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Abstract. A diffusive predator-prey model with Holling type II functional

response and the no-flux boundary condition incorporating a constant prey
refuge is considered. Globally asymptotically stability of the positive equi-

librium is obtained. Regarding the constant number of prey refuge m as a

bifurcation parameter, by analyzing the distribution of the eigenvalues, the ex-
istence of Hopf bifurcation is given. Employing the center manifold theory and

normal form method, an algorithm for determining the properties of the Hopf

bifurcation is derived. Some numerical simulations for illustrating the analysis
results are carried out.

1. Introduction. One of the most important and popular interactions between
species in ecology environment is the predation interaction (see [17]), which has been
modeled by the predator-prey system and considered extensively in many aspects
with many different functional responses without diffusion (see [5, 15, 22, 23, 25, 39])
and with diffusion (see [3, 4, 6, 7, 19, 24, 29, 30, 31, 37, 38, 40]). After Crombic,
a biologist, did the beetles experiment and discussed the effect of prey refuge in
1946, who points out that the term of the prey using refuge impacts the density of
the equilibrium which is so called the stabilizing effect (see [11, 13, 35]), scientists
turn to consider the dynamics of the system with all kinds of response functions
incorporating a prey refuge without diffusion (see [1, 2, 8, 12, 16, 18, 21, 26, 27, 28,
32, 33, 34] and with diffusion (see [9, 20]). Especially, Gonzalez-Olivares and Ramos-
Jiliberto in [8] incorporate a new ingredient in an original Lotka-Volterra predator-
prey model by adding a refuge term for the prey and consider the dynamics of the
Rosenzweig-MacArthur predator-prey model. They show that adding two different
types of prey refuge, including adding a constant proportion of prey using refuge
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and a constant number of prey using refuge (see [36]), enhance the stability of the
equilibrium when the prey refuge is small. Chen et. al. in [1] show the instability
and global stability properties of the equilibria and the existence and uniqueness
of limit cycle for a predator-prey model with Holling type II functional response
incorporating a constant prey refuge. Ko and Ryu in [20] and Guan et. al. in [9]
consider the dynamics of a diffusive predator-prey model incorporating a constant
proportion of prey refuge, including the existence and the stability of steady-state
solutions and the Turing space. However, to our knowledge, there are surprisingly
few conclusions in the diffusive predator-prey model with Holling type II functional
response incorporating a constant number of prey using refuge, which is motivated
for our paper.

Chen et. al. in [1] and Gonzalez-Olivares and Ramos-Jiliberto in [8] have con-
sidered the following Holling-II predator-prey model incorporating a prey refuge:

du

dt
= αu

(
1− u

K

)
− β(u−m)v

1 + a(u−m)
,

dv

∂t
= v

(
−r +

cβ(u−m)

1 + a(u−m)

)
,

(1)

where u represents the prey density and v represents the predator density; α is
the intrinsic per capita growth rate of prey; K is the prey environmental carrying
capacity; β is the maximal per capita consumption rate of predators; a is the amount
of prey needed to achieve one-half of β; r is the per capita death rate of predators;
c is the efficiency with which predators convert consumed prey into new predators.
m is a positive constant representing taking m (u ≥ m) of the prey from predation
and leaving u−m of the prey available to the predator. The parameter ecological
meaning can also be found in [1] and [8].

For simplicity, we take the following scaling:

u = u−m, v =
β

a
v, m = am, K = aK, r =

a

β
r

and still denote u, v, m, K, r as u, v,m,K, r, respectively. Then system (1) with the
diffusion, the Neumann boundary condition and the initial value takes the following
form: 

∂u

∂t
= d14u+ α(u+m)

(
1− u+m

K

)
− uv

1 + u
, x ∈ Ω, t > 0,

∂v

∂t
= d24v + v

(
−r +

cu

1 + u

)
, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, t ≥ 0, x ∈ ∂Ω,

u(0, x) = u0(x) ≥ 0, v(0, x) = v0(x) ≥ 0, x ∈ Ω,

(2)

where dj (j = 1, 2) is the diffusive coefficient and the region Ω represents the
living environment of the prey and the predator. In this paper, we always consider
Ω = (0, lπ) and l ∈ R+. In biological meaning, the Neumann boundary condition
represents no-flux in the boundary region, that is there is no species or individuals
in or out the living environment and the living environment is closed. In this paper,
we focus on the stability and Hopf bifurcation of system (2).

The rest of our paper is organized as follows. In Section 2, by analyzing the
distribution of the roots of the characteristic equations, the stability of the positive
equilibrium for system (2) is obtained. And by applying Poincaré-Andronov-Hopf
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bifurcation theory, we get the existence of periodic solution bifurcating from the
positive constant solution for some ranges of the parameter m. In Section 3, an
algorithm for determining the direction of the Hopf bifurcation, the stability and
the period of bifurcating periodic solutions are derived by applying the normal form
theory and the center manifold method of partial differential equations (see [10]).
Finally, some numerical simulations are presented to illustrate the analytic results
in Section 4.

2. Stability of the positive equilibrium and Hopf bifurcation. In this sec-
tion, we consider the stability of the positive equilibrium for system (2) by analyzing
the distribution of eigenvalues in corresponding linear system of system (2).

By the biological significance of system (2), we are interested in the stability
of the positive constant equilibrium. It is not difficult to calculate that under the
following hypothesis

(H1) c > r and 0 < m ≤ min{K − θ, θ},
system (2) has a unique positive constant solution E∗ = (θ, vθ), where

θ =
r

c− r
and vθ =

αc

r
(θ +m)

(
1− θ +m

K

)
. (3)

Applying the similar method mentioned in [14, 20, 40], we have the following con-
clusion for the globally asymptotically stability of E∗(θ, vθ).

Theorem 2.1. Suppose that either 0 < K ≤ 1 or K > 1 and (K − 1)/2 ≤ m ≤ K.
Then the positive equilibrium E∗(θ, vθ) is globally asymptotically stable.

Proof. Define

E(u(t, x), v(t, x)) =

∫ lπ

0

∫ u

θ

cp(ξ)− r
p(ξ)

dξdx+

∫ lπ

0

∫ v

vθ

η − vθ
η

dηdx,

where p(u) = u/(1 + u). Then

Et(u, v) =

∫ lπ

0

cp(u)− r
p(u)

utdx+

∫ lπ

0

v − vθ
v

vtdx = I1(t) + I2(t),

where

I1(t) = −
∫ lπ

0

rd1

u2
u2
x +

d2

v2
v2
xdx, I2(t) =

∫ lπ

0

c[p(u)− p(θ)][g(u)− g(θ)]dx

and

g(u) =
α(u+m)(K − u−m)(1 + u)

Ku
,

g′(u) =
αu2(−2u+K − 2m− 1)−m(K −m)

Ku2
.

Notice that, for any u > 0, g′(u) > 0 when 0 < K ≤ 1 or K > 1 but (K − 1)/2 ≤
m ≤ K. That is, [p(u)−p(θ)][g(u)−g(θ)] < 0, which leads to I2(t) < 0 for any u > 0.
Thus, Et < 0 along an orbit (u(t, x), v(t, x)) of system (2) with any non-negative
initial value (u0, v0) 6≡ (0, 0) and Et = 0 only if (u(t, x), v(t, x)) = (θ, vθ) = E∗.

Due to the conclusion of Theorem 2.1, we next always assume that the parameters
d1, d2, α, r and K are all fixed positive numbers satisfying K > 1 and 0 < m <
(K − 1)/2, the parameters m and c are two arbitrary positive quantities. In view
of the definition of θ in (3), we know θ is an arbitrary c−dependent quantity. Now,
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we consider the stability of the positive equilibrium E∗(θ, vθ) in system (2) as the
positive numbers m and c (also θ) vary.

Applying the conclusions of Yi and Wei in [40], we make some notations as
follows. Define the real-valued Sobolev space

X :=
{

(u, v)T : u, v ∈ H2((0, lπ)), (ux, vx)|x=0,lπ = (0, 0)
}

and the complexification of X to be

XC := X ⊕ iX =
{

(x1 + y1) + i(x2 + y2) : (x1, y1)T , (x2, y2)T ∈ X
}
.

For the sake of convenience, we denote u1(t) = u(t, ·), u2(t) = v(t, ·) and U =
(u1, u2)T ∈ X. Then system (2) can be rewritten as an abstract differential equation
as follows:

U̇(t) = d4U(t) + L(m)U(t) + F (U(t)), (4)

where

L(m) =

(
A(m) B(m)
C(m) 0

)
, d = diag(d1, d2), dom(d4) = X,

F (U) =

α(u+m)

(
1− u+m

K

)
− uv

1 + u
−A(m)u−B(m)v(

−r +
cu

1 + u

)
v − C(m)u

 (5)

and

A(m) =
α

Kcθ2
(rm2 + (2θr − 2cθ2 −Kr)m+ θ(−2cθ2 + (cK + r)θ −Kr)),

B(m) = −r
c
< 0, C(m) =

αr

Kθ2
(−m2 + (K − 2θ)m+ θ(K − θ)) > 0.

(6)

The linearized equation of system (4) at E∗(θ, vθ) has the form:

U̇(t) = d4U(t) + L(m)U(t) (7)

and its characteristic equation is

λy − d4y − L(m)y = 0, for some y ∈ dom(d4)\{0}. (8)

It is well known that the operator u 7→ 4u with ∂νu = 0 at 0 and lπ has eigenvalues
−n2/l2 (n ∈ N0) with the corresponding eigenfunctions cos(nx/l). Let

φ =

∞∑
n=0

(
an
bn

)
cos
(n
l
x
)

be an eigenfunction for 4+L(m) with the eigenvalue λ, see also [10]. Hence, from
the nth equation of Eq. (8), we have

λ2 + Tn(m)λ+Dn(m) = 0, (9)n

where

Tn(m) = (d1 + d2)
n2

l2
−A(m), (10)n

Dn(m) = d1d2
n4

l4
− d2A(m)

n2

l2
−B(m)C(m). (11)n

We know from [40] that system (2) undergoes a Hopf bifurcation at the bifurcating
point m∗ which satisfies that

Tn(m∗) = 0, Dn(m∗) > 0 and Tj(m
∗) 6= 0, Dj(m

∗) 6= 0 for any j 6= n
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and for the simple pair of complex eigenvalues near the imaginary axis ω1(m) ±
iω2(m), ω1(m∗) = 0, ω2(m∗) 6= 0 and ω′1(m∗) 6= 0.

Next, we consider the sign of Tn(m) and Dn(m) in detail.
When n = 0, D0(0) > 0 and T0(m) = −A(m). E∗ is locally asymptotically stable

if A(m) < 0, simultaneously, E∗ is unstable if A(m) > 0 and a potential spatially
homogenous periodic solutions occur if A(m) = 0.

A straight computation gives that

m0(θ) =
1

2r

(
Kr + 2cθ2 − 2θr −

√
4θ4c2 + r2K2

)
(12)

is a root of A(m) = 0 ( also is a root of T0(m) = 0), which also is a potential Hopf
bifurcating point as the hypothesis

(H2) K > 1 and 0 < θ < (K − 1)/2 ( or equivalently c > (K + 1)r/(K − 1))

holds via Theorem 2.1, and it is not difficult to see that m0 is a function of θ which
we write as m0(θ).

Now, we assume (H2) holds and consider the case of n ≥ 1 in (10)n and (11)n.
From (10)n, Tn(m) = 0 has a solution leads to

A(m) = (d1 + d2)
n2

l2
(13)

has a solution. From the formula of A(m) in (6) and visually explanation in the
following Figure 1,

msymmetry axis of A(m)

A(m)

(K−1)/2m
1

m
0

0

(d
1
+d

2
)n2/l2

(d
1
+d

2
)(N

1
+1)2/l2

Figure 1. The relationship among A(m), (d1 + d2)n2/l2 and m.
The green solid line represents the symmetry axis of A(m); the
pink solid line represents the line of m = (K − 1)/2; the red solid
curve represents the curve trend of A(m) as m varies and the blue
ones represent the value of (d1 + d2)n2/l2 as n varies.

we have

A(m)

 > 0, as m ∈ (0,m0),
= 0, as m = m0,
< 0, as m ∈ (m0, (K − 1)/2)
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and

A(0) = max
m∈[0,(K−1)/2]

A(m) =
α

cθK

(
−2cθ2 + (Kc+ r)θ −Kr

)
,

which implies that the potential bifurcating points of system (2) must belong to
(0,m0].

Solving Eq. (13) gives

mn = mn(θ) =
2cθ2 +Kr − 2θr −

√
r2K2 + 4c2θ4 + 4cKθ3(d1 + d2)

n2

l2

2r
(14)

satisfying 0 < mn < (K − 1)/2 and the following properties.

Lemma 2.2. The bifurcating points mn(θ) are finite, that is, there is a non-negative
integer N1 ∈ N0, such that mn(θ) are bifurcating points as 0 ≤ n ≤ N1, for other-
wise, mn(θ) are not bifurcating points for any positive θ and n > N1.

Proof. We note that A(0) is a locally maximum value of A(m) as m ∈ [0, (K−1)/2].
That is, when n is big enough to A(0) > (d1 + d2)n2/l2, we have Tn(m) > 0,
which means system (2) does not exist any purely imaginary roots. Solving the
equation A(0) = (d1 + d2)n2/l2, we have Tn(m) = 0 has a unique solution mn(θ)
as 0 ≤ n ≤ N1 and Tn(m) = 0 has no solutions as n > N1, where

N1 =

[
αl2

cθK(d1 + d2)
(−2cθ2 + (cK + r)θ −Kr)

]
.

Lemma 2.3. For any θ > 0 and 0 ≤ n ≤ N1, mn(θ) have the following relationships

0 < mN1(θ) < · · · < mn(θ) < mn−1(θ) < · · · < m1(θ) < m0(θ) < (K − 1)/2.

Proof. From the formula of mn(θ) in (12) and (14), we have the conclusion directly.

Figure 2 shows the phenomena of Lemma 2.2 and Lemma 2.3:

1 2 3 4 5 6 7 8 9 10
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

c

m

 

 
m

0

m
1

m
2

Figure 2. The phenomena of Lemma 2.2 and Lemma 2.3. Here,
r = 1,K = 5.5, α = 1, d1 = 2, d2 = 0.5.
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Apparently, we have Tn(mn) = 0, Dn(mn) > 0 as 0 ≤ n ≤ N1 and Tj(mn) 6= 0
for any j 6= n. For convenience, we make the hypothesis

(H3) d1/d2 ≥ α(K − 1− 2θ)2/(4cK).

Clearly, (H3) holds when Dj(m) > 0 is satisfied for any j 6= n and any m ∈
(0, (K − 1)/2).

A straight calculation shows that the transversality condition is satisfied.

Lemma 2.4. Assume (H1) and (H2) hold. Then for any m ∈ (0, (K − 1)/2), we
have

Re(λ′(m)) < 0.

Proof. Suppose that the root of Eq. (9)n has the form λ(m) = ω1(m) + iω2(m),
where ωj(m) ∈ R for any j = 1, 2 and

Re(λ′(m)) = ω′1(m) =
A′(m)

2
=

α

2Kcθ2
(2rm+ 2θr − 2cθ2 −Kr).

By the admitted range of m, we have Re(λ′(m)) = ω′1(m) < 0 for any m ∈
(0, (K − 1)/2).

Summing up the above arguments, we obtain the following significant conclu-
sions:

Theorem 2.5. Suppose the hypotheses (H1)−(H3) hold. Then there are N1 + 1
bifurcating points mn satisfying

0 < mN1
< mN1−1 < · · · < m1 < m0 < (K − 1)/2,

such that system (2) undergoes Hopf bifurcation at m = mn for any 0 ≤ n ≤ N1.
Moreover, we have

(i) if 0 < m < m0, then E∗ is unstable;
(ii) if m0 < m < (K − 1)/2, then E∗ is locally asymptotically stable;

(iii) the periodic solutions bifurcating from m = m0 are spatially homogeneous and
the periodic solutions bifurcating from m = mn (1 ≤ m ≤ N1) are spatially
non-homogeneous.

Remark 1. Comparing with the system (1) or (2) with m = 0 considered in [40],
we obtain that adding a constant number of prey using refuge m does enhance the
stability of the positive equilibrium which coincide with the results in [8] and other
corresponding papers concerned the system incorporating a constant number prey
refuge.

We give a visual illustration to the stability of E∗ by Figure 3 and Figure 4.

3. Direction of Hopf bifurcation. In this section, we shall study the direction of
Hopf bifurcation near the positive equilibrium, stability and the period of bifurcating
periodic solutions by applying the normal formal theory and the center manifold
theorem of differential equations presented in [10]. For some fixed 0 ≤ n ≤ N1, we
denote m̃ = mn, ω̃ = ω2(mn) and compute the bifurcation direction near E∗ at
m = m̃ and the purely imaginary root denoted as λ = ω2(m̃)i = ω̃i.

We make a variable change in system (2) by denoting ũ and ṽ as u−θ and v−vθ,
respectively. Drop the tilde as a matter of convenience, then the first two equations
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0
0

K

m

 

 

1 (K−1)/2

m=(K−1)/2

m=m
0

g.a.s

l.a.s

u.s

Figure 3. The stability diagram of E∗ with m and K. Here, the
green line m = m0 represents the first Hopf bifurcating curve.

0

m

θ K

(K,K)

m=θ

(K−1)/2

g.a.s

l.a.s
m=m

0

u.s

m=m
n

Invalid

Figure 4. The stability diagram of E∗ with m and θ as K > 1.
Here, the green line m = m0 and m = mn represent the Hopf
bifurcating curve.

of system (2) can be transformed into
∂u

∂t
= d14u+ α(u+m+ θ)

(
1− u+m+ θ

K

)
− (u+ θ)(v + vθ)

1 + u+ θ
,

∂v

∂t
= d24v + (v + vθ)

(
−r +

c(u+ θ)

1 + u+ θ

)
,

(15)

for x ∈ Ω = (0, lπ) and t ∈ (0,+∞). Using the similar notations as in (4) and (5),
we rewrite system (15) as the following abstract differential equation:

U̇(t) = L̃U + F (U, m̃), for any U = (u, v)T ∈ X, (16)
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where

L̃ = d4+ L(m̃) =

(
Ã+ d1

∂2

∂x2 B̃

C̃ d2
∂2

∂x2

)
, (17)

F (U, m̃) =

(
F1(U, m̃)
F2(U, m̃)

)

=

α(u+m+ θ)

(
1− u+m+ θ

K

)
− (u+ θ)(v + vθ)

1 + u+ θ
− Ãu− B̃v

(v + vθ)

(
−r +

c(u+ θ)

1 + u+ θ

)
− C̃u

 ,

(18)

and

Ã = A(m̃) = α

(
1− 2(θ + m̃)

K
− r(θ + m̃)

cθ2

(
1− θ + m̃

K

))
,

B̃ = B(m̃) = −r
c
< 0, C̃ = C(m̃) =

cvθ
(1 + θ)2

> 0.
(19)

Let < ·, · > be the complex-valued L2 inner product on Hilbert space XC, defined
by

< U1, U2 >=

∫ lπ

0

ū1u2 + v̄1v2dx, for any Uj = (uj , vj)
T ∈ XC and j = 1, 2. (20)

With the help of the definition of inner product in (20), we define the adjoint

operator of the operator L̃ as L̃∗ on DL̃∗ = XC satisfying

L̃∗ =

d1
∂2

∂x2
+ Ã C̃

B̃ d2
∂2

∂x2

 .

By a direct computation, we obtain respectively the eigenfunctions of L̃ and L̃∗

corresponding to the eigenvalue iω̃ and −iω̃ on XC denoted by

q =
(
1, bn

)T
cos
(n
l
x
)

and q∗ =
(
a∗n, b∗n

)T
cos
(n
l
x
)

satisfying < q∗, q >= 1 and < q∗, q̄ >= 0, where

bn = −d2n
2

B̃l2
+
ω̃

B̃
i, a∗n =

1

lπ
+
d2n

2

ω̃l3π
i and b∗n =

B̃

lπω̃
i.

We decompose X = XC ⊕XS with the center subspace XC := {zq + z̄q̄ : z ∈ C}
and the stable subspace XS := {u ∈ X : < q∗, u >= 0}. For any (u, v)T ∈ X, there
exists z ∈ C and w = (w1, w2)T ∈ XS such that(

u
v

)
= zq + z̄q̄ +

(
w1

w2

)
or

 u = z cos
(n
l
x
)

+ z̄ cos
(n
l
x
)

+ w1,

v = bnz cos
(n
l
x
)

+ bnz̄ cos
(n
l
x
)

+ w2.
(21)

From (21), system (16) is equivalent to the following system:
dz

dt
= iω̃z+ < q∗, F0 >,

dw

dt
= L̃w +H(z, z̄, w),

(22)

where

H(z, z̄, w) = F0− < q∗, F0 > q− < q∗, F0 > q̄ (23)
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and F0 := F0(zq + z̄q̄ + w).
On the other hand, F0 has the form from [10]:

F0(U) :=
1

2
Q(U,U) +

1

6
C(U,U, U) +O(|U |4),

where U = (u, v)T , Q and C are symmetric multilinear forms. Here, using the
notations mentioned in [10] and [40], we denote QXY = Q(X,Y ) and CXY Z =
C(X,Y, Z). A straight calculation shows

Qqq =

(
cn
dn

)
cos2

(n
l
x
)
, Qq̄q̄ = Qqq,

Qqq̄ =

(
en
fn

)
cos2

(n
l
x
)
, Cqqq̄ =

(
gn
hn

)
cos3

(n
l
x
)
,

(24)

where

cn = F1uu + 2F1uvbn, dn = F2uu + 2F2uvbn,

en = F1uu + F1uv(bn + bn), fn = F2uu + F2uv(bn + bn),

gn = F1uuu + F1uuv(2bn + bn), hn = F2uuu + F2uuv(2bn + bn)

(25)

and

F1uu =
2(Kvθ − α(1 + θ)3)

K(1 + θ)3
, F1uv = − 1

(1 + θ)2
, F2uu = − 2cvθ

(1 + θ)3
,

F2uv =
c

(1 + θ)2
, F1uuu = − 6vθ

(1 + θ)4
, F1uuv =

2

(1 + θ)3
,

F2uuu =
6cvθ

(1 + θ)4
, F2uuv = − 2c

(1 + θ)3
,

F1vv = F2vv = F1uvv = F1vvv = F2uvv = F2vvv = 0.

(26)

From the formula of H in (23), we denote

H(z, z̄, w) =
H20

2
z2 +H11zz̄ +

H02

2
z̄2 +O(|z| · w), (27)

then we have

H20 = Qqq− < q∗, Qqq > q− < q∗, Qqq > q

=


cos2

(n
l
x
)(cn

dn

)
, n ∈ N,

1

B̃2lπ

(
B̃(lπ − 2)(G1 + 2ω̃F1uvi)

G2 + 2ω̃G3i

)
, n = 0,

H11 = Qqq̄− < q∗, Qqq̄ > q− < q∗, Qqq̄ > q̄

=


cos2

(n
l
x
)(en

fn

)
, n ∈ N,

1

B̃2lπ

(
B̃(lπ − 2)G1

G2

)
, n = 0,

H20 = H02,

(28)
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where

< q∗, Qqq > =


0, n ∈ N,
ω̃G1 + 2B̃ω̃F2uv + i(G4 + 2ω̃2F1uv)

B̃ω̃
, n = 0,

< q∗, Qqq > =


0, n ∈ N,
ω̃G1 − 2B̃ω̃F2uv + i(2ω̃2F1uv −G4)

B̃ω̃
, n = 0,

< q∗, Qqq̄ > =

0, n ∈ N,
ω̃G1 + iG4

B̃ω̃
, n = 0,

< q∗, Qqq̄ > =

0, n ∈ N,
ω̃G1 − iG4

B̃ω̃
, n = 0,

(29)

and

G1 = B̃F1uu − 2ÃF1uv,

G2 = B̃2(lπ − 2)F2uu − 4Ã2F1uv + 2ÃB̃(F1uu + (2− lπ)F2uv),

G3 = 2ÃF1uv + B̃(lπ − 2)F2uv,

G4 = 2B̃(ÃF2uv − B̃F2uu),∫ lπ

0

cos2
(n
l
x
)
dx =

lπ

2
,

∫ lπ

0

cos3
(n
l
x
)
dx = 0,∫ lπ

0

cos4
(n
l
x
)
dx =

3lπ

8
,

∫ lπ

0

cos

(
2n

l
x

)
cos2

(n
l
x
)
dx =

lπ

4
.

Denote

w =
w20

2
z2 + w11zz̄ +

w02

2
z̄2 +O(|z|3),

then we have

w20 = (2iω̃I − L̃)−1H20, w11 = −L̃−1H11. (30)

We compute the values of w20 and w11 in the case of n 6= 0 and n = 0, respectively.
At first, we consider the case of n 6= 0. A straightforward calculation shows

[2iω̃I − L̃2n]−1 = (β1 + iβ2)

2iω̃ +
4d2n

2

l2
B̃

C̃ 2iω̃ − (d2 − 3d1)n2

l2

 ,

[2iω̃I − L̃0]−1 = (β3 + iβ3)

2iω̃ B̃

C̃ 2iω̃ − (d1 + d2)n2

l2

 ,

L̃2n =

 (3d1 − d2)n2

l2
B̃

C̃ 4d2
n2

l2

 , L̃0 =

− (d1 + d2)n2

l2
B(m̃)

C(m̃) 0
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and

L̃−1
2n = β5

4d2
n2

l2
B̃

C̃
(3d1 − d2)n2

l2

 , L̃−1
0 = β6

 0 B(m̃)

C(m̃) − (d1 + d2)n2

l2

 ,

with

β1 =
3d2(4d1 − d2)n4 − 3ω̃2l4

9(d2
2(d2

2 + 4d2
1)n8 − 8d1d3

2n
6 + 2ω̃2l4(3d2

2 + 2d2
2)n4 + l8ω̃4)

,

β2 =
−6ω̃(d1 + d2)l2n2i

9(d2
2(d2

2 + 4d2
1)n8 − 8d1d3

2n
6 + 2ω̃2l4(3d2

2 + 2d2
2)n4 + l8ω̃4)

,

β3 =
d2

2l
4 − 3ω̃2l4

d2
2n

8 + 9l8ω̃4 + n4(4d2
1l

4ω̃2 + 2(4d1 − 3)d2l4ω̃2 + 4d2l4ω̃2)
,

β4 =
2ω̃(d1 + d2)l2n2

d2
2n

8 + 9l8ω̃4 + n4(4d2
1l

4ω̃2 + 2(4d1 − 3)d2l4ω̃2 + 4d2l4ω̃2)
,

β5 =
l4

ω̃2l4 − 3d2(d2 − 4d1)n4
,

β6 =
l4

d2
2n

4 − ω̃2l4
.

From (30), we have

w20 =

(
ξ20n1

ξ20n2

)
cos

(
2n

l
x

)
+

(
ξ2001

ξ2002

)
, w11 =

(
ξ11n1

ξ11n2

)
cos

(
2n

l
x

)
+

(
ξ1101

ξ1102

)
,

where

ξ20n1 =
β1 + iβ2

2

((
2iω̃ +

4d2n
2

l2

)
cn + B̃dn

)
,

ξ20n2 =
β1 + iβ2

2

(
C̃cn +

(
2iω̃ +

(3d1 − d2)n2

l2

)
dn

)
,

ξ2001 =
β3 + iβ4

2
(2iω̃cn + B̃dn),

ξ2002 =
β3 + iβ4

2

(
C̃cn +

(
2iω̃ − (d1 + d2)n2

l2

)
dn

)
,

ξ11n1 =
β5

2

(
4d2n

2

l2
en + B̃fn

)
,

ξ11n2 =
β5

2

(
C̃en +

(3d1 − d2)n2

l2
fn

)
,

ξ1101 =
β6

2
B̃fn,

ξ1102 =
β6

2

(
C̃en −

(d1 + d2)n2

l2
fn

)
.

When n = 0, we have

w20 = (w1
20, w

2
20)T , w11 = (w1

11, w
2
11)T ,
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where

w1
20 =

1

B̃2C̃lπ(9B̃C̃ − 4Ã2)
{B̃C̃(4Ã2(3− 2lπ)F1uv + 3B̃(4C̃F1uv + B̃(lπ − 2)F2uu)

− 2ÃB̃(F1uu(1− 2lπ) + F2uv(lπ − 2))) + 2iω̃(3(lπ − 2)B̃2C̃(F1uu + F2uv)

− 4Ã3F1uv + 2Ã2B̃(F1uu + (2− lπ)F2uv) + ÃB̃(2C̃F1uv(5− lπ)

+ B̃(lπ − 2)F2uu))},

w2
20 =

1

B̃3C̃lπ(9B̃C̃ − 4Ã2)
{B̃C̃(3(lπ − 2)B̃2C̃(F1uu + 4F2uv)− 12Ã3F1uv + 2Ã2B̃

(F1uu + 6F2uv − 3lπF2uv) + ÃB̃(2C̃F1uv(14− lπ)) + B̃(lπ − 2)F2uu) + 2ω̃i

(4Ã4F1uv + 3B̃2C̃(C̃F1uv + B̃F2uv)(lπ − 2)− 2Ã3B̃(F1uu + (2− lπ)F2uv)

− Ã2B̃(B̃F2uu(lπ − 2) + 2(3 + lπ)C̃F1uv) + ÃB̃2C̃(5(2− lπ)F2uv

+ F1uu(4 + lπ)))},

w1
11 =

1

B̃2C̃lπ
{4Ã2F1uv + B̃2F2uu(2− lπ)− 2ÃB̃(F1uu + (2− lπ)F2uv)},

w2
11 =

1

B̃3C̃lπ
{B̃2C̃F1uu(2− lπ)− 4Ã3F1uv + ÃB̃(2C̃F1uv + B̃F2uu)(lπ − 2)

+ 2Ã2B̃(F1uu + F2uv(2− lπ))}.

From [10], we know that system (15) restricted to the center manifold is given by

dz

dt
= iω̃z+ < q∗, F0 >= iω̃z +

∑
2≤i+j≤3

gij
i!j!

ziz̄j +O(|z|4),

where

g20 =< q∗, Qqq >, g11 =< q∗, Qqq̄ >, g02 =< q∗, Qq̄q̄ > (31)

and

g21 = 2 < q∗, Qw11q > + < q∗, Qw20q̄ > + < q∗, Cqqq̄ > . (32)

Denote

c1(0) =
i

2ω̃
(g20g11 − 2|g11|2 −

|g02|2

3
) +

g21

2
, µ2 = − Re(c1(0))

Re(λ′(m̃))
,

T2 = − 1

ω̃
(Im(c1(0)) + µ2 Im(λ′(m̃))), β∗2 = 2 Re(c1(0)).

We know the following conclusions from [10]:

Theorem 3.1. For any critical value m̃, we have

(i) µ2 determines the directions of the Hopf bifurcation: if µ2 > 0 (< 0), then the
direction of the Hopf bifurcation is forward (backward), that is, the bifurcating
periodic solutions exists for m > m̃ (m < m̃);

(ii) β∗2 determines the stability of the bifurcating periodic solutions on the center
manifold: if β∗2 < 0 (> 0), then the bifurcating periodic solutions are orbitally
asymptotically stable(unstable);

(iii) T2 determines the period of the bifurcating periodic solutions: if T2 > 0 (< 0),
then the period increases (decreases).
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Now, we compute the value of g21 defining in (32) as n 6= 0 and n = 0, since the
value of g20 and g11 is determined by (29) and (31).As n 6= 0, g20 = g11 = g02 = 0,

< q∗, Qw20q̄ >=
lπ

4
{a∗n(F1uuξ20n1 + F1uv(ξ20n1bn + ξ20n2)) + b∗n(F2uuξ20n1 + F2uv

(ξ20n1bn + ξ20n2))}+
lπ

2
{a∗n(F1uuξ2001 + F1uv(ξ2001bn + ξ2002))

+ b∗n(F2uuξ2001 + F2uv(ξ2001bn + ξ2002))},

< q∗, Qw11q >=
lπ

4
{a∗n(F1uuξ11n1 + F1uv(ξ11n1bn + ξ11n2)) + b∗n(F2uuξ11n1 + F2uv

(ξ11n1bn + ξ11n2))}+
lπ

2
{a∗n(F1uuξ1101 + F1uv(ξ1101bn + ξ1102))

+ b∗n(F2uuξ1101 + F2uv(ξ1101bn + ξ1102))},

< q∗, Cqqq̄ >=
3lπ

8
(a∗ngn + b∗nhj)

and

Re(g21) =
1

8B̃ω̃
{2B̃ω̃(F1uu + b1nF1uv)((ξ

1
20n1 + 2ξ1

2001) + 2(ξ1
11n1 + 2ξ1

1101))− 2B̃

(b2nd2F1uv + B̃b2nF2uv)((ξ
1
20n1 + 2ξ1

2001)− 2(ξ1
11n1 + 2ξ1

1101)) + 2ω̃B̃b2n

F1uv((ξ
2
20n1 + 2ξ2

2001)− 2(ξ2
11n1 + 2ξ2

1101)) + 2B̃(d2F1uu + b1nd2F1uv+

B̃F2uu + B̃b1nF2uv)((ξ
2
20n1 + 2ξ2

2001) + 2(ξ2
11n1 + 2ξ2

1101)) + 2B̃(d2F1uv

+ B̃F2uv)((ξ
2
20n2 + 2ξ2

2002) + 2(ξ2
11n2 + 2ξ2

1102)) + 2ω̃B̃F1uv((2ξ
1
2002

+ ξ1
20n2) + 2(ξ1

11n2 + 2ξ1
1102)) + 3ω̃(−2d2F1uuv + B̃(F1uuu + F2uuv))},

β∗2 = 2 Re(c1(0)) = Re(g21), µ2 = Re(c1(0)) = Re(g21)/2,

where for j = 0 or n and k = 1, 2,

bn = b1n + ib2n, ξ20jk = ξ1
20jk + iξ2

20jk, ξ11jk = ξ1
11jk + iξ2

11jk.

As n = 0,

c0 =
2(−α(1 + θ)(k − 2m+ (−1 + θ)θ) + k(vθ + i

√
rvθ))

kθ(1 + θ)2
,

d0 =
2c
(
−ik(−ivθ +

√
rvθ) + α(1 + θ)(k − 2(m+ θ))

)
kθ(1 + θ)2

,

e0 =
2kvθ − 2al(1 + θ)(k − 2m+ (−1 + θ)θ)

kθ(1 + θ)2
,

f0 =
2c(−kvθ + al(1 + θ)(k − 2(m+ θ)))

kθ(1 + θ)2
,

g0 =
2(−ik

(
−3ivθ +

√
rvθ) + 3α(1 + θ)(k − 2(m+ θ))

)
kθ(1 + θ)3

,

h0 =
2c
(
k
(
3vθ + i

√
rvθ
)
− 3al(1 + θ)(k − 2(m+ θ))

)
kθ(1 + θ)3
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and

g21 =
1

B̃8C̃2l4π4(9B̃C̃ − 4(d1 + d2)2)
((−2(9B̃C̃ − 4(d1 + d2)2)(−4(d1 + d2)4F1uv

2

+ B̃4(F1uu + F1uv)F2uu(lπ − 2) + 2B̃(d1 + d2)2F1uv(C̃F1uv(lπ − 2) + d2

(F1uu + 4F2uv − F2uvlπ) + d1(F1uu + F2uv(4− lπ)))− B̃2(d1 + d2)(C̃F1uv

(F1uu + 2F2uv)(lπ − 2) + (d1 + d2)(4F1uv
2 + 2F1uu(2F1uv + F2uv) + F1uv

F2uu(2− lπ)− 2F2uv
2(lπ − 2))) + B̃3(C̃F1uuF2uv(lπ − 2) + d1(2F1uu

2 − (2

F1uv + F2uu)F2uv(lπ − 2) + 2F1uu(F1uv + 2F2uv − F2uvlπ)) + d2(2F1uu
2

− (2F1uv + F2uu)F2uv(lπ − 2) + 2F1uu(F1uv + 2F2uv − F2uvlπ)))) + B̃5C̃l2

π2(4(d1 + d2)4F1uv(5C̃F1uv − 2(d1 + d2)F2uv) + B̃4(2(d1 + d2)F2uu(F2uu

+ F2uv) + 3C̃(F1uvF2uu + 2F2uv(F2uu + F2uv) + F1uu(3F2uu + 2F2uv)))(lπ

− 2)− 2B̃(d1 + d2)2(C̃2F1uv
2(20 + lπ) + C̃(d1 + d2)F1uv(3F1uu + F2uv(10

− 7lπ))− 2(d1 + d2)2F2uv(F1uu + F2uv(2− lπ))) + B̃3(3C̃2(4F1uv
2 + 2F1uv

F2uu + 4F2uv
2 + F1uu(4F1uv + F2uv))(lπ − 2) + 4(d1 + d2)2(F2uu + F2uv)

(F1uu + F2uv(2− lπ)) + C̃(d1 + d2)(−5F2uuF2uv(lπ − 2) + F1uu
2(4lπ − 2)

+ F1uv(20F2uu + 24F2uv − 4F2uulπ − 6F2uvlπ) + F1uu(−2F1uv + 4F2uv

+ 4F1uvlπ − 2F2uvlπ))) + B̃2(6C̃3F1uv
2(−2 + lπ)− 2(d1 + d2)3(4F1uv(F2uu

+ F2uv) + F2uuF2uv(2− lπ))− C̃2(d1 + d2)F1uv(F1uu(lπ − 14) + 6F2uv(5lπ

− 14))− C̃(d1 + d2)2(3F1uvF2uu(lπ − 2)− 4F 2
2uv(lπ − 2) + 4F 2

1uv(2lπ − 3)

+ 2F1uu(F2uv(3 + lπ) + F1uv(4lπ − 6))))))).

4. Numerical simulations. In this section, we present some numerical simula-
tions to illustrate the theoretical analysis and symbolic mathematical software Mat-
lab is used to plot numerical graphs.

Figure 5. The numerical simulations of system (2.1) with m =
0.9 > m0 = 0.6148. Left: component u (stable). Right: component
v (stable).
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Figure 6. The numerical simulations of a stable homogeneous
equilibrium solution of system (2.1) with m = 0.61 < m0 = 0.6148.
Left: component u (stable). Right: component v (stable).

We consider the system (2) with d1 = 1, d2 = 0.2, r = 0.5, K = 10, α = 3, c =
1, l = 5 and the initial value (u0, v0) = (1.1, 9.334). By a direct computation, we
have m0 ≈ 0.6148, m1 ≈ 0.4394, m2 ≈ −0.0564. When m = 0.9, E∗(u∗, v∗) ≈
(1, 9.234) and when m = 0.61, E∗(u∗, v∗) ≈ (1, 8.1047). Moreover, the numerical
simulation system has two Hopf bifurcation points and the hypotheses (H1) -(H3)
hold. Theorem 2.5 yields the following results: if 0 < m = 0.61 < m0, then
E∗ ≈ (1, 8.1047) is unstable; if 0.6148 < m = 0.9 < 1, then E∗ ≈ (1, 9.234) is
locally asymptotically stable; and when m = m0, spatially homogeneous bifurcating
periodic solutions occur; when m = m1, spatially non-homogeneous bifurcating
periodic solutions occur. From Theorem 3.1, if m = m0, c1(0) = −0.0456− 0.017i,
λ′(m0) = −0.9568 + 0.2654i, ω0 = 1.00399, µ2 = −0.056 < 0, β∗2 = −0.0912 < 0,
T2 = 0.0021 > 0, which implies that the homogeneous bifurcating periodic solution
is locally asymptotically stable, the bifurcating direction is backward and the period
of the bifurcating periodic solution increases. If m = m1, c1(0) = −0.1425−0.4709i,
λ′(m1) = −0.8595 + 0.2616i, ω1 = 1.00383, µ2 = −0.1484 < 0, β∗2 = −0.285 < 0,
T2 = 0.4303 > 0, which implies that the non-homogeneous bifurcating periodic
solutions is locally asymptotically stable, the bifurcating direction is backward and
the period of the bifurcating periodic solution increases.

Acknowledgments. The authors are grateful to the anonymous referee and Dr.
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ment of our manuscript.
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