Citation: Graziella Orrù, Davide Bertelloni, Valentina Cesari, Ciro Conversano, Angelo Gemignani. Targeting temporal parietal junction for assessing and treating disembodiment phenomena: a systematic review of TMS effect on depersonalization and derealization disorders (DPD) and body illusions[J]. AIMS Neuroscience, 2021, 8(2): 181-194. doi: 10.3934/Neuroscience.2021009
[1] | Mars RB, Sallet J, Schüffelgen U, et al. (2012) Connectivity-based subdivisions of the human right “temporoparietal junction area”: evidence for different areas participating in different cortical networks. Cereb Cortex 22: 1894-1903. doi: 10.1093/cercor/bhr268 |
[2] | Blanke O, Landis T, Spinelli L, et al. (2004) Out-of-body experience and autoscopy of neurological origin. Brain 127: 243-258. doi: 10.1093/brain/awh040 |
[3] | Brugger P (2002) Reflective mirrors: perspective-taking in autoscopic phenomena. Cogn Neuropsychiatry 7: 179-194. doi: 10.1080/13546800244000076 |
[4] | Jeannerod M (2001) Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage 14: S103-S109. doi: 10.1006/nimg.2001.0832 |
[5] | Arzy S, Thut G, Mohr C, et al. (2006) Neural basis of embodiment: distinct contributions of temporoparietal junction and extrastriate body area. J Neurosci 26: 8074-8081. doi: 10.1523/JNEUROSCI.0745-06.2006 |
[6] | Michal M, Beutel ME, Grobe TG (2010) How often is the Depersonalization-Derealization Disorder (ICD-10: F48.1) diagnosed in the outpatient health-care service? Z Psychosom Med Psychother 56: 74-83. |
[7] | American Psychiatric Association (2013) Dissociative disorders. Diagnostic and Statistical Manual of Mental Disorders Arlington, VA: 291-308. |
[8] | Sierra M (2009) The symptoms of depersonalization. In: Depersonalization: a new look at a neglected syndrome Cambridge: Cambridge University Press, 24-43. doi: 10.1017/CBO9780511730023.003 |
[9] | Sedman G (1966) Depersonalization in a group of normal subjects. Br J Psychiatry 112: 907-912. doi: 10.1192/bjp.112.490.907 |
[10] | Sierra M, Medford N, Wyatt G, et al. (2012) Depersonalization disorder and anxiety: a special relationship? Psychiatry Res 197: 123-127. doi: 10.1016/j.psychres.2011.12.017 |
[11] | Devinsky O, Putnam F, Grafman J, et al. (1989) Dissociative states and epilepsy. Neurology 39: 835-835. doi: 10.1212/WNL.39.6.835 |
[12] | Ross CA, Keyes B (2004) Dissociation and schizophrenia. J Trauma Dissociation 5: 69-83. doi: 10.1300/J229v05n03_05 |
[13] | Daniels JK, Coupland NJ, Hegadoren K, et al. (2012) Neural and behavioral correlates of peritraumatic dissociation in an acutely traumatized sample. J Clin Psychiatry 73: 420-426. doi: 10.4088/JCP.10m06642 |
[14] | Penfield W, Rasmussen T (1950) The cerebral cortex of man; a clinical study of localization of function New York: MacMillan. |
[15] | Sierra M, Berrios GE (1998) Depersonalization: neurobiological perspectives. Bio psychiatry 44: 898-908. doi: 10.1016/S0006-3223(98)00015-8 |
[16] | Phillips ML, Medford N, Senior C, et al. (2001) Depersonalization disorder: thinking without feeling. Psychiatry Res 108: 145-160. doi: 10.1016/S0925-4927(01)00119-6 |
[17] | Medford N, Brierley B, Brammer M, et al. (2006) Emotional memory in depersonalization disorder: a functional MRI study. Psychiatry Res 148: 93-102. doi: 10.1016/j.pscychresns.2006.05.007 |
[18] | Edelman G, Tononi G (2008) A universe of consciousness how matter becomes imagination: How matter becomes imagination New York: Basic Books, 62-75. |
[19] | Botvinick M, Cohen J (1998) Rubber hands ‘feel’ touch that eyes see. Nature 391: 756. doi: 10.1038/35784 |
[20] | Blackmore S (1982) Beyond the body. An investigation of out-of-body experiences London: Heinemann, 1-8. |
[21] | Irwin HJ (1985) Flight of mind: a psychological study of the out-of-body experience Metuchen, NJ: Scarecrow Press, 5. |
[22] | Tsakiris M, Costantini M, Haggard P (2008) The role of the right temporo-parietal junction in maintaining a coherent sense of one's body. Neuropsychologia 46: 3014-3018. doi: 10.1016/j.neuropsychologia.2008.06.004 |
[23] | Cazzato V, Mele S, Urgesi C (2014) Gender differences in the neural underpinning of perceiving and appreciating the beauty of the body. Behav Brain Res 264: 188-196. doi: 10.1016/j.bbr.2014.02.001 |
[24] | Kluger BM, Triggs WJ (2007) Use of transcranial magnetic stimulation to influence behavior. Curr Neurol Neurosci Rep 7: 491-497. doi: 10.1007/s11910-007-0076-5 |
[25] | Rossini PM, Rossi S (2007) Transcranial magnetic stimulation: diagnostic, therapeutic, and research potential. Neurology 68: 484-488. doi: 10.1212/01.wnl.0000250268.13789.b2 |
[26] | Barker AT, Shields K (2017) Transcranial magnetic stimulation: basic principles and clinical applications in migraine. Headache 57: 517-524. doi: 10.1111/head.13002 |
[27] | Chen R, Classen J, Gerloff C, et al. (1997) Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48: 1398-1403. doi: 10.1212/WNL.48.5.1398 |
[28] | Pascual-Leone A, Valls-Solé J, Wassermann EM, et al. (1994) Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 117: 847-858. doi: 10.1093/brain/117.4.847 |
[29] | Lang N, Harms J, Weyh T, et al. (2006) Stimulus intensity and coil characteristics influence the efficacy of rTMS to suppress cortical excitability. Clin Neurophysiol 117: 2292-2301. doi: 10.1016/j.clinph.2006.05.030 |
[30] | Gangitano M, Valero-Cabré A, Tormos J M, et al. (2002) Modulation of input-output curves by low and high frequency repetitive transcranial magnetic stimulation of the motor cortex. Clin Neurophysiol 113: 1249-1257. doi: 10.1016/S1388-2457(02)00109-8 |
[31] | Lotze M (2010) Functional lesions of the motor system with TMS—a challenge for individual functional mapping. Restor Neurol Neurosci 28: 469-476. |
[32] | Speer AM, Kimbrell TA, Wassermann EM, et al. (2000) Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients. Biol Psychiatry 48: 1133-1141. doi: 10.1016/S0006-3223(00)01065-9 |
[33] | Ziemann U, Paulus W, Nitsche MA (2008) Consensus: Motor cortex plasticity protocols. Brain Stimul 1: 164-182. doi: 10.1016/j.brs.2008.06.006 |
[34] | Barker AT, Garnham CW, Freeston IL (1991) Magnetic nerve stimulation: the effect of waveform on efficiency, determination of neural membrane time constants and the measurement of stimulator output. Electroencephalogr Clin Neurophysiol Suppl 43: 227-237. |
[35] | Barker AT (1999) The history and basic principles of magnetic nerve stimulation. Electroencephalogr Clin Neurophysiol Suppl 51: 3-21. |
[36] | Bijsterbosch JD, Lee KH, Hunter MD, et al. (2013) The effect of head orientation on subarachnoid cerebrospinal fluid distribution and its implications for neurophysiological modulation and recording techniques. Physiol Meas 34: N9-N14. doi: 10.1088/0967-3334/34/3/N9 |
[37] | Orrù G, Baroni M, Cesari V, et al. (2019) The effect of single and repeated tDCS sessions on motor symptoms in Parkinson's disease: a systematic review. Arch Ital Boil 157: 89-101. |
[38] | Orrù G, Conversano C, Hitchcott PK, et al. (2020) Motor stroke recovery after tDCS: a systematic review. Rev Neurosci 31: 201-218. doi: 10.1515/revneuro-2019-0047 |
[39] | Orrù G, Cesari V, Conversano C, et al. (2020) The clinical application of transcranial direct current stimulation in patients with cerebellar ataxia: a systematic review. Int J Neurosci 7: 1-8. doi: 10.1080/00207454.2020.1750399 |
[40] | Orrù G, Cesari V, Baroni M, et al. (2020) Letter to the Editor: the application of transcranial direct current stimulation on phantom phenomena. Mediterr J Clin Psychol 8. |
[41] | Fitzgerald PB (2011) The emerging use of brain stimulation treatments for psychiatric disorders. Aust NZ J Psychiatry 45: 923-938. doi: 10.3109/00048674.2011.615294 |
[42] | Blanke O, Mohr C, Michel CM, et al. (2005) Linking out-of-body experience and self processing to mental own-body imagery at the temporoparietal junction. J Neurosci 25: 550-557. doi: 10.1523/JNEUROSCI.2612-04.2005 |
[43] | Mantovani A, Simeon D, Urban N, et al. (2011) Temporo-parietal junction stimulation in the treatment of depersonalization disorder. Psychiatry Res 186: 138-140. doi: 10.1016/j.psychres.2010.08.022 |
[44] | Christopeit M, Simeon D, Urban N, et al. (2014) Effects of repetitive transcranial magnetic stimulation (rTMS) on specific symptom clusters in depersonalization disorder (DPD). Brain Stimul 7: 141-143. doi: 10.1016/j.brs.2013.07.006 |
[45] | Jay EL, Sierra M, Van den Eynde F, et al. (2014) Testing a neurobiological model of depersonalization disorder using repetitive transcranial magnetic stimulation. Brain Stimul 7: 252-259. doi: 10.1016/j.brs.2013.12.002 |
[46] | Wulf L, Palm U, Padberg F (2019) Combined Therapies—rTMS meets CBT. Novel approach for the treatment of Derealization/Depersonalization Syndrome. L'Encéphale 45: S82. doi: 10.1016/j.encep.2019.04.046 |
[47] | Papeo L, Longo MR, Feurra M, et al. (2010) The role of the right temporoparietal junction in intersensory conflict: detection or resolution? Exp Brain Res 206: 129-139. doi: 10.1007/s00221-010-2198-2 |
[48] | Lemche E, Anilkumar A, Giampietro VP, et al. (2008) Cerebral and autonomic responses to emotional facial expressions in depersonalisation disorder. Br J Psychiatry 193: 222-228. doi: 10.1192/bjp.bp.107.044263 |
[49] | Hollander E, Carrasco JL, Mullen LS, et al. (1992) Left hemispheric activation in depersonalization disorder: a case report. Biol Psychiatry 31: 1157-1162. doi: 10.1016/0006-3223(92)90161-R |
[50] | Locatelli M, Bellodi L, Perna G, et al. (1993) EEG power modifications in panic disorder during a temporolimbic activation task: Relationships with temporal lobe clinical symptomatology. J Neuropsychiatry Clin Neurosci 5: 409-414. doi: 10.1176/jnp.5.4.409 |
[51] | Sierk A, Daniels JK, Manthey A, et al. (2018) White matter network alterations in patients with depersonalization/derealization disorder. J Psychiatry Neurosci 43: 347. doi: 10.1503/jpn.170110 |
[52] | Sierra M, Nestler S, Jay EL, et al. (2014) A structural MRI study of cortical thickness in depersonalisation disorder. Psychiatry Res 224: 1-7. doi: 10.1016/j.pscychresns.2014.06.007 |
[53] | Simeon D, Guralnik O, Hazlett EA, et al. (2000) Feeling unreal: a PET study of depersonalization disorder. Am J Psychiatry 157: 1782-1788. doi: 10.1176/appi.ajp.157.11.1782 |
[54] | Macaluso E, Frith CD, Driver J (2000) Modulation of human visual cortex by crossmodal spatial attention. Science 289: 1206-1208. doi: 10.1126/science.289.5482.1206 |
[55] | Friederici AD, Rüschemeyer SA, Hahne A, et al. (2003) The role of left inferior frontal and superior temporal cortex in sentence comprehension: localizing syntactic and semantic processes. Cere Cortex 13: 170-177. doi: 10.1093/cercor/13.2.170 |
[56] | Wei T, Liang X, He Y, et al. (2012) Predicting conceptual processing capacity from spontaneous neuronal activity of the left middle temporal gyrus. J Neurosci 32: 481-489. doi: 10.1523/JNEUROSCI.1953-11.2012 |
[57] | Mesulam MM (1998) From sensation to cognition. Brain 121: 1013-1052. doi: 10.1093/brain/121.6.1013 |
[58] | Visser M, Jefferies E, Embleton KV, et al. (2012) Both the middle temporal gyrus and the ventral anterior temporal area are crucial for multimodal semantic processing: distortion-corrected fMRI evidence for a double gradient of information convergence in the temporal lobes. J Cogn Neurosci 24: 1766-1778. doi: 10.1162/jocn_a_00244 |
[59] | Patterson K, Nestor PJ, Rogers TT (2007) Where do you know what you know? The representation of semantic knowledge in the human brain. Nat Rev Neurosci 8: 976-987. doi: 10.1038/nrn2277 |
[60] | Buchsbaum BR, Hickok G, Humphries C (2001) Role of left posterior superior temporal gyrus in phonological processing for speech perception and production. Cogn Sci 25: 663-678. doi: 10.1207/s15516709cog2505_2 |
[61] | Gruberger M, Levkovitz Y, Hendler T, et al. (2015) I think therefore I am: Rest-related prefrontal cortex neural activity is involved in generating the sense of self. Conscious Cogn 33: 414-421. doi: 10.1016/j.concog.2015.02.008 |
[62] | Davey J, Thompson HE, Hallam G, et al. (2016) Exploring the role of the posterior middle temporal gyrus in semantic cognition: Integration of anterior temporal lobe with executive processes. Neuroimage 137: 165-177. doi: 10.1016/j.neuroimage.2016.05.051 |