Citation: Tomas Godoy. A semilnear singular problem for the fractional laplacian[J]. AIMS Mathematics, 2018, 3(4): 464-484. doi: 10.3934/Math.2018.4.464
[1] | I. Bachar, H. Maagli and V. Rǎdulescu, Singular solutions of a nonlinear elliptic equation in a punctured domain, Electron. J. Qual. Theo., 94 (2017), 1-19. |
[2] | B. Barrios, I. De Bonis, M. Medina, et al. Semilinear problems for the fractional laplacian with a singular nonlinearity, Open Math., 13 (2015), 390-407. |
[3] | A. Callegari and A. Nachman, A nonlinear singular boundary-value problem in the theory of pseudoplastic fluids, SIAM J. Appl. Math., 38 (1980), 275-281. |
[4] | Z. Chen and R. Song, Estimates on Green functions and Poisson kernels for symmetric stable processes, Math. Ann., 312 (1998), 465-501. |
[5] | F. Cîrstea, M. Ghergu and V. Rǎdulescu, Combined effects of asymptotically linear and singular nonlinearities in bifurcation problems of Lane-Emden-Fowler type, J. Math. Pure. Appl., 84 (2005), 493-508. |
[6] | D. S. Cohen and H. B. Keller, Some positive problems suggested by nonlinear heat generators, J. Math. Mech., 16 (1967), 1361-1376. |
[7] | M. G. Crandall, P. H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Commun. Part. Diff. Eq., 2 (1977), 193-222. |
[8] | M. A. del Pino, A global estimate for the gradient in a singular elliptic boundary value problem, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 122 (1992), 341-352. |
[9] | J. I. Diaz, J. Hernandez and J. M. Rakotoson, On very weak positive solutions to some semilinear elliptic problems with simultaneous singular nonlinear and spatial dependence terms, Milan J. Math., 79 (2011), 233-245. |
[10] | J. Díaz, M. Morel and L. Oswald, An elliptic equation with singular nonlinearity, Commun. Part. Diff. Eq., 12 (1987), 1333-1344. |
[11] | E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, B. Sci. Math., 136 (2012), 521-573. |
[12] | A. Di Castro, T. Kuusi and G. Palatucci, Local behavior of fractional p-minimizers, ANN. I. H. POINCARE-AN, 33 (2016), 1279-1299. |
[13] | L. Dupaigne, M. Ghergu and V. Rǎdulescu, Lane-Emden-Fowler equations with convection and singular potential, J. Math. Pure. Appl., 87 (2007), 563-581. |
[14] | L. F. O. Faria, O. H. Miyagaki and D. Motreanu, Comparison and positive solutions for problems with the (p; q)-Laplacian and a convection term, Proceedings of the Edinburgh Mathematical Society (Series 2), 57 (2014), 687-698. |
[15] | W. Fulks and J. S. Maybee, A singular nonlinear equation, Osaka J. Math., 12 (1960), 1-19. |
[16] | A. Fiscella, R. Servadei and E. Valdinoci, Density properties for fractional Sobolev Spaces, Annales Academiae Scientiarum Fennicae. Mathematica, 40 (2015), 235-253. |
[17] | L. Gasiński and N. S. Papageorgiou, Nonlinear Elliptic Equations with Singular Terms and Combined Nonlinearities, Ann. Henri Poincaré, 13 (2012), 481-512. |
[18] | M. Ghergu, V. Liskevich and Z. Sobol, Singular solutions for second-order non-divergence type elliptic inequalities in punctured balls, J. Anal. Math., 123 (2014), 251-279. |
[19] | T. Godoy and A. Guerin, Multiplicity of positive weak solutions to subcritical singular elliptic Dirichlet problems, Electron. J. Qual. Theo., 100 (2017), 1-30. |
[20] | T. Godoy and A. Guerin, Multiple positive finite energy weak solutions to singular elliptic problems with a parameter, AIMS Mathematics, 3 (2018), 233-252. |
[21] | A. C. Lazer and P. J. McKenna, On a singular nonlinear elliptic boundary value problem, P. Am. Math. Soc., 111 (1991), 721-730. |
[22] | H. Maagli, Asymptotic behavior of positive solutions of a semilinear Dirichlet problem, Nonlinear Anal-Theor, 74 (2011), 2941-2947. |
[23] | H. Maagli, and M. Zribi, Existence and estimates of solutions for singular nonlinear elliptic problems, J. Math. Anal. Appl., 263 (2001), 522-542. |
[24] | N. S. Papageorgiou and G. Smyrlis, Nonlinear elliptic equations with singular reaction, Osaka J. Math., 53 (2016), 489-514. |
[25] | K. Ho, K. Perera, I. Sim, et al. A note on fractional p-Laplacian problems with singular weights, Journal of fixed point theory and its applications, 19 (2017), 157-173. |
[26] | V. D. Rǎdulescu, Singular phenomena in nonlinear elliptic problems. From blow-up boundary solutions to equations with singular nonlinearities, In: M. Chipot, Editor, Handbook of Differential Equations: Stationary Partial Differential Equations, North-Holland Elsevier Science, Amsterdam, 4 (2007), 483-593. |
[27] | X. Ros-Oton, Nonlocal elliptic equations in bounded domains: a survey, Publ. Mat., 60 (2016), 3-26. |
[28] | X. Ros-Oton and J. Serra, The Dirichlet problem fot the fractional laplacian: Regularity up to the boundary, J. Math. Pure. Appl., 101 (2014), 275-302. |
[29] | R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137. |
[30] | Z. Zhang, The asymptotic behaviour of the unique solution for the singular Lane-Emden-Fowler equation, J. Math. Anal. Appl., 312 (2005), 33-43. |