpdη,F(t)=||Sα(t)(v0˜v0,w0˜w0)||˙Bαm+Npp,(RN),G(t)=||v˜v||˙Bαm+Npp,(RN)+t1mNαp||v˜v||Lp(RN).
    $

    Due to the condition Eq (3.1), $ \max\{1, \frac{mN}{\alpha}\} < p < \min\{N, \frac{m(m+1)N}{\alpha}\} $, we have

    $ 1+1m(m+1)Nαp=m+1mp(pmNα)>0,1m+(m+1)Nαp=1mp(m(m+1)Nαp)>0,1mNαp=1p(pmNα)>0,
    $

    then, we obtain that $ Q(\theta) $ converges and $ \lim\limits_{\theta\rightarrow 0}Q(\theta) = 0 $.

    Due to the condition Eq (4.1) we have $ \lim\limits_{t\rightarrow +\infty}F(t) = 0 $ and $ F(t)\in L^{\infty}[0, +\infty) $. Passing the limit in Eq (4.15) we get

    $ M=lim supt+G(t)C(N,α,p)εm(Q(θ)+1)M,
    $
    (4.16)

    Choosing $ \theta $ and $ \varepsilon $ small enough such that $ Q(\theta) < 1 $ and $ 2C(N, \alpha, p)\varepsilon^{m} < 1 $ respectively, then Eq (4.16) implies that $ M = 0 $. That is, Eq (4.2) holds true. The proof is complete.

    In this section we consider the regularizing decay rate estimates of the mild solutions to the system Eq (1.1). Compared to the case $ m = 1 $, the main difficulty is caused by the power-law nonlinearity term $ v^{m} $ as $ m > 1 $ in the first two equations of Eq (1.1). To overcome this difficulty, we will apply multiple Leibniz's rule. For the regularizing-decay rate estimates of mild solutions to the Navier-Stokes equations, we refer the reader to [6,28,29,30].

    In what follows, for $ x = (x_{1}, \cdots, x_{N})\in\mathbb{R}^{N} $ and $ \beta = (\beta_{1}, \cdots, \beta_{N})\in\mathbb{N}^{N}_{0} $, where $ \mathbb{N}_{0} = \mathbb{N}\bigcup{\{0\}} $ and $ \mathbb{N} = \{1, 2, \cdots\} $, we denote $ \partial^{\beta}_{x} = \partial^{\beta_{1}}_{x_{1}} \cdots \partial^{\beta_{N}}_{x_{N}} $ and $ |\beta| = \beta_{1}+\cdots+\beta_{N} $.

    We first describe the main result on regularizing-decay rate estimates of the mild solutions to the system Eq (1.1).

    Theorem 5.1. Let $ N\geq2 $ be a positive integer, $ 1 < \alpha\leq 2N $. Assume that $ p $ satisfies Eq (3.1) and $ (v_{0}, w_{0})\in \dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N) $, and $ (v, w) $ is the mild solution to the system Eq (1.1) with initial data $ (v_{0}, w_{0}) $. Furthermore, assume that there exist two positive constants $ M_{1} $ and $ M_{2} $ such that

    $ sup0t<T(v(t),w(t))˙Bαm+Npp,(RN)M1,
    $
    (5.1)
    $ sup0<t<Tt1mNαp(v(t),w(t))Lp(RN)M2.
    $
    (5.2)

    Then, there exist two positive constants $ K_{1} $ and $ K_{2} $ depending only on $ M_{1} $, $ M_{2} $, $ N $, $ \alpha $, $ m $ and $ p $, such that

    $ (βxv(t),βxw(t))Lq(RN)K1(K2|β|)2|β|t|β|α1m+Nαq
    $
    (5.3)

    for all $ p\leq q \leq \infty $, $ t\in(0, T) $ and $ \beta\in\mathbb{N}^{N}_{0} $.

    Remark 1. In fact, Eq (5.3) is equivalent to the claim

    $ (βxv(t),βxw(t))LqK1(K2|β|)2|β|δt|β|α1m+Nαq
    $
    (5.4)

    for some $ \delta\in(1, 2] $ and sufficiently large constants $ K_{1} $ and $ K_{2} $.

    Let us first prepare the refined $ L^{p}-L^{q} $ estimate for semigroup operator $ S_{\alpha}(t) $.

    Lemma 5.2. Let $ 1\leq p\leq q\leq \infty $. Then for any $ f\in\dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^{N}) $, we have

    $ βxSα(t)fLq(RN)C|β|0|β||β|αt|β|α1m+Nαqf˙Bαm+Npp,(RN)
    $
    (5.5)

    for all $ t > 0, \beta\in\mathbb{N}^{N}_{0} $, and $ C_{0} $ is a constant depending only on $ N $ and $ \alpha $.

    Proof. As $ S_{\alpha}(t) $ is the convolution operator with fractional heat kernel $ K_{t}(x) = \mathcal{F}^{-1}(e^{-t|\xi|^{\alpha}}) $, by scaling we see that

    $ Kt(x)=(2π)n2RNeixξet|ξ|αdξ=tNαK(xt1α),
    $

    where $ K(x) = (2\pi)^{-\frac{n}{2}}\int_{\mathbb{R}^{N}}e^{ix\cdot\xi}e^{-|\xi|^{\alpha}}d\xi $. It is clear that [22] (Lemma 2.2)

    $ K(x)Lp(RN),Kt(x)Lp(RN),t(0,),p[1,],
    $

    thus, the Young inequality implies that

    $ xSα(t)fLqxKt(x)L1fLqC0(N,α)t1αfLq.
    $
    (5.6)

    By the semigroup property of $ S_{\alpha}(t) $ and the commutativity between semigroup and differential operators, we get

    $ βxSα(t)f=Ni=1(xiSα(t2|β|))βiSα(t2)f.
    $
    (5.7)

    Combining Eq (5.6) and Eq (5.7), and using Definition 2.1, we obtain

    $ βxSα(t)fLq(RN)Ni=1xiSα(t2|β|)βiL(Lq,Lq)Sα(t2)fLq(C0(N,α)(t2|β|)1α)|β|(t4)Nα(1p1q)Sα(t4)fLpC0(N,α)|β||β||β|αt|β|α1m+Nαqsupt>0(t4)1mNαpSα(t4)fLpC0(N,α)|β||β||β|αt|β|α1m+Nαqf˙Bαm+Npp,(RN),
    $

    where $ \|\mathbf{T}\|_{\mathcal{L}(L^{p}, L^{q})} $ denotes the norm of linear operator $ \mathbf{T} $ from $ L^{p} $ to $ L^{q} $. This proves the Lemma 5.2.

    Next we recall some useful results.

    Lemma 5.3. [31,Lemma 2.1] Let $ \delta > \frac{1}{2} $. Then there exists a positive constant $ C $ depending only on $ \delta $, such that

    $ α<β(βα)|α||α|δ|βα||βα|δC(δ)|β||β|δ,βNN0.
    $
    (5.8)

    Here the notation $ \alpha < \beta $ means that $ \alpha_{i} < \beta_{i}, \forall i\in \mathbb{N} $, $ \left(βα

    \right) = \prod\limits^{N}_{i = 1}\frac{\beta_{i}!}{\alpha_{i}!(\beta_{i}-\alpha_{i})!} $, and the dependence of $ C(\delta) $ on $ \delta $ is merely of the form $ \sum^{\infty}_{j = 1}j^{-\delta-\frac{1}{2}} $.

    Lemma 5.4. [28] Let $ \psi_{0} $ be a measurable and locally bounded function in $ (0, \infty) $ and $ \{\psi_{j}\}^{\infty}_{j = 1} $ be a sequence of measurable functions in $ (0, \infty) $. Assume that $ \alpha\in\mathbb{R} $ and $ \mu, \nu > 0 $ satisfying $ \mu+\nu = 1 $. Let $ B_{\eta} > 0 $ be a number depending on $ \eta\in(0, 1) $ and $ B_{\eta} $ be non-increasing with respect to $ \eta $. Assume that there is a positive constant $ \sigma $ such that

    $ 0ψ0(t)Bηtα+σt(1η)t(tτ)μτνψ0(τ)dτ,
    $
    (5.9)
    $ 0ψj+1(t)Bηtα+σt(1η)t(tτ)μτνψj(τ)dτ
    $
    (5.10)

    for all $ j\geq 0 $, $ t > 0 $ and $ \eta\in(0, 1) $. Let $ \eta_{0} $ be a unique positive number such that

    $ I(η0)=min{12σ,I(1)}withI(η)=11η(1τ)μτανdτ.
    $

    Then, for any $ 0 < \eta\leq\eta_{0} $, we have

    $ ψj(t)2Bηtα,j0,t>0.
    $

    We now prove the Theorem 5.1. Following the idea in Giga-Sawada [28], we first prove the Remark 1, a variant of Theorem 5.1 under extra regularity assumption.

    Proposition 1. Under the same assumptions in Theorem 5.1. Assume further that

    $ (βxv(t),βxw(t))C((0,T),Lq(RN))
    $
    (5.11)

    for all $ p\leq q\leq\infty $ and $ \beta\in\mathbb{N}^{N}_{0} $. Then for any $ \delta\in (1, 2] $, there exist two positive constants $ K_{1} $ and $ K_{2} $ depending only on $ M_{1} $, $ M_{2} $, $ N $, $ \alpha $, $ m $ and $ p $, such that

    $ (βxv(t),βxw(t))LqK1(K2|β|)2|β|δt|β|α1m+Nαq
    $
    (5.12)

    for all $ p\leq q \leq \infty $, $ t\in(0, T) $ and $ \beta\in\mathbb{N}^{N}_{0} $.

    Proof. We split the proof into the following two steps by an induction $ |\beta| = m $.

    Step 1. We will prove Eq (5.12) for $ m = 0 $. Equation (5.2) implies that Eq (5.12) is trivial if $ q = p $, thus it suffices to consider $ q\in (p, \infty] $. Let $ \eta\in(0, 1) $ be a constant to be determined later, we take $ L^{q}- $norm of the first equation in Eq (1.11) and split the time integral into two parts as follows:

    $ v(t)LqSα(t)v0Lq+(t(1η)0+tt(1η))Sα(tτ)[vm()1(wv)(τ)]Lqdτ:=E1+E2+E3.
    $
    (5.13)

    We will estimate term by term.

    For $ E_{1} $, by Lemma 5.2 and Eq (5.1), one can easily see that

    $ E1C1(N,α)tαm+Nαqv0˙B1m+Npp,C1(N,α,M1)t1m+Nαq.
    $
    (5.14)

    For $ E_{2} $ and $ E_{3} $, by Lemma 2.2, Lemma 2.3 and Eq (5.2), we have

    $ E2=t(1η)0Sα(tτ)[vm()1(wv)(τ)]LqdτC2(N,α,p)t(1η)0(tτ)(m+1)Nαp+Nαqv(τ)mLp(v(τ),w(τ))LpdτC2(N,α,p)Mm+12t(1η)0(tτ)(m+1)Nαp+Nαqτ11m+(m+1)NαpdτC2(N,α,p,M2)η11mt1m+Nαq,
    $
    (5.15)
    $ E3=tt(1η)Sα(tτ)[vm()1(wv)(τ)]LqdτC3(N,α,p)tt(1η)(tτ)mNαpv(τ)Lqv(τ)m1Lp(v(τ),w(τ))LpdτC3(N,α,p,M2)tt(1η)(tτ)mNαpτ1+mNαpv(τ)Lqdτ.
    $
    (5.16)

    Combining Eqs (5.14)–(5.16), and setting $ \bar{B}_{\eta} = C_{1}(N, \alpha, M_{1})+C_{2}(N, \alpha, p, M_{2})\eta^{-1-\frac{1}{m}} $, the inequality Eq (5.13) yields that

    $ v(t)LqˉBηt1m+Nαq+C3tt(1η)(tτ)mNαpτ1+mNαpv(τ)Lqdτ.
    $
    (5.17)

    The estimate for $ w(t) $ can be done analogously as Eq (5.17). Hence, we have

    $ (v(t),w(t))LqBηt1m+Nαq+C4tt(1η)(tτ)mNαpτ1+mNαp(v(τ),w(τ))Lqdτ,
    $
    (5.18)

    where $ B_{\eta} = 2\bar{B}_{\eta} $ and $ C_{4} = 2C_{3}(N, \alpha, p, M_{2}) $.

    By applying Lemma 5.4, we get the desired estimate Eq (5.12) for $ |\beta| = k = 0 $ with $ K_{1} = 2B_{\eta_{0}} $ for some $ \eta_{0} = \eta_{0}(N, \alpha, p, m, M_{1}, M_{2})\in(0, 1) $.

    Step 2. Next we prove Eq (5.12) for $ |\beta| = k\geq1 $. Due to the appearance of nonlocal function $ \phi $, we use a different argument to prove Eq (5.12) for $ p\leq q < N $ and $ N\leq q\leq\infty $, thus we split the proof into the following two cases.

    Case 1: $ p\leq q < N $. In this case, we first differentiate the first equation of Eq (1.11) to obtain the identity

    $ βxv(t)=βxSα(t)v0t0βxSα(tτ)[vm(Δ)1(wv)(τ)]dτ.
    $
    (5.19)

    We take the $ L^{q}- $norm of $ \partial^{\beta}_{x}v $, for some $ \eta\in(0, 1) $ to be chosen later, we split the time integral into the following two parts:

    $ βxv(t)LqβxSα(t)v0Lq+(t(1η)0+tt(1η))βxSα(tτ)[vm(Δ)1(wv)(τ)]Lqdτ:=F1+F2+F3.
    $
    (5.20)

    We next estimate $ F_{i}(i = 1, 2, 3) $ term by term.

    For $ F_{1} $, Lemma 5.2 implies that

    $ F1Ck0kkαtkα1m+nαqv0˙Bαm+npp,M1Ck0kkαtkα1m+nαq.
    $
    (5.21)

    For $ F_{2} $, using Lemma 5.2, Lemma 2.3 and Eq (5.2), we have

    $ F2=t(1η)0βxSα(tτ)[vm(Δ)1(wv)(τ)]LqdτC5(N,α)t(1η)0(tτ2)1αβxSα(tτ2)[vm(Δ)1(wv)(τ)]LqdτC5(N,α)t(1η)0(tτ2)1αNi=1xiSα(tτ4k)kiL(Lq,Lq)×Sα(tτ4)[vm(Δ)1(wv)(τ)]LqdτC5(N,α)t(1η)0(tτ2)1α[C0(tτ4k)1α]k(tτ4)(m+1)Npαp+Nαq×vm(Δ)1(wv)(τ)LNp(m+1)NpdτC5(N,α,p)Ck0kkαt(1η)0(tτ4)kαNα(m+1p1q)v(τ)mLp(v(τ),w(τ))LpdτC5(N,α,p)Mm+12Ck0kkαt(1η)0(tτ4)kαNα(m+1p1q)τ11m+(m+1)NαpdτC5(N,α,p,M2)Ck0kkαηkα11mtkα1m+Nαq,
    $
    (5.22)

    where $ k = k_{1}+k_{2}+\dots+ k_{N} $ and $ k_{i} = |\beta_{i}|(i = 1, 2, \dots, N) $.

    Using Leibniz's rule, we split $ F_{3} $ into the following three parts:

    $ F3=tt(1η)βxSα(tτ)[vm(Δ)1(wv)(τ)]LqdτC6(N,α)tt(1η)(tτ2)1αSα(tτ2)βx[vm(Δ)1(wv)(τ)]LqdτC6(N,α)tt(1η)(tτ2)1αSα(tτ2)[(βxvm)(Δ)1(wv)(τ)]Lqdτ+C6(N,α)tt(1η)(tτ2)1αSα(tτ2)0<γ<β(βγ)(γxvm)(βγx(Δ)1(wv)(τ))Lqdτ+C6(N,α)tt(1η)(tτ2)1αSα(tτ2)[vmβx(Δ)1(wv)(τ)]Lqdτ:=F31+F32+F33.
    $
    (5.23)

    Here, the notation $ \gamma < \beta $ means that $ \gamma\leq\beta $ and $ |\gamma| < |\beta| $.

    Now, we establish the estimates for $ F_{3j}(j = 1, 2, 3) $. For $ F_{31} $, using Leibniz's rule again, we can split $ F_{31} $ into two parts as follows:

    $ F31=C7(N,α)tt(1η)(tτ2)1αSα(tτ2)[(βxvm)(Δ)1(wv)]Lqdτ=C7(N,α)tt(1η)(tτ2)1αSα(tτ2)[β(βmβm1)(βm1βm2)(β2β1)×(β1xv)(β2β1xv)(βmβm1xv)+mvm1(βxv)(Δ)1(wv)]Lqdτ=C7(N,α)βmi=1(βiβi1)tt(1η)(tτ2)1αSα(tτ2)mi=1(βiβi1xv)(Δ)1(wv)(τ)Lqdτ+C7(N,α,m)tt(1η)(tτ2)1αSα(tτ2)vm1(βxv)(Δ)1(wv)Lqdτ:=G1+G2,
    $
    (5.24)

    where we denote $ \sum_{\beta} = \sum_{0 = \beta_{0}\leq\beta_{1}\leq\dots\leq\beta_{m-1} < \beta_{m} = \beta} $.

    For $ G_{2} $, using Lemma 2.2, Lemma 2.3 and Eq (5.2), we have

    $ G2C8(N,α,m,p)tt(1η)(tτ2)mNαpvm1LpβxvLq(v(τ),w(τ))LpdτC8(N,α,m,p)Mm2tt(1η)(tτ)mNαpτ1+mNαpβxvLqdτ.
    $
    (5.25)

    For $ G_{1} $, using Lemma 2.2, Lemma 2.3, Lemma 5.3, Eq (5.2) and Eq (5.12), we have

    $ G1C9(N,α,p)βmi=1(βiβi1)tt(1η)(tτ)(m1)NαqNαp×mi=1βiβi1xvLq(v(τ),w(τ))LpdτC9(N,α,p)M2βmi=1(βiβi1)tt(1η)(tτ)(m1)NαqNαp×mi=1[K1(K2|βiβi1|2|βiβi1|δ)τ|βiβi1|α1m+Nαq]τ1m+NαpdτC9(N,α,p,M2)βmi=1(βiβi1)mi=1[K1(K2|βiβi1|2|βiβi1|δ)]×tt(1η)(tτ)(m1)NαqNαpτkα1+mNαq1m+NαpdτC9(N,α,p,M2)(C(δ))2(m1)k2kδKm1K2kmδ2I(η)tkα1m+Nαq,
    $
    (5.26)

    where

    $ I(η)=11η(1τ)(m1)NαqNαpτkα1+mNαq1m+Nαpdτ.
    $
    (5.27)

    For $ F_{32} $, using the same arguments as $ G_{1} $, we have

    $ F32C10(N,α)tt(1η)(tτ2)1αSα(tτ2)[0<γ<β(βγ)(γxvm)×(βγx(Δ)1(wv)(τ))]LqdτC10(N,α)0<γ<β(βγ)tt(1η)(tτ2)1αSα(tτ2)(γxvm)×(βγx(Δ)1(wv)(τ))Lqdτ=C10(N,α)0<γ<β(βγ)tt(1η)(tτ2)1αSα(tτ2)[γmi=1(γiγi1)×mj=1(γjγj1xvm)](βγx(Δ)1(wv)(τ))LqdτC10(N,α)0<γ<β(βγ)γmi=1(γiγi1)tt(1η)(tτ2)1α×Sα(tτ2)mj=1(γjγj1xvm)(βγx(Δ)1(wv)(τ))Lqdτ,
    $

    according to the property of semigroup we get

    $ F32C10(N,α,p)0<γ<β(βγ)γmi=1(γiγi1)tt(1η)(tτ)N(m1)αqNαp×mj=1γjγj1xvLqβγx(v(τ),w(τ))LpdτC10(N,α,p)0<γ<β(βγ)γmi=1(γiγi1)tt(1η)(tτ)N(m1)αqNαp×mj=1[K1(K2|γjγj1|)2|γjγj1|δτ|γjγj1|α1m+Nαq]×[K1(K2|βγ|)2|βγ|δτ|βγ|α1m+Nαp]dτC10(N,α,p)(C(δ))mKm+11K2k(m+1)δ2k2kδI(η)tkα1m+Nαq,
    $
    (5.28)

    where $ \sum_{\gamma} $ is defined the same as that in estimating $ F_{31} $ and $ I(\eta) $ is defined in Eq (5.27).

    For $ F_{33} $, analogously we have

    $ F33C11tt(1η)(tτ)N(m1)αqNαpvmqβx()1(wv)(τ)LNpNpdτC11(N,α)tt(1η)(tτ)N(m1)αqNαpvmqβ1x(v(τ),w(τ))LNpNpdτC11(N,α)tt(1η)(tτ)N(m1)αqNαp[K1τ1m+Nαq]m×[K1(K2(k1))2(k1)δτk1α1m+N(Np)αNp]dτC11(N,α)Km+11K2(k1)δ2k2kδI(η)tkα1m+Nαq,
    $
    (5.29)

    where $ I(\eta) $ is defined in Eq (5.27).

    Combining the above estimates Eqs (5.20)$ - $(5.29) and setting $ \bar{B}_{\eta} $ by

    $ ˉBη=M1Ck0kkα+C5Ck0kkαηkα11m+C12k2kδI(η),
    $

    and

    $ C12=C9Km1K2kmδ2+C10Km+11K2k(m+1)δ2+C11Km+11K2(k1)δ2,
    $
    (5.30)

    we obtain

    $ βxv(t)LqˉBηtkα1m+Nαq+C8tt(1η)(tτ)mNαpτ1+mNαpβxv(τ)Lqdτ.
    $
    (5.31)

    Similarly, we can deal with $ \partial^{\beta}_{x}w(t) $. Hence, we conclude that

    $ (βxv(t),βxw(t))LqBηtkα1m+Nαq+C13tt(1η)(tτ)mNαpτ1+mNαp(βxv(τ),βxw(τ))Lqdτ,
    $
    (5.32)

    where $ B_{\eta} = 2\bar{B}_{\eta} $ and $ C_{13} = 2C_{8}(N, \alpha, m, p) $.

    Let $ \eta_{k} = \frac{1}{2k} $. It is clear that $ I(\eta_{k}) $ is strictly monotone decreasing in $ k $ and $ I(\eta_{k})\rightarrow 0 $ as $ k\rightarrow \infty $. Choosing $ k_{0} $ sufficiently large, such that $ I(\frac{1}{2k})\leq\frac{1}{2C_{13}} $ for all $ k\geq k_{0} $, applying Lemma 5.4, we get

    $ (βxv(t),βxw(t))Lq2B12ktkα1m+Nαq
    $
    (5.33)

    for all $ t > 0 $ and $ |\beta| = k $. Note that from Eq (5.33), we can choose $ K_{1} $ and $ K_{2} $ sufficiently large such that Eq (5.12) holds for all $ \beta $ satisfying $ |\beta|\leq k_{0} $. Hence, it suffices to prove that it is possible to choose $ K_{1} $ and $ K_{2} $ such that $ 2B_{\frac{1}{2k}}\leq K_{1}(K_{2}k)^{2k-\delta} $ for all $ k > k_{0} $. Since

    $ I(12k)=1112k(1τ)(m1)NαqNαpτkα1+mNαq1m+Nαpdτ(112k)kα11me12α(112k)11m16,
    $

    we can calculate $ 2B_{\frac{1}{2k}} $ as follows:

    $ 2B12k=4ˉB12k4[M1Ck0kkα+C5Ck0kkα(2k)kα+1+1m+16C12k2kδ]4[M1Ck0+2kα+1+1mC5Ck0k1+1m+δ+16C12]k2kδ.
    $

    Obviously, there exists a constant $ C_{14} > C_{0} $ such that $ C^{k}_{0}+2^{\frac{k}{\alpha}+1+\frac{1}{m}}C_{0}^{k}k^{1+\frac{1}{m}+\delta}\leq C_{14}^{2k-\delta} $. Hence,

    $ 2B12k4[(M1+C5)C2kδ14+16C12]k2kδ,
    $
    (5.34)

    where $ C_{12} $ is defined in Eq (5.30).

    Choosing $ K_{1}: = 8(M_{1}+C_{5}) $ and $ K_{2}: = \max\{C_{14}, 32(C_{9}+C_{10})K_{1}, 32C_{11}K_{1}^{\frac{m}{2}}\} $, we obtain Eq (5.12). This completes the proof of Proposition 1 for $ p\leq q < N $.

    Case 2: $ N\leq q\leq\infty $. Now we are in a position to establish the estimate of $ \|\partial^{\beta}_{x}v(t)\|_{L^{q}} $ for $ N\leq q\leq\infty $. For $ p $ satisfying Eq (3.1), using the Gagliardo-Nirenberg inequality [32], we have

    $ βxv(t)LqC(N,p)βxv(t)θLp2xβxv(t)1θLp,θ=1N2p+N2q.
    $
    (5.35)

    Now, from Eq (5.35) and the result of Case 1 we see that

    $ βxv(t)LqC(N,p)[K1(K2k)2kδtkα1m+Nαp]θ[K1(K2(k+2))2(k+2)δtk+2α1m+Nαp]1θC(N,p)K1(K2(k+2))2k+4δtkα1m+Nαq.
    $
    (5.36)

    It is clear that there exists a constant $ C_{15}\geq2 $ such that $ k^{4}\leq C_{15}^{2k-\delta} $, thus we have

    $ (K2(k+2))2k+4δ=K42k4(1+2k)2k+4δ(K2k)2kδ81e4K42(C15K2k)2kδ.
    $

    Hence, we can choose $ K_{1} $ and $ K_{2} $ sufficiently large such that Eq (5.12) holds for all $ p\leq q\leq\infty $. This completes the proof of Proposition 1.

    Finally, let us show that under the assumptions of Theorem 5.1, the mild solution $ (v(t), w(t)) $ of Eq (1.1) always satisfies the regularity condition Eq (5.12).

    Proposition 2. Under the assumptions of Theorem 5.1, the mild solution $ (v(t), $ $ w(t)) $ satisfies that

    $ t|β|α+1mNαq(βxv(t),βxw(t))Lq˜K1(˜K2|β|)2|β|δ
    $
    (5.37)

    for all $ p\leq q\leq\infty $, $ t\in(0, T) $ and $ \beta\in\mathbb{N}^{N}_{0} $, where $ \tilde{K}_{1} $ and $ \tilde{K}_{2} $ are constants depending only on $ M_{1}, M_{2}, m, N, \alpha, p $ and $ \delta $.

    Proof. Since the mild solution $ (v(t), w(t)) $ is the limit function of the sequence $ (v_{j}(t), w_{j}(t)) $ of appropriate Picard iterations as follows:

    $ (v1(t),w1(t))=(Sα(t)v0,Sα(t)w0),forj2,vj(t)=Sα(t)v0+t0Sα(tτ)[vmj1(Δ)1(vj1wj1)](τ)dτ,wj(t)=Sα(t)w0+t0Sα(tτ)[wmj1(Δ)1(wj1vj1)](τ)dτ.
    $

    Step 1. We first show that

    $ supj1sup0<t<Tt1mNαp(vj(t),wj(t))LpM2.
    $
    (5.38)

    When $ j = 1 $, following from Eq (5.1) we have

    $ (v1,w1)Lp=(Sα(t)v0,Sα(t)w0)Lpt1m+Nαpsup0<t<Tt1mNαp(Sα(t)v0,Sα(t)w0)Lpt1m+Nαp(v0,w0)˙Bαm+Npp,M1t1m+Nαp.
    $
    (5.39)

    Hence Eq (5.38) holds for $ j = 1 $.

    When $ j\geq2 $, using Lemma 2.2 and Lemma 2.3, we have

    $ vj(t)LpSα(t)v0Lp+t0Sα(tτ)[vmj1(Δ)1(vj1wj1)]Lp(τ)dτM1t1m+Nαp+C(N,α,p)t0(tτ)mNαpvj1(τ)mLp(vj1(τ),wj1(τ))LpdτM1t1m+Nαp+C(N,α,p)[sup0<s<Ts1mNαp(vj1(s),wj1(s))Lp]m+1t1m+NαpB,
    $

    where $ B = \int^{1}_{0}(1-\tau)^{-\frac{mN}{\alpha p}}\tau^{-1-\frac{1}{m}+\frac{(m+1)N}{\alpha p}}d\tau = \mathcal{B}(1-\frac{mN}{\alpha p}, -\frac{1}{m}+\frac{(m+1)N}{\alpha p}) $ is the standard Beta function which is obviously finite.

    For $ w_{j}(t) $ we have the analogous estimate. Then, for $ j = 2, 3, \cdots $, we get

    $ (vj(t),wj(t))LpC(N,α,p,m,M1,B)t1m+Nαp:=M2t1m+Nαp,
    $
    (5.40)

    where the constant $ C(N, \alpha, p, m, M_{1}, B) $ is always finite. Therefore Eq (5.38) holds true.

    Step 2. To apply the Lemma 5.4, we need to show that $ \|(\partial^{\beta}_{x}v_{1}(t), \partial^{\beta}_{x}w_{1}(t))\|_{L^{q}} $ is locally bounded in $ (0, T) $. Using Lemma 2.3 and Eq (5.1), we have

    $ βxv1(t)Lq=βxSα(t2)Sα(t2)v0LqC(N,α)(t2)|β|αNα(1p1q)Sα(t2)v0LpC(N,α)(t2)|β|αNα(1p1q)(t2)1m+Nαpsupt>0(t2)1mNαpSα(t2)v0LpC(N,α)M1(t2)|β|α1m+Nαq.
    $

    Similarly, we have a similar estimate on $ w_{j}(t) $. Then $ \|(\partial^{\beta}_{x}v_{1}(t), \partial^{\beta}_{x}w_{1}(t))\|_{L^{q}} $ is locally bounded in $ (0, T) $.

    Step 3. Similarly to the proof of Proposition 1, let $ \psi_{j}(t) = \|\partial^{\beta}_{x}v_{j}(t)\|_{L^{q}} $, for all $ j\geq1 $ and $ t\in(0, T) $, we have

    $ ψj+1(t)ˉBηt|β|α1m+Nαq+C8tt(1η)(tτ)mNαpτ1+mNαpψj(τ)dτ.
    $
    (5.41)

    Using Lemma 5.4 (the version of sequences), we can choose appropriate constants $ \tilde{K}_{1} $ and $ \tilde{K}_{2} $ such that

    $ ψj(t)˜K1(˜K2|β|)2|β|δt|β|α1m+Nαq.
    $
    (5.42)

    For $ w_{j}(t) $ we have the similar estimate. Hence we complete the proof of Proposition 2.

    The proof of Theorem 5.1. Now Theorem 5.1 follows immediately from Proposition 1 and Proposition 2. We complete the proof of Theorem 5.1.

    In this section, we consider a fractional drift diffusion system with generalized electric potential equation

    $ {tv+Λαv=(vmϕ),t>0,xRN,tw+Λαw=(wmϕ),t>0,xRN,ϕ=K(vw)(x)=cRNb(x,y)(vw)(y)dy,t>0,xRN,v(x,0)=v0(x),w(x,0)=w0(x),xRN,
    $
    (6.1)

    where $ c $ is a constant and $ b(x, y) $ is the kernel function of nonlocal linear integral operator $ \mathcal{K} $.

    For $ \mathcal{K} = (-\Delta)^{-1} $ which comes from the Poisson equation $ \Delta\phi = v-w $, Eq (6.1) becomes the fractional drift diffusion system Eq (1.1). For instance,

    $ K(u)(x)=cRN(xy)u(y)|xy|Ndy,
    $
    (6.2)

    where $ c $ is a constant. If $ c < 0 $, the equation $ u_{t} = \Delta u+\nabla\cdot(u\nabla \mathcal{K}(u)) $ models the Brownian diffusion of charge carriers interacting via Coulomb forces. If $ c > 0 $, the operator $ \mathcal{K} $ reflects the mutual gravitational attraction of particles. Furthermore, Biler-Woyczynski [33] considered the equation $ u_{t} = \Lambda^{\alpha} u+\nabla\cdot(u\nabla \mathcal{K}(u)) $.

    We also give the global existence and asymptotic stability of the mild solution to the Cauchy problem Eq (6.1).

    Theorem 6.1. Let $ N $ be a positive integer, $ 1 < \alpha\leq 2N $ and Eq (3.1) hold true. Assume that $ (v_{0}, w_{0})\in \dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N) $. If the derivative of kernel function $ b(x, y) $ satisfies

    $ |Db(x,y)|C|xy|N+1,
    $
    (6.3)

    then there exists $ \varepsilon > 0 $ such that if $ ||(v_{0}, w_{0})||_{\dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}}\leq\varepsilon $, the Cauchy problem Eq (6.1) has a unique global mild solution $ (v, w)\in \mathcal{X} $ such that $ ||(v, w)||_{\mathcal{X}}\leq2\varepsilon $. Moreover, the solution depends continuously on initial data in the following sense: let $ (\tilde{v}, \tilde{w})\in \mathcal{X} $ be the solution of Eq (6.1) with initial data $ (\tilde{v}_{0}, \tilde{w}_{0}) $ such that $ ||(\tilde{v}_{0}, \tilde{w}_{0})||_{\dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N)}\leq\varepsilon $, then there is a constant $ C $ such that

    $ ||(v˜v,w˜w)||XC||(v0˜v0,w0˜w0)||˙Bαm+Npp,(RN).
    $
    (6.4)

    Proof. After a few modifications of the proof to Theorem 3.1, we can prove this theorem. Here we just give the main difference in the proof.

    By the fractional heat semigroup $ S_{\alpha}(t) = e^{-t\Lambda^{\alpha}} $, we rewrite the system Eq (6.1) as a system of integral equations

    $ {v(t)=Sα(t)v0+B(v,,v,w),w(t)=Sα(t)w0+B(w,,w,v),
    $
    (6.5)

    where

    $ B(v,,vm,w)=t0Sα(tτ)[vmK(vw)](τ)dτ.
    $
    (6.6)

    Similar to Eqs (3.4)–(3.8), we have

    $ ||B(v,,v,w)(t)||˙Bαm+Npp,(RN)=sups>0s1mNαp||Sα(s)t0Sα(tτ)[vmK(vw)](τ)dτ||Lpt0sups>0s1mNαp||Sα(s)Sα(tτ)[vmK(vw)](τ)||LpdτC(N,α)t0(tτ)1m(m+1)Nαp||vmK(vw)(τ)||LNp(m+1)NpdτC(N,α)t0(tτ)1m(m+1)Nαp||v(τ)||mLp||K(vw)(τ)||LNpNpdτ,
    $
    (6.7)

    due to the condition Eq (6.3): $ |Db(x, y)|\leq C|x-y|^{-N+1} $, use Hardy-Littlewood-Sobolev inequality for the integral $ \int_{\mathbb{R}^{N}}|x-y|^{-N+1}|v-w|dy $, we have

    $ ||K(vw)||LNpNpC(N,p)||vw||Lp.
    $
    (6.8)

    then

    $ ||B(v,,v,w)(t)||˙Bαm+Npp,(RN)C(N,α,p)supτ>0(τ1mNαp||v(τ)||Lp)msupτ>0(τ1mNαp||(vw)(τ)||Lp)t0(tτ)1m(m+1)Nαpτ(m+1)Nαp1m1dτC(N,α,p)||v||mX||vw||Xt0(tτ)1m(m+1)Nαpτ(m+1)Nαp1m1dτC(N,α,p)||v||mX||vw||X,
    $
    (6.9)

    therefore, we have

    $ ||B(v,,v,w)(t)||˙Bαm+Npp,(RN)C(N,α,p)||v||mX||vw||X.
    $
    (6.10)

    Similarly, we have

    $ supt>0t1mNαp||B(v,,v,w)(t)||LpC(N,α,p)||v||mX||vw||X.
    $
    (6.11)

    Following the main estimates Eq (6.10) and Eq (6.11) and the proof of Theorem 3.1, the Cauchy problem Eq (6.1) has a unique global-in-time mild solution in the mixed time-space Besov space. This completes the proof of Theorem 6.1.

    Using the same method we can prove that the mild solution of the Cauchy problem Eq (6.1) has the following asymptotic stability.

    Theorem 6.2. Let $ N\geq2 $ be a positive integer, $ 1 < \alpha\leq 2N $, Eq (3.1) and Eq (6.3) hold true. Assume that $ (v, w) $ and $ (\tilde{v}, \tilde{w}) $ are two mild solutions of the Cauchy problem Eq (6.1) described in Theorem 6.1 corresponding to initial conditions $ (v_{0}, w_{0}) $ and $ (\tilde{v}_{0}, \tilde{w}_{0}) $, respectively. If $ (v_{0}, w_{0}), (\tilde{v}_{0}, \tilde{w}_{0})\in \dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N) $ such that

    $ limt||Sα(t)(v0˜v0,w0˜w0)||˙Bαm+Npp,(RN)=0,
    $
    (6.12)

    then, we have the following asymptotic stability

    $ limt(||(v˜v,w˜w)||˙Bαm+Npp,(RN)+tαmNp||(v˜v,w˜w)||Lp(RN))=0.
    $
    (6.13)

    Theorem 6.3. Let $ N\geq2 $ be a positive integer, $ 1 < \alpha\leq 2N $, Eq (3.1) and Eq (6.3) hold true. Assume that $ (v_{0}, w_{0})\in\dot{B}^{-\frac{\alpha}{m}+\frac{N}{p}}_{p, \infty}(\mathbb{R}^N) $, and $ (v, w) $ is the mild solution to the system Eq (6.1) with initial data $ (v_{0}, w_{0}) $. Furthermore, assume that there exist two positive constants $ M_{1} $ and $ M_{2} $ such that

    $ sup0t<T(v(t),w(t))˙Bαm+Npp,(RN)M1,
    $
    (6.14)
    $ sup0<t<Tt1mNαp(v(t),w(t))Lp(RN)M2.
    $
    (6.15)

    Then, there exist two positive constants $ K_{1} $ and $ K_{2} $ depending only on $ M_{1} $, $ M_{2} $, $ N $, $ \alpha $, $ m $ and $ p $, such that

    $ (βxv(t),βxw(t))Lq(RN)K1(K2|β|)2|β|t|β|α1m+Nαq
    $
    (6.16)

    for all $ p\leq q \leq \infty $, $ t\in(0, T) $ and $ \beta\in\mathbb{N}^{N}_{0} $.

    The authors are grateful to the anonymous referees for helpful comments and suggestions that greatly improved the presentation of this paper. The research of C. Gu is partially supported by the CSC under grant No. 202006160118. The research of C. Gu and Y. Tang is supported by the NNSF of China (Nos. 12171442 and 11971188).

    The authors have no conflicts in this paper.

    [1] Takata K, Matsuzaki T, Tajika Y (2004) Aquaporins: water channel proteins of the cell membrane. Prog Histochem Cytochem 39: 1–83. doi: 10.1016/j.proghi.2004.03.001
    [2] Nagel G, Szellas T, Huhn W, et al. (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100: 13940–13945. doi: 10.1073/pnas.1936192100
    [3] Lai EC (2004) Notch signaling: control of cell communication and cell fate. Development 131: 965–973. doi: 10.1242/dev.01074
    [4] Jacoby E, Bouhelal R, Gerspacher M, et al. (2006) The 7 TM G-Protein-Coupled Receptor Target Family. ChemMedChem 1: 760–782. doi: 10.1002/cmdc.200600134
    [5] Gentry PR, Sexton PM, Christopoulos A (2015) Novel Allosteric Modulators of G Protein-coupled Receptors. J Biol Chem 290: 19478–19488. doi: 10.1074/jbc.R115.662759
    [6] Strotmann R, Schröck K, Böselt I, et al. (2011) Evolution of GPCR: Change and continuity. Mol Cell Endocrinol 331: 170–178. doi: 10.1016/j.mce.2010.07.012
    [7] Ferré S (2015) The GPCR heterotetramer: challenging classical pharmacology. Trends Pharmacol Sci 36: 145–152. doi: 10.1016/j.tips.2015.01.002
    [8] Joost P, Methner A (2002) Phylogenetic analysis of 277 human G-protein-coupled receptors as a tool for the prediction of orphan receptor ligands. Genome Biology 3: research0063.1–research0063.16.
    [9] Kledal TN, Rosenkilde MM, Schwartz TW (1998) Selective recognition of the membrane-bound CX3C chemokine, fractalkine, by the human cytomegalovirus-encoded broad-spectrum receptor US28. FEBS Letters 441: 209–214. doi: 10.1016/S0014-5793(98)01551-8
    [10] Tan Q, Zhu Y, Li J, et al. (2013) Structure of the CCR5 Chemokine Receptor-HIV Entry Inhibitor Maraviroc Complex. Science 341: 1387–1390. doi: 10.1126/science.1241475
    [11] Sali A, Blundell TL (1993) Comparative Protein Modelling by Satisfaction of Spatial Restraints. J Mol Biol 234: 779–815. doi: 10.1006/jmbi.1993.1626
    [12] Wu B, Chien EYT, Mol CD, et al. (2010) Structures of the CXCR4 Chemokine GPCR with Small-Molecule and Cyclic Peptide Antagonists. Science 330: 1066–1071. doi: 10.1126/science.1194396
    [13] Park SH, Das BB, Casagrande F, et al. (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491: 779–783.
    [14] Burg JS, Ingram JR, Venkatakrishnan AJ, et al. (2015) Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor. Science 347: 1113–1117. doi: 10.1126/science.aaa5026
    [15] Bateman A, Birney E, Durbin R, et al. (2000) The Pfam Protein Families Database.
    [16] Eddy SR (2009) A new Generation of Homology Search Tools based on Probabilistic Inference. Genome Inform 23: 205–211.
    [17] Johnson LS, Eddy S, Portugaly E (2010) Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics 11: 431. doi: 10.1186/1471-2105-11-431
    [18] Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7: e1002195. doi: 10.1371/journal.pcbi.1002195
    [19] Hooft RWW, Vriend G, Sander C, et al. (1996) Errors in protein structures. Nature 381: 272.
    [20] Dolinsky TJ, Nielsen JE, McCammon JA, et al. (2004) PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 32: W665–W667. doi: 10.1093/nar/gkh381
    [21] Berendsen HJC, Postma JPM, van Gunsteren WF, et al. (1981) Interaction models for water in relation to protein hydration. Intermolecular Forces 14: 331–342. doi: 10.1007/978-94-015-7658-1_21
    [22] Siu SWI, Vácha R, Jungwirth P, et al. (2008) Biomolecular simulations of membranes: Physical properties from different force fields. J Chem Phys 128: 125103. doi: 10.1063/1.2897760
    [23] Schrödinger LLC (2010) The PyMOL Molecular Graphics System, Version 1.3r1.
    [24] Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: A message-passing parallel molecular dynamics implementation. Comput Phys Commun 91: 43–56. doi: 10.1016/0010-4655(95)00042-E
    [25] Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7: 306–317.
    [26] van der Spoel D, Lindahl E, Hess B, et al. (2005) GROMACS: Fast, flexible, and free. J Comput Chem 26: 1701–1718. doi: 10.1002/jcc.20291
    [27] Hess B, Kutzner C, van der Spoel D, et al. (2008) GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J Chem Theory Comput 4: 435–447. doi: 10.1021/ct700301q
    [28] Pronk S, Páll S, Schulz R, et al. (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29: 845–854.
    [29] Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14: 33–38. doi: 10.1016/0263-7855(96)00018-5
    [30] Hornak V, Abel R, Okur A, et al. (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65: 712–725. doi: 10.1002/prot.21123
    [31] Cornell WD, Cieplak P, Bayly CI, et al. (1995) A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J Am Chem Soc: 5179–5197.
    [32] Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N ⋅ log(N) method for Ewald sums in large systems. J Chem Phys 98: 10089–10092. doi: 10.1063/1.464397
    [33] Hess B, Bekker H, Berendsen HJC, et al. (1997) LINCS: A linear constraint solver for molecular simulations. J Comput Chem 18: 1463–1472.
    [34] Wang J, Wolf RM, Caldwell JW, et al. (2004) Development and testing of a general amber force field. J Comput Chem 25: 1157–1174. doi: 10.1002/jcc.20035
    [35] Kabsch W, and Sander C (1983) Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22: 2577–2637. doi: 10.1002/bip.360221211
    [36] Holm L, Sander C (1992) Evaluation of protein models by atomic solvation preference. J Mol Biol 225: 93–105. doi: 10.1016/0022-2836(92)91028-N
    [37] Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8: 127–134. doi: 10.1093/protein/8.2.127
    [38] Laskowski RA, Swindells MB (2011) LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery. J Chem Inf Model 51: 2778–2786. doi: 10.1021/ci200227u
    [39] Buck DK, Collins AA (2004) POV-Ray – The Persistence of Vision Raytracer.
    [40] Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Method Neurosci 25: 366–428. doi: 10.1016/S1043-9471(05)80049-7
    [41] Apweiler R, Bairoch A, Wu CH, et al. (2004) UniProt: the Universal Protein Knowledgebase. Nucleic Acids Res 32: 115–119. doi: 10.1093/nar/gkh151
    [42] Feng Z, Alqarni MH, Yang P, et al. (2014) Modeling, molecular dynamics simulation, and mutation validation for structure of cannabinoid receptor 2 based on known crystal structures of GPCRs. J Chem Inf Model 54: 2483–2499. doi: 10.1021/ci5002718
    [43] Kralj A, Kurt E, Tschammer N, et al. (2014) Synthesis and Biological Evaluation of Biphenyl Amides That Modulate the US28 Receptor. ChemMedChem 9: 151–168. doi: 10.1002/cmdc.201300369
    [44] Rodriguez D, Gutiérrez-de-Terán H (2012) Characterization of the homodimerization interface and functional hotspots of the CXCR4 chemokine receptor. Proteins 80: 1919–1928.
    [45] Dror RO, Arlow DH, Maragakis P, et al. (2011) Activation mechanism of the beta2-adrenergic receptor. Proc Natl Acad Sci U S A 108: 18684–18689. doi: 10.1073/pnas.1110499108
    [46] Rosenbaum DM, Zhang C, Lyons JA, et al. (2011) Structure and function of an irreversible agonist-beta2 adrenoceptor complex. Nature 469: 236–240. doi: 10.1038/nature09665
    [47] Deupi X, Kobilka B (2007) Activation of G Protein-Coupled Receptors. Mechanisms and Pathways of Heterotrimeric G Protein Signaling. Academic Press, 137–166.
    [48] Lodowski DT, Angel TE, Palczewski K (2009) Comparative Analysis of GPCR Crystal Structures. Photochem Photobiol 85: 425–430. doi: 10.1111/j.1751-1097.2008.00516.x
    [49] Venkatakrishnan AJ, Deupi X, Lebon G, et al. (2013) Molecular signatures of G-protein-coupled receptors. Nature 494: 185–194. doi: 10.1038/nature11896
    [50] Tehan BG, Bortolato A, Blaney FE, et al. (2014) Unifying family A GPCR theories of activation. Pharmacol Ther 143: 51–60. doi: 10.1016/j.pharmthera.2014.02.004
    [51] Yohannan S, Faham S, Yang D, et al. (2004) The evolution of transmembrane helix kinks and the structural diversity of G protein-coupled receptors. Proc Natl Acad Sci U S A 101: 959–963. doi: 10.1073/pnas.0306077101
    [52] Angel TE, Chance MR, Palczewski K (2009) Conserved waters mediate structural and functional activation of family A (rhodopsin-like) G protein-coupled receptors. Proc Natl Acad Sci U S A 106: 8555–8560. doi: 10.1073/pnas.0903545106
    [53] Angel TE, Gupta S, Jastrzebska B, et al. (2009) Structural waters define a functional channel mediating activation of the GPCR, rhodopsin. Proc Natl Acad Sci U S A 106: 14367–14372. doi: 10.1073/pnas.0901074106
    [54] Piirainen H, Ashok Y, Nanekar RT, et al. (2011) Structural features of adenosine receptors: From crystal to function. Biochim Biophys Acta - Biomembranes 1808: 1233–1244. doi: 10.1016/j.bbamem.2010.05.021
  • This article has been cited by:

    1. Yongqiang Zhao, Yanbin Tang, Approximation of solutions to integro-differential time fractional wave equations in $ L^{p}- $space, 2023, 18, 1556-1801, 1024, 10.3934/nhm.2023045
    2. Junlong Chen, Yanbin Tang, Homogenization of nonlinear nonlocal diffusion equation with periodic and stationary structure, 2023, 18, 1556-1801, 1118, 10.3934/nhm.2023049
    3. Yongqiang Zhao, Yanbin Tang, Critical behavior of a semilinear time fractional diffusion equation with forcing term depending on time and space, 2024, 178, 09600779, 114309, 10.1016/j.chaos.2023.114309
    4. Caihong Gu, Yanbin Tang, Well-posedness of Cauchy problem of fractional drift diffusion system in non-critical spaces with power-law nonlinearity, 2024, 13, 2191-950X, 10.1515/anona-2024-0023
    5. Yongqiang Zhao, Yanbin Tang, Approximation of solutions to integro-differential time fractional order parabolic equations in $L^{p}$-spaces, 2023, 2023, 1029-242X, 10.1186/s13660-023-03057-2
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(8468) PDF downloads(1425) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog