Stability and Hopf bifurcation in a diffusivepredator-prey system incorporating a prey refuge

  • Received: 01 February 2013 Accepted: 29 June 2018 Published: 01 June 2013
  • MSC : Primary: 35Q92, 35B32; Secondary: 35B35.

  • A diffusive predator-prey model with Holling type II functionalresponse and the no-flux boundary condition incorporating aconstant prey refuge is considered. Globally asymptoticallystability of the positive equilibrium is obtained. Regarding theconstant number of prey refuge $m$ as a bifurcation parameter, byanalyzing the distribution of the eigenvalues, the existence ofHopf bifurcation is given. Employing the center manifold theoryand normal form method, an algorithm for determining theproperties of the Hopf bifurcation is derived. Some numericalsimulations for illustrating the analysis results are carried out.

    Citation: Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusivepredator-prey system incorporating a prey refuge[J]. Mathematical Biosciences and Engineering, 2013, 10(4): 979-996. doi: 10.3934/mbe.2013.10.979

    Related Papers:

    [1] Tingting Ma, Xinzhu Meng . Global analysis and Hopf-bifurcation in a cross-diffusion prey-predator system with fear effect and predator cannibalism. Mathematical Biosciences and Engineering, 2022, 19(6): 6040-6071. doi: 10.3934/mbe.2022282
    [2] Yuanfu Shao . Bifurcations of a delayed predator-prey system with fear, refuge for prey and additional food for predator. Mathematical Biosciences and Engineering, 2023, 20(4): 7429-7452. doi: 10.3934/mbe.2023322
    [3] Christian Cortés García, Jasmidt Vera Cuenca . Impact of alternative food on predator diet in a Leslie-Gower model with prey refuge and Holling Ⅱ functional response. Mathematical Biosciences and Engineering, 2023, 20(8): 13681-13703. doi: 10.3934/mbe.2023610
    [4] Yongli Cai, Malay Banerjee, Yun Kang, Weiming Wang . Spatiotemporal complexity in a predator--prey model with weak Allee effects. Mathematical Biosciences and Engineering, 2014, 11(6): 1247-1274. doi: 10.3934/mbe.2014.11.1247
    [5] Jinxing Zhao, Yuanfu Shao . Bifurcations of a prey-predator system with fear, refuge and additional food. Mathematical Biosciences and Engineering, 2023, 20(2): 3700-3720. doi: 10.3934/mbe.2023173
    [6] Shuangte Wang, Hengguo Yu . Stability and bifurcation analysis of the Bazykin's predator-prey ecosystem with Holling type Ⅱ functional response. Mathematical Biosciences and Engineering, 2021, 18(6): 7877-7918. doi: 10.3934/mbe.2021391
    [7] Parvaiz Ahmad Naik, Muhammad Amer, Rizwan Ahmed, Sania Qureshi, Zhengxin Huang . Stability and bifurcation analysis of a discrete predator-prey system of Ricker type with refuge effect. Mathematical Biosciences and Engineering, 2024, 21(3): 4554-4586. doi: 10.3934/mbe.2024201
    [8] Eric M. Takyi, Charles Ohanian, Margaret Cathcart, Nihal Kumar . Dynamical analysis of a predator-prey system with prey vigilance and hunting cooperation in predators. Mathematical Biosciences and Engineering, 2024, 21(2): 2768-2786. doi: 10.3934/mbe.2024123
    [9] Kawkab Al Amri, Qamar J. A Khan, David Greenhalgh . Combined impact of fear and Allee effect in predator-prey interaction models on their growth. Mathematical Biosciences and Engineering, 2024, 21(10): 7211-7252. doi: 10.3934/mbe.2024319
    [10] Weijie Lu, Yonghui Xia, Yuzhen Bai . Periodic solution of a stage-structured predator-prey model incorporating prey refuge. Mathematical Biosciences and Engineering, 2020, 17(4): 3160-3174. doi: 10.3934/mbe.2020179
  • A diffusive predator-prey model with Holling type II functionalresponse and the no-flux boundary condition incorporating aconstant prey refuge is considered. Globally asymptoticallystability of the positive equilibrium is obtained. Regarding theconstant number of prey refuge $m$ as a bifurcation parameter, byanalyzing the distribution of the eigenvalues, the existence ofHopf bifurcation is given. Employing the center manifold theoryand normal form method, an algorithm for determining theproperties of the Hopf bifurcation is derived. Some numericalsimulations for illustrating the analysis results are carried out.


    [1] Nonlinear Anal-Real, 11 (2010), 246-252.
    [2] Bull. Math. Biol., 57 (1995), 63-76.
    [3] J. Differ. Equations, 203 (2004), 331-364.
    [4] Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 321-349.
    [5] Trans. Amer. Math. Soc., 349 (1997), 2443-2475.
    [6] J. Differ. Equations, 229 (2006), 63-91.
    [7] Nonlinear Dynamics and Evolution Equations, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 48 (2006), 95-135.
    [8] Ecol. Model., 166 (2003), 135-146.
    [9] Nonlinear Anal-Real, 12 (2011), 2385-2395.
    [10] Cambridge University Press, Cambridge, 1981.
    [11] Princeton University Press, Princeton, 1978.
    [12] J. Anim. Ecol., 42 (1973), 693-726.
    [13] Am. Nat., 122 (1983), 521-541.
    [14] Taiwan. J. Math., 9 (2005), 151-173.
    [15] J. Math. Biol., 42 (2001), 489-506.
    [16] Appl. Math. Comput., 182 (2006), 672-683.
    [17] Yale Univ. Press, New Haven, Connecticut, 1976.
    [18] Commun. Nonlinear Sci. Numer. Simul., 10 (2005), 681-691.
    [19] Nonlinear Anal-Real, 10 (2009), 2558-2573.
    [20] J. Differ. Equations, 231 (2006), 534-550.
    [21] Theor. Popul. Biol., 53 (1998), 131-142.
    [22] J. Math. Biol., 36 (1998), 389-406.
    [23] J. Math. Biol., 88 (1988), 67-84.
    [24] Nonlinear Anal.-Real, 14 (2013), 1806-1816.
    [25] J. Math. Anal. Appl., 371 (2010), 323-340.
    [26] Math. Biosci., 218 (2009), 73-79.
    [27] Princeton University Press, Princeton, 1974.
    [28] Theor. Popul. Biol., 29 (1986), 38-63.
    [29] J. Differ. Equations, 200 (2004), 245-273.
    [30] J. Differ. Equations, 247 (2009), 866-886.
    [31] Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 149-164.
    [32] Theor. Popul. Biol., 47 (1995), 1-17.
    [33] Ecology, 76 (1995), 2270-2277.
    [34] Theor. Popul. Biol., 31 (1987), 1-12.
    [35] Cambridge University Press, Cambridge, 1974.
    [36] Chapman $&$ Hall, New York, 1984.
    [37] J. Differ. Equations, 251 (2011), 1276-1304.
    [38] J. Math. Biol., 62 (2011), 291-331.
    [39] J. Math. Biol., 43 (2001), 268-290.
    [40] J. Differ. Equations, 246 (2009), 1944-1977.
  • This article has been cited by:

    1. Yue Zhang, Kuanquan Wang, Yongfeng Yuan, Dong Sui, Henggui Zhang, Effects of Maximal Sodium and Potassium Conductance on the Stability of Hodgkin-Huxley Model, 2014, 2014, 1748-670X, 1, 10.1155/2014/761907
    2. Ruizhi Yang, Junjie Wei, Bifurcation analysis of a diffusive predator–prey system with nonconstant death rate and Holling III functional response, 2015, 70, 09600779, 1, 10.1016/j.chaos.2014.10.011
    3. Tatsuaki Tsuruyama, Kinetic stability analysis of protein assembly on the center manifold around the critical point, 2017, 11, 1752-0509, 10.1186/s12918-017-0391-7
    4. Xiaosong Tang, Yongli Song, Bifurcation analysis and Turing instability in a diffusive predator-prey model with herd behavior and hyperbolic mortality, 2015, 81, 09600779, 303, 10.1016/j.chaos.2015.10.001
    5. Kunal Chakraborty, Kunal Das, T. K. Kar, Modeling and analysis of a marine plankton system with nutrient recycling and diffusion, 2015, 21, 10762787, 229, 10.1002/cplx.21559
    6. Zhou Xu, Yongli Song, Bifurcation analysis of a diffusive predator-prey system with a herd behavior and quadratic mortality, 2015, 38, 01704214, 2994, 10.1002/mma.3275
    7. M. S. Surendar, M. Sambath, Modeling and numerical simulations for a prey–predator model with interference among predators, 2021, 12, 1793-9623, 2050065, 10.1142/S1793962320500658
    8. Yan Li, Mingxin Wang, Dynamics of a Diffusive Predator-Prey Model with Modified Leslie-Gower Term and Michaelis-Menten Type Prey Harvesting, 2015, 140, 0167-8019, 147, 10.1007/s10440-014-9983-z
    9. Yongli Cai, Zhanji Gui, Xuebing Zhang, Hongbo Shi, Weiming Wang, Bifurcations and Pattern Formation in a Predator–Prey Model, 2018, 28, 0218-1274, 1850140, 10.1142/S0218127418501407
    10. Ruizhi Yang, Chunrui Zhang, The effect of prey refuge and time delay on a diffusive predator-prey system with hyperbolic mortality, 2016, 21, 10762787, 446, 10.1002/cplx.21759
    11. Tatsuaki Tsuruyama, 2018, Chapter 6, 978-953-51-3802-0, 10.5772/intechopen.70750
    12. Fengrong Zhang, Yan Li, Stability and Hopf bifurcation of a delayed-diffusive predator–prey model with hyperbolic mortality and nonlinear prey harvesting, 2017, 88, 0924-090X, 1397, 10.1007/s11071-016-3318-8
    13. Ruizhi Yang, Chunrui Zhang, Dynamics in a diffusive predator–prey system with a constant prey refuge and delay, 2016, 31, 14681218, 1, 10.1016/j.nonrwa.2016.01.005
    14. Haicheng Liu, Bin Ge, Jiaqi Chen, Qiyuan Liang, Dynamics in a diffusive plankton system with time delay and Tissiet functional response, 2022, 68, 1598-5865, 1313, 10.1007/s12190-021-01568-z
    15. Wenlong Wang, Zijun Liu, Ruizhi Yang, Binxiang Dai, Hopf Bifurcation Analysis of a Delayed Diffusive Predator-Prey Model with Predator Interference or Foraging Facilitation, 2022, 2022, 1607-887X, 1, 10.1155/2022/5278036
    16. Yuan Tian, Hua Guo, Kaibiao Sun, Complex dynamics of two prey–predator harvesting models with prey refuge and interval‐valued imprecise parameters, 2023, 0170-4214, 10.1002/mma.9319
    17. Haisu Zhang, Haokun Qi, Hopf Bifurcation Analysis of a Predator–Prey Model with Prey Refuge and Fear Effect Under Non-diffusion and Diffusion, 2023, 22, 1575-5460, 10.1007/s12346-023-00837-5
    18. Yu Jin, Rui Peng, Jinfeng Wang, Enhancing population persistence by a protection zone in a reaction-diffusion model with strong Allee effect, 2023, 01672789, 133840, 10.1016/j.physd.2023.133840
    19. Zhivko D. Georgiev, Ivan M. Uzunov, Todor G. Todorov, Ivan M. Trushev, The Poincaré–Andronov–Hopf bifurcation theory and its application to nonlinear analysis of RC phase‐shift oscillator, 2023, 0098-9886, 10.1002/cta.3783
    20. Guo Hua, Tian Yuan, Sun Kaibiao, Song Xinyu, Study on dynamic behavior of two fishery harvesting models: effects of variable prey refuge and imprecise biological parameters, 2023, 1598-5865, 10.1007/s12190-023-01925-0
    21. Huayong Zhang, Fenglu Guo, Hengchao Zou, Lei Zhao, Zhongyu Wang, Xiaotong Yuan, Zhao Liu, Refuge-driven spatiotemporal chaos in a discrete predator-prey system, 2024, 182, 09600779, 114613, 10.1016/j.chaos.2024.114613
    22. Taslima Ahmed, Zaiba Ishrat, Satvik Vats, Jitend Dutta, 2024, Chapter 31, 978-981-97-3873-1, 353, 10.1007/978-981-97-3874-8_31
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2607) PDF downloads(547) Cited by(22)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog