Research article Special Issues

Determinants for the adoption of ISO 14001: the case of Portuguese firms

  • Received: 24 October 2022 Revised: 11 December 2022 Accepted: 09 January 2023 Published: 14 February 2023
  • JEL Codes: D22, O30, Q50

  • Climate change and the consequent increase in society's environmental awareness have triggered new forms of pressure on companies and the way they face environmental sustainability. Hence, either by legal imposition or by other types of pressures, companies must incorporate the environmental impact of their activities into their responsibilities, without compromising their financial viability. Environmental certification is a common procedure for firms to improve their environmental performance, as well as increase their reputation and image. Notwithstanding, determinants for environmental certification are still poorly understood. Therefore, the present study aims to assess, from a sample of 1,917 Portuguese companies of various sectors and dimensions, the influence of some factors on the probability of a firm adopting the ISO 14001 certification. Results showed that the different variables used as measures of profitability of the firm have a positive impact on its probability of adopting ISO 14001. Other factors with the same effect include the participation of the firm in the stock market and the firm's size. This can be justified by a greater need for large firms to improve their reputation or to have access to some markets where this kind of certification is an obligation. However, it is also possible to observe a certain variation in results depending on the measures of profitability used. Another conclusion is that the fact that a firm is an exporter does not influence its probability to be certified in any of the specifications, something contrary to what has been found in the literature.

    Citation: Valter Franco, Susana Silva, Erika Laranjeira. Determinants for the adoption of ISO 14001: the case of Portuguese firms[J]. Green Finance, 2023, 5(1): 68-84. doi: 10.3934/GF.2023003

    Related Papers:

    [1] Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Thabet Abdeljawad, Kottakkaran Sooppy Nisar . Integral transforms of an extended generalized multi-index Bessel function. AIMS Mathematics, 2020, 5(6): 7531-7547. doi: 10.3934/math.2020482
    [2] Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Abdel-Haleem Abdel-Aty, Emad E. Mahmoud, Kottakkaran Sooppy Nisar . Estimation of generalized fractional integral operators with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(5): 4492-4506. doi: 10.3934/math.2021266
    [3] Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565
    [4] Sobia Rafeeq, Sabir Hussain, Jongsuk Ro . On fractional Bullen-type inequalities with applications. AIMS Mathematics, 2024, 9(9): 24590-24609. doi: 10.3934/math.20241198
    [5] Mustafa Gürbüz, Yakup Taşdan, Erhan Set . Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Mathematics, 2020, 5(1): 42-53. doi: 10.3934/math.2020004
    [6] Hari M. Srivastava, Artion Kashuri, Pshtiwan Othman Mohammed, Abdullah M. Alsharif, Juan L. G. Guirao . New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel. AIMS Mathematics, 2021, 6(10): 11167-11186. doi: 10.3934/math.2021648
    [7] Ghulam Farid, Maja Andrić, Maryam Saddiqa, Josip Pečarić, Chahn Yong Jung . Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions. AIMS Mathematics, 2020, 5(6): 7332-7349. doi: 10.3934/math.2020469
    [8] Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814
    [9] Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441
    [10] Muhammad Amer Latif, Humaira Kalsoom, Zareen A. Khan . Hermite-Hadamard-Fejér type fractional inequalities relating to a convex harmonic function and a positive symmetric increasing function. AIMS Mathematics, 2022, 7(3): 4176-4198. doi: 10.3934/math.2022232
  • Climate change and the consequent increase in society's environmental awareness have triggered new forms of pressure on companies and the way they face environmental sustainability. Hence, either by legal imposition or by other types of pressures, companies must incorporate the environmental impact of their activities into their responsibilities, without compromising their financial viability. Environmental certification is a common procedure for firms to improve their environmental performance, as well as increase their reputation and image. Notwithstanding, determinants for environmental certification are still poorly understood. Therefore, the present study aims to assess, from a sample of 1,917 Portuguese companies of various sectors and dimensions, the influence of some factors on the probability of a firm adopting the ISO 14001 certification. Results showed that the different variables used as measures of profitability of the firm have a positive impact on its probability of adopting ISO 14001. Other factors with the same effect include the participation of the firm in the stock market and the firm's size. This can be justified by a greater need for large firms to improve their reputation or to have access to some markets where this kind of certification is an obligation. However, it is also possible to observe a certain variation in results depending on the measures of profitability used. Another conclusion is that the fact that a firm is an exporter does not influence its probability to be certified in any of the specifications, something contrary to what has been found in the literature.



    Fractional calculus signifies the identity of the distinguished materials in the modern research field due to its integrated applications in diverse regions such as mathematical physics, fluid dynamics, mathematical biology, etc. Convex function, exponentially convex function [1,2,3,4,5], related inequalities like as trapezium inequality, Ostrowski's inequality and Hermite Hadamard inequality, integrals [6,7,8,9,10] having succeed in mathematical analysis, approximation theory due to immense applications [11,12] have great importance in mathematics theory. Many authors established quadrature rules in numerical analysis for approximate definite integrals. Recently, Pólya-Szegö and Chebyshev inequalities occupied immense space in the field analysis. Chebyshev [13] was introduced the well-known inequality called Chebyshev inequality.

    In the literature of convex function, the Jensen inequality has gained much importance which describes a connection between an integral of the convex function and the value of the convex function of an interval [14,15,16]. Pshtiwan and Thabet [17] considered the modified Hermite Hadamard inequality in the context of fractional calculus using the Riemann-Liouville fractional integrals. Arran and Pshtiwan [18] discussed the Hermite Hadamard inequality results with fractional integrals and derivatives using Mittag-Leffler kernel. Pshtiwan and Thabet [19] constructed a connection between the Riemann-Liouville fractional integrals of a function concerning a monotone function with nonsingular kernel and Atangana-Baleanu. Pshtiwan and Brevik [20] obtained an inequality of Hermite Hadamard type for Riemann-Liouville fractional integrals, and proved the application of obtained inequalities on modified Bessel functions and q-digamma function. In [21], Set et al. introduced Grüss type inequalities by employing generalized k-fractional integrals. Recently, Nisar et al. [22] gave some new generalized fractional integral inequalities.

    Very recently, the fractional conformable and proportional fractional integral operators were given in [23,24]. Later on, Huang et al. [25] gave Hermite–Hadamard type inequalities by using fractional conformable integrals (FCI). Qi et al. [26] investigated Čebyšev type inequalities involving FCI. The Chebyshev type inequalities and certain Minkowski's type inequalities are found in [27,28,29]. Nisar et al. [30] have investigated some new inequalities for a class of n  (nN) positive, continuous, and decreasing functions by employing FCI. Rahman et al. [31] introduced Grüss type inequalities for k-fractional conformable integrals.

    Some significant inequalities are given as applications of fractional integrals [32,33,34,35,36,37,38]. Recently, Rahman et al. [39,40] presented fractional integral inequalities involving tempered fractional integrals. Qiang et al. [41] discussed a fractional integral containing the Mittag-Leffler function in inequality theory and contributed Hadamard type inequality, continuity, and boundedness, upper bounds of that integral. Nisar et al. [42] established weighted fractional Pólya-Szegö and Chebyshev type integral inequalities by operating the generalized weighted fractional integral involving kernel function. The dynamical approach of fractional calculus [43,44,45,46,47,48,49] in the field of inequalities.

    Grüss inequality [50] established for two integrable function as follows

    |T(h,l)|(kK)(sS)4, (1.1)

    where the h and l are two integrable functions which are synchronous on [a,b] and satisfy:

    sh(z)K,sl(y1)S, z,y1[a,b] (1.2)

    for some s,k,S,KR.

    Pólya and Szegö [51] proved the inequalities

    bah2(z)dzabl2(z)dz(abh(z)l(z)dz)214(KSks+ksKS)2. (1.3)

    Dragomir and Diamond [52], proves the inequality by using the Pólya-szegö inequality

    |T(h,l)|(Ss)(Kk)4(ba)2skSKbah(z)l(z)dz (1.4)

    where h and l are two integrable functions which are synchronous on [a,b], and

    0<sh(z)S<,0<kl(y1)K<, z,y1[a,b] (1.5)

    for some s,k,S,KR.

    The aim of this paper is to estimate a new version of Pólya-Szegö inequality, Chebyshev integral inequality, and Hermite Hadamard type integral inequality by a fractional integral operator having a nonsingular function (generalized multi-index Bessel function) as a kernel, and these established results have great contribution in the field of inequalities. The Hermite Hadamard type integral inequality provides the upper and lower estimate to find the average integral for the convex function of any defined interval.

    The structure of the paper follows:

    In section 2, we present some well-known definitions and mathematical preliminaries. The new generalized fractional integral with nonsingular function as a kernel is defined in section 3. In section 4, we present Hermite Hadamard type Mercer inequality of new designed fractional integral operator with nonsingular function (generalized multi-index Bessel function) as a kernel. some inequalities of (sm)-preinvex function involving new designed fractional integral operator with nonsingular function (generalized multi-index Bessel function) as a kernel are presented in section 5. Here section 6 and 7, we present Pólya-Szegö and Chebyshev integral inequalities involving generalized fractional integral operator with nonsingular function as a kernel, respectively.

    Definition 2.1. The inequality holds for the convex function if a mapping g:KR exist as

    g(δy1+(1δ)y2)δg(y1)+(1δ)g(y2), (2.1)

    where y1,y2K and δ[0,1].

    Definition 2.2. The inequality derived by Hermite [53] call as Hermite Hadamard inequality

    g(y1+y22)1y2y1y2y1g(t)dtg(y1)+g(y2)2, (2.2)

    where y1,y2I, with y2y1, if g:IRR is a convex function.

    Definition 2.3. Let yjK for all jIn, ωj>0 such that jInωj=1. Then the Jensen inequality holds

    g(jInωjyj)jInωjg(yj), (2.3)

    exist if g:kR is convex function.

    Mercer [54] derived the Mercer inequality by applying the Jensen inequality and properties of convex function.

    Definition 2.4. Let yjK for all jIn, ωj>0 such that jInωj=1, m=minjIn{yj} and n=maxjIn{yj}. Then the inequality holds for convex function as

    g(m+niInωjyj)g(m)+g(n)jInωjg(yj), (2.4)

    if g:kR is convex function.

    Definition 2.5. [55] The inequality holds for exponentially convex function, if a real valued mapping g:KR exist as

    g(δy1+(1δ)y2)δg(y1)eθy1+(1δ)g(y2)eθy2, (2.5)

    where y1,y2K and δ[0,1] and θR.

    Suppose that ΩRn is a set. Let g:ΩR continuous function and let ξ:Ω×ΩRn be continuous function:

    Definition 2.6. [56] With respect to bifunction ξ(.,.) a set Ω is called a invex set, if

    y1+δξ(y2,y1), (2.6)

    where y1,y2Ω,δ[0,1].

    Definition 2.7. [57] A invex set Ω and a mapping g with respect to ξ(.,.) is called a preinvex function, as

    g(y1+δξ(y2,y1))(1δ)g(y1)+δg(y2), (2.7)

    where y1,y2+ξ(y2,y1)Ω,δ[0,1].

    Definition 2.8. A invex set Ω with real valued mapping g and respect to ξ(.,.) is called a exponentially preinvex, if the inequality

    g(y1+δξ(y2,y1))(1δ)g(y1)eθy1+δg(y2)eθy2, (2.8)

    where for all y1,y2+ξ(y2,y1)Ω,δ[0,1] and θR.

    Definition 2.9. A invex set Ω with real valued mapping g and respect to ξ(.,.) is called a exponentially s-preinvex, if

    g(y1+δξ(y2,y1))(1δ)sg(y1)eθy1+δsg(y2)eθy2, (2.9)

    where for all y1,y2+ξ(y2,y1)Ω,δ[0,1], s(0,1] and θR.

    Definition 2.10. A invex set Ω with real valued mapping g and respect to ξ(.,.) is called exponentially (s-m)-preinvex, if

    g(y1+mδξ(y2,y1))(1δ)sg(y1)eθy1+mδsg(y2)eθy2, (2.10)

    where for all y1,y2+ξ(y2,y1)Ω, δ,m[0,1] and θR.

    Definition 2.11. [58] Generalized multi-index Bessel function is defined by Choi et al as follows

    J(ξj)m,λ(δj)m,σ(z)=s=0(λ)σsmj=1Γ(ξjs+δj+1)(z)ss!, (2.11)

    where ξj,δj,λC, (j=1,,m), (λ)>0,(δj)>1,mj=1(ξ)j>max{0:(σ)1},σ>0.

    Definition 2.12. [58] Pohhammer symbol is defined for λC as follows

    (λ)s={λ(λ+1)(λ+s1),sN1,s=0, (2.12)
    =Γ(λ+s)Γ(λ),(λC/Z0) (2.13)

    where Γ being the Gamma function.

    This section presents a generalized fractional integral operator with a nonsingular function (multi-index Bessel function) as a kernel.

    Definition 3.1. Let ξj,δj,λ,ζC,(j=1,,m),(λ)>0,(δj)>1,mj=1(ξj)>max{0:(σ)1},σ>0. Let gL  [y1,y2] and t[y1,y2]. Then the corresponding left sided and right sided generalized integral operators having generalized multi-index Bessel function defined as:

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)=zy1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g(t)dt, (3.1)

    and

    (Œ(ξj,δj)mλ,σ,ζ;y2g)(z)=y2z(tz)δjJ(ξj)m,λ(δj)m,σ(ζ(tz)ξj)g(t)dt. (3.2)

    Remark 3.1. The special cases of generalized fractional integrals with nonsingular kernel are given below:

    1. If set j=m=1, σ=0 and limits from [0,z] in Eq (3.1), we get a fractional integral defined by Srivastava and Singh in [59] as

    (Œξ1,δ1λ,0,ζ;0+g)(z)=z0(zt)δ1Jξ1δ1(ζ(zt)ξ1)g(t)dt=f(z). (3.3)

    2. If set j=m=1, δ1=δ11 in Eq (3.1), we have a fractional integral defined by Srivastava and Tomovski in [60] as

    (Œξ1,δ11λ,σ,ζ;y+1g)(z)=(Eζ;λ,σy+1;ξ1,δ1g)(z). (3.4)

    3. If set j=m=1, δ1=δ11, ζ=0 in Eq (3.1), we get a Riemann-Liouville fractional integral operator defined in [61] as

    (Œξ1,δ1λ,σ,ζ;y+1g)(z)=(Iδ1y+1g)(z). (3.5)

    4. If set j=m=1, σ=1, δ1=δ11, in Eq (3.1) and Eq (3.2), we get the fractional integral operator defined by Prabhakar in [62] as follows

    (Œξ1,δ11λ,1,ζ;y+1g)(z)=E(ξ1,δ1;λ;ζ)g(z)=g(z) (3.6)
    (Œ(ξ1,δ11)λ,1,ζ;y2g)(z)=E(ξ1,δ1;λ;ζ)g(z). (3.7)

    Lemma 3.1. From generalized fractional integral operator, we have

    (Œ(ξj,δj)mλ,σ,ζ;y+11)(z)=zy1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)dt=zy1(zt)δjs=0(λ)σs(ζ)smj=1Γ(ξjs+δj+1)(zt)ξjss!dt=s=0(λ)σs(ζ)smj=1Γ(ξjs+δj+1)s!zy1(zt)ξjs+δjdt=(zy1)δj+1s=0(λ)σs(ζ)smj=1Γ(ξjs+δj+1)s!(zy1)ξjsξjs+δj+1. (3.8)

    Hence, the Eq (3.8) becomes

    (Œ(ξj,δj+1)mλ,σ,ζ;y+11)(z)=(zy1)δj+1J(ξj)m,λ(δj)m+1,σ(ζ(zy1)ξj), (3.9)

    and similarly we have

    (Œ(ξj,δj+1)mλ,σ,ζ;y21)(z)=(y2z)δj+1J(ξj)m,λ(δj)m+1,σ(ζ(y2z)ξj). (3.10)

    In this section, we derive Hermite Hadamard type Mercer inequality of new designed fractional integral operator in a generalized multi-index Bessel function using a kernel.

    Theorem 4.1. Let g:[m,n](0,) is convex function such that gχc(m,n), x,y[m,n] and the operator defined in Eq (5.2) in the form of left sense operator and Eq (3.2) in the form of right sense operator then we have

    g(m+nx+y2)g(m)+g(n)[J(ξj)m,λ(δj)m+1,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)] (4.1)
    g(m)+g(n)g(x)+g(y)2. (4.2)

    Proof. Consider the mercer inequality

    g(m+ny1+y22)g(m)+g(n)g(y1)+g(y2)2,y1,y2[m,n]. (4.3)

    Let x,y[m,n], t[z1,z], y1=(zt)x+(1z+t)y and y2=(1z+t)x+(zt)y then inequality (4.3) becomes

    g(m+ny1+y22)g(m)+g(n)g((zt)x+(1z+t)y)+g(1z+t)x+(zt)y)2. (4.4)

    Multiply both sides of Eq (4.4) by (zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj) and integrating with respect to t from [z1,z], we get

    J(ξj)m,λ(δj)m+1,σ(ζ)g(m+nx+y2)J(ξj)m,λ(δj)m+1,σ(ζ)[g(m)+g(n)]12[zz1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)×[g((zt)y1+(1z+t)y2)+g(1z+t)x+(zt)y2]]dt=J(ξj)m,λ(δj)m+1,σ(ζ)[g(m)+g(n)]12[yx(yuyx)δjJ(ξj)m,λ(δj)m,σ(ζ(yuyx)ξj)×g(u)(yx)du+xy(uxyx)δjJ(ξj)m,λ(δj)m,σ(ζ(uxyx)ξj)g(u)(yx)du]=J(ξj)m,λ(δj)m+1,σ(ζ)[g(m)+g(n)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)],

    we get the desired inequality, as

    g(m+nx+y2)g(m)+g(n)[J(ξj)m,λ(δj)m+1,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)]. (4.5)

    Thus, we get the inequality (4.1). Let t[z1,z]. From the convexity of function g we have

    g(x+y2)=g[(zt)x+(1z+t)y+(1z+t)x+(zt)y]2g((zt)x+(1z+t)y)+g((1z+t)x+(zt)y)2. (4.6)

    Both sides multiply of Eq (4.6) by (zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj) and integrating with respect to t from [z1,z], we obtain

    J(ξj)m,λ(δj)m,σ(ζ)g(x+y2)zz1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)×[g((zt)x+(1z+t)y)+g((1z+t)x+(zt)y)]dt=12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)].

    We get the inequality of negative sign

    g(x+y2)[J(ξj)m,λ(δj)m+1,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)]. (4.7)

    By adding g(m)+g(n) of both sides of inequality (4.7), we have

    g(m)+g(n)g(x+y2)g(m)+g(n)[J(ξj)m,λ(δj)m+1,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)].

    Hence, we get the inequality (4.2).

    Theorem 4.2. Let g:[m,n](0,) is convex function such that gχc(m,n) then we have the following inequalities:

    g(m+nx+y2)[J(ξj)m,λ(δj)m,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;(m+ny)+g(m+nx)+Œ(ξj,δj)mλ,σ,ζ;(m+nx)g(m+ny)]. (4.8)
    g(m+nx)+g(m+ny)2g(m)+g(n)g(m)+g(n)2. (4.9)

    Where x,y[m,n].

    Proof. We see that from the convexity of g as

    g(m+ny1+y22)=g(m+ny1+m+ny22)12[g(m+ny1)+g(m+ny2)],y1,y2[m,n]. (4.10)

    Let x,y[m,n], t[z1,z], m+ny1=(zt)(m+nx)+(1z+t)(m+ny), m+ny2=(1z+t)(m+nx)+(zt)(m+ny), then inequality (4.10) gives

    g(m+ny1+y22)12g[(zt)(m+nx)+(1z+t)(m+ny)]+12g[(1z+t)(m+nx)+(zt)(m+ny)], (4.11)

    multiply of both sides of inequality (4.11) by (zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj) then integrate with respect to t from [z1,z], we get

    J(ξj)m,λ(δj)m,σ(ζ)g(m+nx+y2)12zz1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g[(zt)(m+nx)+(1z+t)(m+ny)]dt+12zz1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g[(1z+t)(m+nx)+(zt)(m+ny)]dt=12(yx)[m+nxm+ny(u(m+ny)yx)δj)J(ξj)m,λ(δj)m,σ(ζ(u(m+ny)yx)ξj)g(u)du+m+nym+nx((m+ny)uyx)δj)J(ξj)m,λ(δj)m,σ(ζ((m+ny)uyx)ξj)g(u)du]=12(yx)[Œ(ξj,δj)mλ,σ,ζ;(m+ny)+g(m+nx)+Œ(ξj,δj)mλ,σ,ζ;(m+nx)g(m+ny)].

    Thus, we get the inequality (4.8)

    g(m+nx+y2)[J(ξj)m,λ(δj)m,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;(m+ny)+g(m+nx)+Œ(ξj,δj)mλ,σ,ζ;(m+nx)g(m+ny)].

    From the convexity of g, we obtain

    g((zt)(m+nx)+(1z+t)(m+ny))(zt)g(m+nx)+(1z+t)g(m+ny), (4.12)

    and

    g((1z+t)(m+nx)+(zt)(m+ny))(1z+t)g(m+nx)+(zt)g(m+ny). (4.13)

    Adding up the above inequalities and applying Jensen-Mercer inequality, we get

    g((zt)(m+nx)+(1z+t)(m+ny))+g((1z+t)(m+nx)+(zt)(m+ny))g(m+nx)+g(m+ny)2[g(m)+g(n)][g(x)+g(y)]. (4.14)

    Multiply both sides of inequality (4.14) by (zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj) and then integrating with respect to t from [z1,z] we obtain the two inequalities (4.9).

    In this section, we derive some inequalities of (sm) preinvex function involving new designed fractional integral operator Œ(ξj,δj)mλ,σ,ζg)(z) having generalized multi-index Bessel function as its kernel in the form of theorems.

    Theorem 5.1. Suppose a real valued function g:[y1,y1+ξ(y2,y1)]R be exponentially (s-m) preinvex function, then the following fractional inequality holds:

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[g(y1)eθ1y1+mg(z)eθ1z]+(y1+ξ(y2,y1)z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)[g(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+mg(z)eθ2z].

    z[y1,y1+ξ(y2,y1)], θ1,θ2R.

    Proof. Let z[y1,y1+ξ(y2,y1)], and then for t[y1,z) and δj>1, we have the subsequent inequality

    (zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj). (5.1)

    For g is exponentially (s-m)-preinvex function, we obtain

    g(t)(ztzy1)sg(y1)eθ1y1+m(ty1zy1)sg(z)eθ1z. (5.2)

    Taking product (5.1) and (5.2), and integrating with respect to t from y1 to z, we get

    zy1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g(t)dtzy1(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj)×[(ztzy1)sg(y1)eθ1y1+m(ty1zy1)sg(z)eθ1z]dt, (5.3)

    apply definition (13) in Eq (5.3), we have

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[g(y1)eθ1y1+mg(z)eθ1z]. (5.4)

    Analogously for t(z,y1+ξ(y2,y1)] and μj>1, we have

    (tz)μjJ(ξj)m,λ(μj)m,σ(ζ(tz)ξj)(y1+ξ(y2,y1)z)μjJ(ξj)m,λ(μj)m,σ(ζ(y1+ξ(y2,y1)z)ξj). (5.5)

    Further, the exponentially (s-m) convexity of g, we get

    g(t)(tzy1+ξ(y2,y1)z)sg(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+m(y1+ξ(y2,y1)ty1+ξ(y2,y1)z)sg(z)eθ2z. (5.6)

    Taking product of (5.5) and (5.6) and integrating with respect to t from z to y1+ξ(y2,y1), we have

    y1+ξ(y2,y1)z(tz)μjJ(ξj)m,λ(μj)m,σ(ζ(tz)ξj)g(t)dty1+ξ(y2,y1)z(y1+ξ(y2,y1)z)μjJ(ξj)m,λ(μj)m,σ(ζ(y1+ξ(y2,y1)z)ξj)×[(tzy1+ξ(y2,y1)z)sg(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+m(y1+ξ(y2,y1)ty1+ξ(y2,y1)z)sg(z)eθ2z]dt, (5.7)

    apply the definition (13) in inequality (5.7), we have

    (Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)(y1+ξ(y2,y1)z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)[g(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+mg(z)eθ2z]. (5.8)

    Now, add the inequalities (5.4) and (5.8), we get the result

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[g(y1)eθ1y1+mg(z)eθ1z]+(y1+ξ(y2,y1)z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)[g(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+mg(z)eθ2z].

    Corollary 5.1. If gL[y1,y1+ξ(y2,y1)], then under the assumption of theorem (5.1), we have

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)||g||s+1[(zy1)(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)(1eθ1y1+m1eθ1z)+(y1+η(y2,y1)z)(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)(1eθ2(y1+ξ(y2,y1))+m1eθ2z)].

    Corollary 5.2. Setting m=1 and gL[y1,y1+ξ(y2,y1)], then under the assumption of theorem (5.1), we have

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)||g||s+1[(zy1)(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)(1eθ1y1+m1eθ1z)+(y1+ξ(y2,y1)z)(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)(1eθ2(y1+ξ(y2,y1))+1eθ2z)].

    Corollary 5.3. Setting m=s=1 and gL[y1,y1+ξ(y2,y1)], then under the assumption of theorem (5.1), we have

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)||g||2[(zy1)(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)(1eθ1y1+m1eθ1z)+(y1+ξ(y2,y1)z)(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)(1eθ2(y1+ξ(y2,y1))+1eθ2z)].

    Corollary 5.4. Setting ξ(y2,y1)=y2y1 and gL[y1,y2], then under the assumption of theorem (5.1), we have

    (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)||g||s+1[(zy1)(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)(1eθ1y1+m1eθ1z)+(y2z)(Œ(ξj,μj)mλ,σ,ζ;y+21)(z)(1eθ2y2+1eθ2z)].

    Theorem 5.2. Suppose a real value function g:[y1,y1+ξ(y2,y1)]R is differentiable and |g| is exponentially (s-m) preinvex, then the following fractional inequality for (3.1) and (3.2) holds:

    |(Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(z)+(Œ(ξj)m,(μj1)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)[(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)]g(y1)[(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)]g(y1+ξ(y2,y1))|(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+m|g(z)|eθ1z]+((y1+ξ(y2,y1)z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)[|g(y1+ξ(y2,y1))|eθ1(y1+ξ(y2,y1))+m|g(z)|eθ1z].

    z[y1,y1+ξ(y2,y1)], θ1,θ2R.

    Proof. Let z[y1,y1+ξ(y2,y1)], t[y1,z), and applying exponentially (s-m) preinvex of |g|, we get

    |g(t)|(ztzy1)s|g(y1)|eθ1y1+m(ty1zx1)s|g(z)|eθ1z. (5.9)

    Get the inequality (5.9), we have

    g(t)(ztzy1)s|g(y1)|eθ1y1+m(ty1zy1)s|g(x)|eθ1z. (5.10)

    Subsequently inequality as:

    (zt)δjJ(ξj)m,λ(δj)m,k(ζ(zt)ξj)(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj). (5.11)

    Conducting product of inequality (5.10) and (5.11), we have

    (zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g(t)(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj)×[(ztzy1)s|g(y1)|eθ1y1+m(ty1zy1)s|g(x)|eθ1z], (5.12)

    integrating before mention inequality with respect to t from y1 to z, we have

    zy1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g(t)dtzy1(zy1)δjJ(ξj)m,λ(δj)m,k(ζ(zy1)ξj)[(ztzy1)s|g(y1)|eθ1y1+m(ty1zy1)s|g(z)|eθ1z]dt=(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+m|g(z)|eθ1z]. (5.13)

    Now, solving left side of (5.13) by putting zt=α, then we have

    zy1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g(t)dt=zy10αδjJ(ξj)m,λ(δj)m,σ(ζ(α)ξj)g(zα)dα=(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj)g(y1)+zy10αδj1J(ξj)m,λ(δj)m1,σ(ζ(α)ξj)g(zα)dα.

    Now, again subsisting zα=t, we get

    zy1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g(t)dt=zy1(zt)δj1J(ξj)m,λ(δj)m1,σ(ζ(zt)ξj)g(t)dt(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj)g(y1)=(Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(z)[(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)]g(y1).

    Therefore, the inequality (5.13) have the following form

    (Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(x)[(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)]g(y1)(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+m|g(z)|eθ1z]. (5.14)

    Also from (5.9), we get

    g(t)(ztzy1)s|g(y1)|eθ1y1m(ty1zy1)s|g(z)|eθ1z. (5.15)

    Adopting the same procedure as we have done for (5.10), we obtain

    (Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(z)[(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)]g(y1)(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+m|g(z)|eθ1z]. (5.16)

    From (5.14) and (5.16), we get

    |(Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(z)[(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)]g(y1)|(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+m|g(z)|eθ1z]. (5.17)

    Now, we let z[y1,y1+η(y2,y1)] and t(z,y1+ξ(y2,y1)], and by exponentially (s-m) preinvex of |g|, we get

    |g(t)|(tzy1+ξ(y2,y1)z)s|g(y1+ξ(y2,y1))|eθ2(y1+ξ(y2,y1))+m(y1+ξ(y2,y1)ty1+ξ(y2,y1)z)s|g(z)|eθ2z, (5.18)

    repeat the same procedure from Eq (5.9) to Eq (5.17), we get

    |(Œ(ξj)m,(μj1)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)[(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)]g(y1+ξ(y2,y1))|((y1+ξ(y2,y1)z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)[|g(y1+ξ(y2,y1))|eθ1(y1+ξ(y2,y1))+m|g(z)|eθ1z]. (5.19)

    From inequalities (5.17) and (5.19), we have

    |(Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(z)+(Œ(ξj)m,(μj1)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)[(Œ(ξj,δj)mλ,k,ζ;y+11)(z)]g(y1)[(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)]g(y1+ξ(y2,y1))|(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+m|g(z)|eθ1z]+((y1+ξ(y2,y1)z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)[|g(y1+ξ(y2,y1))|eθ1(y1+ξ(y2,y1))+m|g(z)|eθ1z].

    Corollary 5.5. Setting ξ(y2,y1)=y2y1, then under the assumption of theorem (5.2), we have

    |(Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(z)+(Œ(ξj)m,(μj1)mλ,σ,ζ;y2g)(z)[(Œ(ξj,δj)mλ,k,ζ;y+11)(z)]g(y1)[(Œ(ξj,μj)mλ,σ,ζ;y21)(z)]g(y2)|(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+m|g(z)|eθ1z]+(y2z)s+1(Œ(ξj,μj)mλ,σ,ζ;y21)(z)[|g(y2)|eθ1(y2)+m|g(z)|eθ1z].

    t[y1,y2], θ1,θ2R.

    Corollary 5.6. Setting ξ(y2,y1)=y2y1, along with m=s=1 then under the assumption of theorem (5.2), we have

    |(Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(z)+(Œ(ξj)m,(μj1)mλ,σ,ζ;y2g)(z)[(Œ(ξj,δj)mλ,k,ζ;y+11)(z)]g(y1)[(Œ(ξj,μj)mλ,σ,ζ;y21)(z)]g(y2)|(zy1)2(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+|g(z)|eθ1z]+(y2z)2(Œ(ξj,μj)mλ,σ,ζ;y21)(z)[|g(y2)|eθ1(y2)+|g(z)|eθ1z].

    t[y1,y2], θ1,θ2R.

    Definition 5.1. Let g:[y1,y1+ξ(y2,y1)]R is a function, and g is exponentially symmetric about 2y1+ξ(y2,y1)2 if

    g(z)eθz=g(2y1+ξ(y2,y1)z)eθ(2y1+ξ(y2,y1)z),θR. (5.20)

    Lemma 5.1. Let g:[y1,y1+ξ(y2,y1)]R be exponentially symmetric, then

    g(2y1+ξ(y2,y1)2)(1+m)g(z)2seθz,θR. (5.21)

    Proof. For g is exponentially (s-m) preinvex, therefore

    g(2y1+ξ(y2,y1)2)g(y1+δξ(y2,1))2seθ(y1+δξ(y2,y1))+mg(y1+(1δ)ξ(y2,y1))2seθ(y1+(1δ)ξ(y2,y1)). (5.22)

    Let t=y1+δξ(y2,y1), where t[y1,y1+ξ(y2,y1)], and then 2y1+ξ(y2,y1)=y1+(1δ)ξ(y2,y1), we have

    g(2y1+ξ(y2,y1)2)g(z)2seθz+mg(2y1+ξ(y2,y1)z)2seθ(2y1+ξ(y2,y1)z). (5.23)

    applying that g is exponentially symmetric, we obtain

    g(2y1+ξ(y2,y1)2)(1+m)g(z)2seθz. (5.24)

    Theorem 5.3. Suppose a real valued function g:[y1,y1+ξ(y2,y1)]R is exponentially (s-m) preinvex and symmetric about exponentially 2y1+ξ(y2,y1)2, then the following integral inequality for (3.1) and (3.2) holds:

    2s1+mf(2y1+ξ(y2,y1)2)[eθy1(Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(y1)+(Œ(μj,δj)mλ,σ,ζ;y+11)(y1+ξ(y2,y1))](Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)+(Œ(μj,τj)mλ,σ,ζ;y+1g)(y1+ξ(y2,y1))ξ(y2,y1)s+1(g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1)×[(Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(y1+ξ(y2,y1))]. (5.25)

    Proof. For z[y1,y1+ξ(y2,y1)], we have

    (zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj)(ξ(y2,y1))δjJ(ξj)m,λ(δj)m,σ(ζ(ξ(y2,y1))ξj), (5.26)

    the real value function g is exponentially (s-m) preinvex, then for z[y1,y1+ξ(y2,y1)], we get

    g(z)(zy1ξ(y2,y1))sg(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+m((y1+ξ(y2,y1)z)ξ(y2,y1))sg(y1)eθ1y1. (5.27)

    Conducting product of (5.26) and (5.27), and integrating with respect to z from y1 to y2, we get

    y2y1(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj)g(z)dzy2y1(ξ(y2,y1))δjJ(ξj)m,λ(δj)m,σ(ζ(ξ(y2,y1))ξj)×[(zy1ξ(y2,y1))sg(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+m((y1+ξ(y2,y1)z)ξ(y2,y1))sg(y1)eθ1y1]dz, (5.28)

    then we have

    (Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)(ξ(y2,y1))δjJ(ξj)m,λ(δj)m,σ(ζ(ξ(y2,y1))ξj)ξ(y2,y1)s+1[g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1]=(Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)ξ(y2,y1)s+1[g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1]. (5.29)

    Analogously for z[y1,y1+ξ(y2,y1)], we have

    (y1+ξ(y2,y1)z)μjJ(ξj)m,λ(μj)m,σ(ζ(zy1)ξj)(ξ(y2,y1))μjJ(ξj)m,λ(μj)m,σ(ζ(ξ(y2,y1))ξj). (5.30)

    Conducting product of (5.27) and (5.30), and integrating with respect to z from y1 to y2, we have

    y2y1(y1+ξ(y2,y1)z)μjJ(ξj)m,λ(μj)m,σ(ζ(zy1)ξj)g(z)dzy2y1(ξ(y2,y1))μjJ(ξj)m,λ(μj)m,σ(ζ(ξ(y2,y1))ξj)[(zy1ξ(y2,y1))sg(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+m((y1+ξ(y2,y1)z)ξ(y2,y1))sg(y1)eθ1y1]dz=(ξ(y2,y1))μjJ(ξj)m,λ(μj)m,σ(ζ(ξ(y2,y1))ξj)ξ(y2,y1)s+1[g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1],

    then

    (Œ(ξj,μj)mλ,σ,ζ;y+1g)(z)(Œ(ξj,μj)mλ,σ;(y1+ξ(y2,y1))1)(y1+ξ(y2,y1))ξ(y2,y1)s+1[g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1]. (5.31)

    Summing (5.29) and (5.31), we obtain

    (Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)+(Œ(ξj,μj)mλ,σ,ζ;y+1g)(z)ξ(y2,y1)s+1(g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1)[(Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(y1+ξ(y2,y1))]. (5.32)

    Take the product of Eq (5.21) with (zy1)τjJ(μj)m,λ(τj)m,σ(ζ(zy1)μj) and integrating with respect to t from y1 to y2, we have

    g(2y1+ξ(y2,y1)2)y2y1(zy1)τjJ(μj)m,λ(τj)m,σ(ζ(zy1)μj)dz(1+m)2sy2y1(zy1)τjJ(μj)m,λ(τj)m,σ(ζ(zy1)μj)g(z)eθzdz (5.33)

    using definition (13), we have

    g(2y1+ξ(y2,y1)2)(Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(y1)(1+m)2seθy1(Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z). (5.34)

    Taking product (5.21) with (y1+ξ(y2,y1)z)δjJ(μj)m,λ(δj)m,σ(ζ(y1+ξ(y2,y1)z)μj) and integrating with respect to variable z from y1 to y2, we have

    g(2y1+ξ(y2,y1)2)(Œ(μj,δj)mλ,σ,ζ;y+11)(y1+ξ(y2,y1))(1+m)2seθ1(y1+ξ(y2,y1))(Œ(μj,τj)mλ,σ,ζ;y+1g)(y1+ξ(y2,y1)). (5.35)

    Summing up (5.34) and (5.35), we get

    2s1+mg(2y1+ξ(y2,y1)2)[eθy1(Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(y1)+(Œ(μj,δj)mλ,σ,ζ;y+11)(y1+ξ(y2,y1))](Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)+(Œ(μj,τj)mλ,σ,ζ;y+1g)(y1+ξ(y2,y1)). (5.36)

    Now, combining (5.32) and (5.36), we get inequality

    2s1+mg(2y1+ξ(y2,y1)2)[eθy1(Œ(μj,τj)mλ,σ,ζ;(y1+η(y2,y1))1)(y1)+(Œ(μj,δj)mλ,σ,ζ;y+11)(y1+ξ(y2,y1))](Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)+(Œ(μj,τj)mλ,σ,ζ;y+1g)(y1+ξ(y2,y1))ξ(y2,y1)s+1(g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1)×[(Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(y1+ξ(y2,y1))].

    Corollary 5.7. Setting ξ(y2,y1)=y2y1, then under the assumption of theorem (5.3), we have

    2s1+mg(y1+y22)[eθy1(Œ(μj,τj)mλ,σ,ζ;y21)(y1)+(Œ(μj,δj)mλ,σ,ζ;y+11)(y2)](Œ(μj,τj)mλ,σ,ζ;y2g)(z)+(Œ(μj,τj)mλ,σ,ζ;y+1g)(y2)(y2y1)s+1(g(y2y1)eθ1(y2y1)+mg(y1)eθ1y1)×[(Œ(ξj,δj)mλ,σ,ζ;y21)(z)+(Œ(ξj,μj)mλ,σ,ζ;y21)(y2)]. (5.37)

    In this section, we derive some Pólya-Szegö inequalities for four positive integrable functions having fractional operator Œ(ξj,δj)mλ,σ(z) in the form of theorems.

    Theorem 6.1. Let h and l are integrable functions on [y1,). Suppose that there exist integrable functions θ1,θ2,ψ1 and ψ2 on [y1,) such that:

    (R1) 0<θ1(b)h(b)θ2(b),0<ψ1(b)l(b)ψ2(b) (b[y1,z],z>y1).

    Then, for z>y1,y10, ξj,δj,λC,(j=1,,m),(λ)>0,(δj)>1,mj=1(ξ)j>max{0:(σ)1},σ>0 and (zb)Ω, then the following inequalities hold:

    Œ(ξj,δj)mλ,σ,ζ;y1+[(ψ1ψ2)h2](z)Œ(ξj,δj)mλ,σ,ζ;y+1[(θ1θ2)l2](z)[Œ(ξj,δj)mλ,σ,ζ;y+1[(θ1ψ1+θ2ψ2)hl](z)]214. (6.1)

    Proof. From (R1), for b[y1,z], z>y1, we have

    h(b)l(b)θ2(b)ψ1(b), (6.2)

    the inequality write as

    (θ2(b)ψ1(b)h(b)l(b))0. (6.3)

    Similarly, we get

    θ1(b)ψ2(b)h(b)l(b), (6.4)

    thus

    (h(b)l(bθ1(b)ψ2(b))0. (6.5)

    Multiplying Eq (6.3) and Eq (6.5), it follows

    (θ2(b)ψ1(b)h(b)l(b))(h(b)l(b)θ1(b)ψ2(b))0, (6.6)

    i.e.

    (θ2(b)ψ1(b)+θ1(b)ψ2(b))h(b)l(b)h2(b)l2(b)+θ1(b)θ2(b)ψ1(b)ψ2(b). (6.7)

    The last inequality can be written as

    (θ1(b)ψ1(b)+θ2(b)ψ2(b))h(b)l(b)ψ1(b)ψ2(b)h2(b)+θ1(b)θ2(b)l2(b). (6.8)

    Consequently, multiply both sides of (6.8) by (y1b)δjJ(ξj)m,λ(δj)m,σ(ζ(y1b)ξj), (zb)Ω and integrating with respect to b from y1 to z, we get

    Œ(ξj,δj)mλ,σ,ζ;y1+[(θ1ψ1+θ2ψ2)hl](z)Œ(ξj,δj)mλ,σ,ζ;y1+[ψ1ψ2h2](z)+Œ(ξj,δj)mλ,σ,ζ;y1+[θ1θ2l2](z). (6.9)

    Besides, by AM-GM (arithmetic mean- geometric mean) inequality, i.e., a1+b12a1b1 a1,b1+, we get

    Œ(ξj,δj)mλ,σ,ζ;y1+[(θ1ψ1+θ2ψ2)hl](x)2Œ(ξj,δj)mλ,σ,ζ;y1+[ψ1ψ2h2](z)+Œ(ξj,δj)mλ,σ,ζ;y1+[θ1θ2l2](z), (6.10)

    and it follows straightforward the statement of Eq (6.1).

    Corollary 6.1.. Let h and l be two integrable functions on [0,) and satisfying the inequality

    (R2) 0<sh(b)S,0<kl(b)K(b[y1,τ],z>y1). (6.11)

    For z>y1,y10, ξj,δj,λC,(j=1,,m),(λ)>0,(δj)>1,mj=1(ξ)j>max{0:(σ)1},σ>0 and (zb)Ω, then the following inequalities hold:

    Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[l2](z)(Œ(ξj,δj)mλ,σ,ζ;y1+[hl](z))214(SKsk+skSK)2. (6.12)

    Theorem 6.2. Let h and l are positive integrable functions on [y1,). Suppose that there exist integrable functions θ1,θ2,ψ1 and ψ2 on [y1,) satisfying (R1) on [y1,). Then, for z>y1,y10, ξj,δj,λC,(j=1,,m),(λ)>0,(δj)>1,mj=1(ξ)j>max{0:(σ)1},σ>0 and (zb),(τz)Ω, then the following inequalities hold:

    Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(ξj,δj)mλ,σ,ζ;y2[ψ1ψ2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[θ1θ2](z)Œ(ξj,δj)mλ,σ,ζ;y2[l2](z)[Œ(ξj,δj)mλ,σ,ζ;y1+[θ1h](z)Œ(ξj,δj)mλ,σ,ζ;y2[ψ1h](z)+Œ(ξj,δj)mλ,σ,ζ;y1+[θ2h](z)Œ(ξj,δj)mλ,σ,ζ;y2[ψ2l](z)]214. (6.13)

    Proof. By condition (R1), it is clear that

    (θ2(b)ψ1(α)h(b)l(α))0, (6.14)

    and

    (h(b)l(α)θ1(b)ψ2(α))0, (6.15)

    these inequalities implies that

    (θ1(b)ψ2(α)+θ2(b)ψ1(α))h(b)l(α)h2(b)l2(α)+θ1(b)θ2(b)ψ1(α)ψ2(α). (6.16)

    The Eq (6.16), multiply by ψ1(α)ψ2(α)l2(α) of both sides, we have

    θ1(b)h(b)ψ1(α)l(α)+θ2(b)h(b)ψ2(α)l(α)ψ1(α)ψ2(α)h2(b)+θ1(b)θ2(b)l2(α). (6.17)

    Hence, the Eq (6.17) multiply both sides by

    (zb)δjJ(ξj)m,λ(δj)m,σ(ζ(zb)ξj),(αz)δjJ(ξj)m,λ(δj)m,σ(ζ(αz)ξj). (6.18)

    And integrating double with respect to b and α from y1 to z and z to y2 respectively, we have

    Œ(ξj,δj)mλ,σ,ζ;y1+[θ1h](z)Œ(ξj,δj)mλ,σ,ζ;y2[ψ1l](z)+Œ(ξj,δj)mλ,σ,ζ;y1+[θ2h](z)Œ(ξj,δj)mλ,σ,ζ;y2[ψ2l](z)Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(ξj,δj)mλ,σ,ζ;y2[ψ1ψ2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[θ1θ2](z)Œ(ξj,δj)mλ,σ,ζ;y2[l2](z). (6.19)

    At last, we come to Eq (6.13) by using the arithmetic and geometric mean inequality to the upper inequality.

    Theorem 6.3. Let h and l are integrable functions on [y1,). Suppose that there exist integrable functions θ1,θ2,ψ1 and ψ2 on [y1,) satisfying (R1) on [y1,). Then, for z>y1,y10, ξj,δj,λC,(j=1,,m),(λ)>0,(δj)>1,mj=1(ξ)j>max{0:(σ)1},σ>0 and (zb),(αz)Ω, then the following inequalities hold:

    Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(ξj,δj)mλ,σ,ζ;y2[l2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[(θ2hl)/ψ1](z)Œ(ξj,δj)mλ,σ,ζ;y2[(ψ2hl)/θ1]. (6.20)

    Proof. We have for any (zb),(αz)Ω, from Eq (6.2), thus

    zy1(zb)δjJ(ξj,δj)mλ,σ(ζ(zb)ξj)h2(b)dby1z(αz)ξjJ(ξj,δj)mλ,σ(ζ(αz)ξj)θ2(α)ψ1(α)h(α)l(α)dα,

    which implies

    Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[(θ2hl)/ψ1](z). (6.21)

    and analogously, by Eq (6.4), we get

    Œ(ξj,δj)mλ,σ,ζ;y2[l2](x)Œ(ξj,δj)mλ,σ,ζ;y2[(ψ2hl)/θ1](z), (6.22)

    hence, by multiplying Eq (6.21) and Eq (6.22), follow Eq (6.20).

    Corollary 6.2. Let h and l be integrable functions on [y1,) satisfying (R2). Then, for z>y1,y10, ξj,δj,λC,(j=1,,m),(λ)>0,(δj)>1,mj=1(ξ)j>max{0:(σ)1},σ>0 and (zb),(αz)Ω, we obtain

    Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(ξj,δj)mλ,σ,ζ;y2[l2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[hl](z)Œ(ξj,δj)mλ,σ,ζ;y2[hl](z)SKsk. (6.23)

    In this section, Chebyshev type integral inequalities established involving the fractional operator Œ(ξj,δj)mλ,σ(z) and using the Pólya-Szegö fractional integral inequalities of theorem (6.1) in the form of theorem, and then discuss its corollary.

    Theorem 7.1. Let h and l be integrable functions on [y1,), and suppose that there exist integrable functions θ1,θ2,ψ1 and ψ2 on [y1,) satisfying (R1). Then, for z>y1,y10, ξj,δj,λC,(j=1,,m),(λ)>0,(δj)>1,mj=1(ξ)j>max{0:(σ)1},σ>0 and (zb)(αz)Ω the following inequality hold:

    |Œ(ξj,δj)mλ,σ,ζ;y1+[hl](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+Œ(νj,μj)mλ,σ,ζ;y2[hl](z)Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)Œ(ξj,δj)mλ,σ,ζ;y1+[h](z)Œ(νj,μj)mλ,σ,ζ;y2[l](z)Œ(ξj,δj)mλ,σ,ζ;y1+[l](z)Œ(νj,μj)mλ,σ,ζ;y2[h](z)|2[Gy1,y2(h,θ1,θ2)Gy1,y2(l,ψ1,ψ2)]12. (7.1)

    where

    Gy1,y2(b,y,x)(z)=18[Œ(ξj,δj)mλ,σ,ζ;y1+[(y+x)b](z)]2Œ(ξj,δj)mλ,σ,ζ;y1+[yx](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+18[Œ(νj,μj)mλ,σ,ζ;y2[(y+x)b](z)]2Œ(μj,νj)mλ,σ,ζ;y2[yx](z)Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)Œ(ξj,δj)mλ,σ,ζ;y1+[b](z)Œ(νj,μj)mλ,σ,ζ;y2[b](z).

    Proof. For (b,α)(y1,z) (z>y1), we defined A(b,α)=(h(b)h(α))(l(b)l(α)) which is the same

    A(b,α)=h(b)l(b)+h(α)l(α)h(b)l(α)h(α)l(b). (7.2)

    Further, the Eq (7.2), multiply both sides by

    (zb)ξjJ(ξj,δj)mλ,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj), (7.3)

    and integrating double with respect to b and α from y1 to z and z to y2 respectively, we get

    zy1y2z(zb)ξjJ(ξj,δj)mλ,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)A(b,α)dbdα=zy1(zb)ξjJ(ξj,δj)mλ,σ(ζ(zb)δj)h(b)l(b)dby2z(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)dα+zy1(zb)ξjJ(ξj,δj)mλ,σ(ζ(zb)δj)dby2z(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)h(α)l(α)dαy1z(zb)ξjJ(ξj,δj)mλ,σ(ζ(zb)δj)h(b)dby2z(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)h(α)dαy1z(zb)ξjJ(ξj,δj)mλ,σ(ζ(zb)δj)l(b)dby2z(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)h(α)dα=Œ(ξj,δj)mλ,σ,ζ;y1+[hl](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)Œ(νj,μj)mλ,σ,ζ;y2[hl](z)Œ(ξj,δj)mλ,σ,ζ;y1+[h](z)Œ(νj,μj)mλ,σ,ζ;y2[l](z)Œ(ξj,δj)mλ,σ,ζ;y1+[l](z)Œ(νj,μj)mλ,σ,ζ;y2[h](z). (7.4)

    Now, applying Cauchy-Schwartz inequality for integrals, we get

    |zy1y2z(zb)ξjJ(ξj)m,λ(δj)m,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)A(b,α)dbdα|(zy1y2z(zb)ξjJ(ξj)m,λ(δj)m,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)α[h(b)]2dbdα+zy1y2z(zb)ξjJ(ξj)m,λ(δj)m,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)[h(α)]2dbdα2zy1y2z(zb)ξjJ(ξj)m,λ(δj)m,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)h(b)h(α)dbdα)1/2×(zy1y2z(zb)ξjJ(ξj)m,λ(δj)m,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)α[l(b)]2dbdα+zy1y2z(zb)ξjJ(ξj)m,λ(δj)m,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)[l(α)]2dbdα2zy1y2z(zb)ξjJ(ξj)m,λ(δj)m,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)l(b)l(α)dbdα)1/2, (7.5)

    it follow as

    |zy1y2z(zb)ξjJ(ξj)m,λ(δj)m,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)A(b,α)dbdα|2{1/2Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+1/2Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)Œ(νj,μj)mλ,σ,ζ;y2[h2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[h](z)Œ(νj,μj)mλ,σ,ζ;y2[h](z)}1/2×{1/2Œ(ξj,δj)mλ,σ,ζ;y1+[l2](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+1/2Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)Œ(νj,μj)mλ,σ,ζ;y2[l2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[l](z)Œ(νj,μj)mλ,σ,ζ;y2[l](z)}1/2. (7.6)

    By applying lemma (6.1) for ψ1(z)=ψ2(z)=l(z)=1, we get for any J(ξj,δj)mλ,σ(z)δjΩ

    Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)14[Œ(ξj,δj)mλ,σ,ζ;y+1[(θ1+θ2)h](z)]2Œ(ξj,δj)mλ,σ,ζ;y+1[(θ1θ2)](z), (7.7)

    this implies

    1/2Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+1/2Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)Œ(νj,μj)mλ,σ,ζ;y2[h2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[h](z)Œ(νj,μj)mλ,σ,ζ;y2[h](z)18[Œ(ξj,δj)mλ,σ,ζ;y+1[(θ1+θ2)h](z)]2Œ(ξj,δj)mλ,σ,ζ;y+1[(θ1θ2)](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+18Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)[Œ(νj,μj)mλ,σ,ζ;y+1[(θ1+θ2)h](z)]2Œ(νj,μj)mλ,σ,ζ;y+1[(θ1θ2)](z)Œ(ξj,δj)mλ,σ,ζ;y1+[h](z)Œ(νj,μj)mλ,σ,ζ;y2[h](z)=Gy1,y2(h,θ1,θ2). (7.8)

    Analogously, it is clear when θ1(z)=θ2(z)=h(z)=1, according to Lemma (6.1), we get

    1/2Œ(ξj,δj)mλ,σ,ζ;y1+[l2](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+1/2Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)Œ(νj,μj)mλ,σ,ζ;y2[l2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[l](z)Œ(νj,μj)mλ,σ,ζ;y2[l](x)18[Œ(ξj,δj)mλ,σ,ζ;y+1[(ψ1+ψ2)l](z)]2Œ(ξj,δj)mλ,σ,ζ;y+1[(ψ1ψ2)](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+18Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)[Œ(νj,μj)mλ,σ,ζ;y+1[(ψ1+ψ2)l](z)]2Œ(νj,μj)mλ,σ,ζ;y+1[(ψ1ψ2)](z)Œ(ξj,δj)mλ,σ,ζ;y1+[l](z)Œ(νj,μj)mλ,σ,ζ;y2[l](z)=Gy1,y2(l,ψ1,ψ2). (7.9)

    Thus, by resulting Eqs (7.4), (7.6), (7.8) and (7.9), we get the desired inequality (7.1).

    Corollary 7.1. Let h and l be integrable functions on [y1,), suppose that there exist integrable functions θ1,θ2,ψ1 and ψ2 on [y1,) satisfying (R1). Then, for z>y1,y10, ξj,δj,λC,(j=1,,m),(λ)>0,(δj)>1,mj=1(ξ)j>max{0:(σ)1},σ>0 and (zb),(αz)Ω the following inequalities hold:

    |Œ(ξj,δj)mλ,σ,ζ;y1+[hl](z)Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)Œ(ξj,δj)mλ,σ,ζ;y1+[h](z)Œ(ξj,δj)mλ,σ,ζ;y1+[l](z)|[Gy1,y2(h,θ1,θ2)Gy1,y1(l,θ1,θ2)]12,

    where

    Gy1,y1(b,y,x)(z)=14[Œ(ξj,δj)mλ,σ,ζ;y1+[(y+x)b](z)]2Œ(ξj,δj)mλ,σ,ζ;y1+[yx](z)Œ(ξj,δj)mλ,σ,ζ;y1+[1](Œ(ξj,δj)mλ,σ,ζ;y1+[b](z))2.

    This article analyzed the generalized fractional integral operator having nonsingular function (generalized multi-index Bessel function) as kernel and developed a new version of inequalities. We estimate some inequalities (Hermite Hadamard type Mercer inequality, exponentially (sm) preinvex inequality, Pólya-Szegö type integral inequality and the Chebyshev type inequality) with the generalized fractional integral operator in which nonsingular function as the kernel. Introducing the new version of inequalities of newly constricted operators have strengthened the idea and results.

    The authors declare that they have no competing interest.



    [1] Arocena P, Orcos R, Zouaghi, F (2021) The impact of ISO 14001 on firm environmental and economic performance: The moderating role of size and environmental awareness. Bus Strategy Environ 30: 955–967. https://doi.org/10.1002/bse.2663 doi: 10.1002/bse.2663
    [2] Brunnermeier SB, Cohen MA (2003) Determinants of environmental innovation in US manufacturing industries. J Environ Econ Manage 45: 278–293. https://doi.org/10.1016/S0095-0696(02)00058-X doi: 10.1016/S0095-0696(02)00058-X
    [3] Camilleri MA (2022). The rationale for ISO 14001 certification: A systematic review and a cost–benefit analysis. Corp Soc Resp Environ Manage 29: 1067–1083. https://doi.org/10.1002/csr.2254 doi: 10.1002/csr.2254
    [4] Certificação de PME-Decreto-Lei n.º 372/2007. Available from: https://data.dre.pt/eli/dec-lei/372/2007/11/06/p/dre/pt/html
    [5] Christmann P, Taylor G (2001) Globalization and the Environment: Determinants of Firm Self-Regulation in China. J Int Bus Stud 32: 439–458. https://doi.org/10.1057/palgrave.jibs.8490976 doi: 10.1057/palgrave.jibs.8490976
    [6] Cushing K, McGray H, Lu H (2005) Understanding ISO 14001 Adoption and Implementation in China. Int J Environ Sustain Dev 4: 246–68. https://doi.org/10.1504/IJESD.2005.007740 doi: 10.1504/IJESD.2005.007740
    [7] DAdamo I (2022) The analytic hierarchy process as an innovative way to enable stakeholder engagement for sustainability reporting in the food industry. Environ Dev Sustain https://doi.org/10.1007/s10668-022-02700-0 doi: 10.1007/s10668-022-02700-0
    [8] Darnall N, Henriques I, Sadorsky P (2008) Do environmental management systems improve business performance in an international setting? J Int Manag 14: 364–376. https://doi.org/10.1016/j.intman.2007.09.006 doi: 10.1016/j.intman.2007.09.006
    [9] DeCanio SJ, Watkins WE (1998) Investment in energy efficiency: do the characteristics of firms matter? Rev Econ Stat 80: 95–107.
    [10] De Jong P, Paulraj A, Blome C (2014) The Financial Impact of ISO 14001 Certification: Top-Line, Bottom-Line, or Both? J Bus Ethics 119: 131–149. https://doi.org/10.1007/s10551-012-1604-z doi: 10.1007/s10551-012-1604-z
    [11] Ferron RT, Funchal B, Nossa V, et al. (2012) Is ISO 14001 certification effective? An experimental analysis of firm profitability. BAR-Brazilian Administration Rev 9: 78–94. https://doi.org/10.1590/S1807-76922012000500006 doi: 10.1590/S1807-76922012000500006
    [12] Fikru MG (2014) Firm Level Determinants of International Certification: Evidence from Ethiopia. World Dev 64: 286–297. https://doi.org/10.1016/j.worlddev.2014.06.016 doi: 10.1016/j.worlddev.2014.06.016
    [13] Frondel M, Kratschell K, Zwick L (2018) Environmental management systems: does certification pay? Econ Anal Policy 59: 14–24. https://doi.org/10.1016/j.eap.2018.02.006 doi: 10.1016/j.eap.2018.02.006
    [14] Hang M, Geyer-Klingeberg J, Rathgeber AW (2019) It is merely a matter of time: a meta-analysis of the causality between environmental performance and financial performance. Bus Strateg Environ 28: 257–273. https://doi.org/10.1002/bse.2215 doi: 10.1002/bse.2215
    [15] Hartman R, Huq M, Wheeler D (1997) Why Paper Mills Clean Up: Determinants of Pollution Abatement in four Asian Countries. Policy Research Working Paper 1710, Washington, D.C.: World Bank.
    [16] Henriques I, Sadorsky P (1996) The determinants of an environmentally responsive firm: an empirical approach. J Environ Econ manag 30: 381–395.
    [17] Heras-Saizarbitoria I, Molina-Azorin JF, Dick GPM (2011) ISO 14001 certification and financial performance: selection-effect versus treatment-effect. J Clean Prod 19: 1–12. https://doi.org/10.1016/j.jclepro.2010.09.002. doi: 10.1016/j.jclepro.2010.09.002
    [18] Hillary R (2004) Environmental management systems and the smaller enterprise. J Clean Prod 12: 561–569. https://doi.org/10.1016/j.jclepro.2003.08.006. doi: 10.1016/j.jclepro.2003.08.006
    [19] Hojnik J, Ruzzier M (2017) Does it pay to be eco? The mediating role of competitive benefits and the effect of ISO14001. Eur Manag J 35: 581–594. https://doi.org/10.1016/j.emj.2017.07.008. doi: 10.1016/j.emj.2017.07.008
    [20] Horvathova E (2012) The impact of environmental performance on firm performance: Short-term costs and long-term benefits? Ecol Econ 84: 91–97. https://doi.org/10.1016/j.ecolecon.2012.10.001. doi: 10.1016/j.ecolecon.2012.10.001
    [21] ISO (2015) Introduction to ISO 14001. Available from: https://www.iso.org/publication/PUB100371.html.
    [22] Luan CJ, Tien CL, Chen WL (2016) Which "green" is better? An empirical study of the impact of green activities on firm performance. Asia Pac Manag Rev 21: 102–110. https://doi.org/10.1016/j.apmrv.2015.12.001. doi: 10.1016/j.apmrv.2015.12.001
    [23] Melnyk SA, Sroufe RP, Calantone R (2003) Assessing the impact of environmental management systems on corporate and environmental performance. J Oper Manag 21: 329–351. https://doi.org/PiiS0272-6963(02)00109-2Doi10.1016/S0272-6963(02)00109-2.
    [24] Miroshnychenko I, Barontini R, Testa F (2017) Green practices and financial performance: A global outlook. J Clean Prod 147: 340–351. https://doi.org/10.1016/j.jclepro.2017.01.058. doi: 10.1016/j.jclepro.2017.01.058
    [25] Nakamura M, Takahashi T, Vertinsky I (2001) Why Japanese Firms Choose to Certify: A Study of Managerial Responses to Environmental Issues. J Environ Econ Manag 42: 23–52. https://doi.org/10.1006/jeem.2000.1148. doi: 10.1006/jeem.2000.1148
    [26] Nishitani K (2011) An Empirical Analysis of the Effects on Firms Economic Performance of Implementing Environmental Management Systems. Environ Resourc Econ 48: 569–586. https://doi.org/10.1007/s10640-010-9404-3. doi: 10.1007/s10640-010-9404-3
    [27] Nishitani K (2009) An empirical study of the initial adoption of ISO 14001 in Japanese manufacturing firms. Ecol Econ 68: 669–679. https://doi.org/10.1016/j.ecolecon.2008.05.023. doi: 10.1016/j.ecolecon.2008.05.023
    [28] Ong TS, Teh BH, Ng SH, et al. (2016) Environmental management system and financial performance. Inst Econ 8: 26–52. http://eprints.intimal.edu.my/id/eprint/754
    [29] Porter ME, Van der Linde C (1991). Green competitiveness. Sci Am 264: 168.
    [30] Porter ME, Vanderlinde C (1995) Green and Competitive-Ending the Stalemate. Harvard Bus Rev 73: 120–134.
    [31] Przychodzen J, Przychodzen W (2015) Relationships between eco-innovation and financial performance - evidence from publicly traded companies in Poland and Hungary. J Clean Prod 90: 253–263. https://doi.org/10.1016/j.jclepro.2014.11.034 doi: 10.1016/j.jclepro.2014.11.034
    [32] Reis AV, Neves FDO, Hikichi SE, et al. (2018) Is ISO 14001 certification really good to the company? A critical analysis. Production 28. https://doi.org/10.1590/0103-6513.20180073 doi: 10.1590/0103-6513.20180073
    [33] Riaz H, Saeed A (2020) Impact of environmental policy on firms market performance: The case of ISO 14001. Corp Soc Responsib Environ Manag 27: 681–693. https://doi.org/10.1002/csr.1834. doi: 10.1002/csr.1834
    [34] Robaina M, Madaleno M (2020) The relationship between emissions reduction and financial performance: Are Portuguese companies in a sustainable development path? Corp Soc Responsib Environ Manag 27: 1213–1226. https://doi.org/10.1002/csr.1876 doi: 10.1002/csr.1876
    [35] Sartor M, Orzes G, Moras E (2019a) ISO 14001. In Quality Management: Tools, methods, and standards. Emerald Publishing Limited. https://doi.org/10.1108/978-1-78769-801-720191013
    [36] Sartor M, Orzes G, Touboulic A, et al. (2019b) ISO 14001 standard: Literature review and theory-based research agenda. Qual Manage J 26: 32–64. https://doi.org/10.1080/10686967.2018.1542288 doi: 10.1080/10686967.2018.1542288
    [37] Sarumpaet S (2005) The relationship between environmental performance and financial performance of Indonesian companies. J Akuntansi dan Keuangan 7: 89–98. https://doi.org/10.9744/jak.7.2.pp.%2089-98 doi: 10.9744/jak.7.2.pp.%2089-98
    [38] Treacy R, Humphreys P, McIvor R, et al. (2019) ISO14001 certification and operating performance: A practice-based view. Int J Prod Econ 208: 319–328. https://doi.org/10.1016/j.ijpe.2018.12.012. doi: 10.1016/j.ijpe.2018.12.012
    [39] Wu SY, Chu PY, Liu TY (2007) Determinants of a firms ISO 14001 certification: an empirical study of Taiwan. Pac Econ Revi 12: 467–487. https://doi.org/10.1111/j.1468-0106.2007.00365.x. doi: 10.1111/j.1468-0106.2007.00365.x
    [40] Zeng SX, Tam CM, Tam V, et al. (2005) Towards implementation of ISO 14001 environmental management systems in selected industries in China. J Clean Prod 13: 645–656. https://doi.org/10.1016/j.jclepro.2003.12.009 doi: 10.1016/j.jclepro.2003.12.009
    [41] Zhang ZG, Zhang C, Cao DT (2021) Is ISO14001 certification of the corporate effective? Nankai Bus Rev Int 12: 1–20. https://doi.org/10.1108/Nbri-12-2019-0074 doi: 10.1108/Nbri-12-2019-0074
  • This article has been cited by:

    1. Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Artion Kashuri, Hassen Aydi, Eskandar Ameer, Ostrowski-type inequalities pertaining to Atangana–Baleanu fractional operators and applications containing special functions, 2022, 2022, 1029-242X, 10.1186/s13660-022-02899-6
    2. Peng Xu, Saad Ihsan Butt, Saba Yousaf, Adnan Aslam, Tariq Javed Zia, Generalized Fractal Jensen–Mercer and Hermite–Mercer type inequalities via h-convex functions involving Mittag–Leffler kernel, 2022, 61, 11100168, 4837, 10.1016/j.aej.2021.10.033
    3. Ravi Kumar Jain, Alok Bhargava, Mohd. Rizwanullah, Certain New Integrals Including Generalized Bessel-Maitland Function and M-Series, 2022, 8, 2349-5103, 10.1007/s40819-021-01202-3
    4. Wedad Saleh, Abdelghani Lakhdari, Adem Kiliçman, Assia Frioui, Badreddine Meftah, Some new fractional Hermite-Hadamard type inequalities for functions with co-ordinated extended s,m-prequasiinvex mixed partial derivatives, 2023, 72, 11100168, 261, 10.1016/j.aej.2023.03.080
    5. Anupam Das, Mohsen Rabbani, Bipan Hazarika, An iterative algorithm to approximate the solution of a weighted fractional integral equation, 2023, 1793-5571, 10.1142/S1793557123502418
    6. Yong Tang, Ghulam Farid, M. Y. Youssif, Zakieldeen Aboabuda, Amna E. Elhag, Kahkashan Mahreen, Çetin Yildiz, Refinements of Various Types of Fractional Inequalities via Generalized Convexity, 2024, 2024, 2314-4629, 10.1155/2024/4082683
    7. Saad Ihsan Butt, Praveen Agarwal, Juan J. Nieto, New Hadamard–Mercer Inequalities Pertaining Atangana–Baleanu Operator in Katugampola Sense with Applications, 2024, 21, 1660-5446, 10.1007/s00009-023-02547-3
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1454) PDF downloads(153) Cited by(0)

Figures and Tables

Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog