Global dynamics of a staged progression model for infectious diseases

  • Received: 01 May 2005 Accepted: 29 June 2018 Published: 01 May 2006
  • MSC : 92D30.

  • We analyze a mathematical model for infectious diseases that progress through distinct stages within infected hosts. An example of such a disease is AIDS, which results from HIV infection. For a general n-stage stage-progression (SP) model with bilinear incidences, we prove that the global dynamics are completely determined by the basic reproduction number R0. If R01, then the disease-free equilibrium P0 is globally asymptotically stable and the disease always dies out. If R0>1, P0 is unstable, and a unique endemic equilibrium P is globally asymptotically stable, and the disease persists at the endemic equilibrium. The basic reproduction numbers for the SP model with density dependent incidence forms are also discussed.

    Citation: Hongbin Guo, Michael Yi Li. Global dynamics of a staged progression model for infectious diseases[J]. Mathematical Biosciences and Engineering, 2006, 3(3): 513-525. doi: 10.3934/mbe.2006.3.513

    Related Papers:

    [1] Gordon Akudibillah, Abhishek Pandey, Jan Medlock . Optimal control for HIV treatment. Mathematical Biosciences and Engineering, 2019, 16(1): 373-396. doi: 10.3934/mbe.2019018
    [2] Andrey V. Melnik, Andrei Korobeinikov . Global asymptotic properties of staged models with multiple progression pathways for infectious diseases. Mathematical Biosciences and Engineering, 2011, 8(4): 1019-1034. doi: 10.3934/mbe.2011.8.1019
    [3] James M. Hyman, Jia Li . Epidemic models with differential susceptibility and staged progression and their dynamics. Mathematical Biosciences and Engineering, 2009, 6(2): 321-332. doi: 10.3934/mbe.2009.6.321
    [4] Georgi Kapitanov . A double age-structured model of the co-infection of tuberculosis and HIV. Mathematical Biosciences and Engineering, 2015, 12(1): 23-40. doi: 10.3934/mbe.2015.12.23
    [5] M. Hadjiandreou, Raul Conejeros, Vassilis S. Vassiliadis . Towards a long-term model construction for the dynamic simulation of HIV infection. Mathematical Biosciences and Engineering, 2007, 4(3): 489-504. doi: 10.3934/mbe.2007.4.489
    [6] Mamadou L. Diouf, Abderrahman Iggidr, Max O. Souza . Stability and estimation problems related to a stage-structured epidemic model. Mathematical Biosciences and Engineering, 2019, 16(5): 4415-4432. doi: 10.3934/mbe.2019220
    [7] Wenshuang Li, Shaojian Cai, Xuanpei Zhai, Jianming Ou, Kuicheng Zheng, Fengying Wei, Xuerong Mao . Transmission dynamics of symptom-dependent HIV/AIDS models. Mathematical Biosciences and Engineering, 2024, 21(2): 1819-1843. doi: 10.3934/mbe.2024079
    [8] Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li . Global stability of an age-structured cholera model. Mathematical Biosciences and Engineering, 2014, 11(3): 641-665. doi: 10.3934/mbe.2014.11.641
    [9] Hongying Shu, Wanxiao Xu, Zenghui Hao . Global dynamics of an immunosuppressive infection model with stage structure. Mathematical Biosciences and Engineering, 2020, 17(3): 2082-2102. doi: 10.3934/mbe.2020111
    [10] Lih-Ing W. Roeger, Z. Feng, Carlos Castillo-Chávez . Modeling TB and HIV co-infections. Mathematical Biosciences and Engineering, 2009, 6(4): 815-837. doi: 10.3934/mbe.2009.6.815
  • We analyze a mathematical model for infectious diseases that progress through distinct stages within infected hosts. An example of such a disease is AIDS, which results from HIV infection. For a general n-stage stage-progression (SP) model with bilinear incidences, we prove that the global dynamics are completely determined by the basic reproduction number R0. If R01, then the disease-free equilibrium P0 is globally asymptotically stable and the disease always dies out. If R0>1, P0 is unstable, and a unique endemic equilibrium P is globally asymptotically stable, and the disease persists at the endemic equilibrium. The basic reproduction numbers for the SP model with density dependent incidence forms are also discussed.


  • This article has been cited by:

    1. Shanshan Chen, Junping Shi, Asymptotic Profiles of Basic Reproduction Number for Epidemic Spreading in Heterogeneous Environment, 2020, 80, 0036-1399, 1247, 10.1137/19M1289078
    2. J. Mushanyu, F. Nyabadza, G. Muchatibaya, A. G. R. Stewart, Modelling multiple relapses in drug epidemics, 2016, 65, 0035-5038, 37, 10.1007/s11587-015-0241-0
    3. Anupam Khatua, Tapan Kumar Kar, Impacts of Media Awareness on a Stage Structured Epidemic Model, 2020, 6, 2349-5103, 10.1007/s40819-020-00904-4
    4. Cody Palmer, Erin Landguth, Emily Stone, Tammi Johnson, The dynamics of vector-borne relapsing diseases, 2018, 297, 00255564, 32, 10.1016/j.mbs.2018.01.001
    5. Hongbin Guo, Michael Y. Li, Zhisheng Shuai, Global Dynamics of a General Class of Multistage Models for Infectious Diseases, 2012, 72, 0036-1399, 261, 10.1137/110827028
    6. Haitao Song, Shengqiang Liu, Weihua Jiang, Global dynamics of a multistage SIR model with distributed delays and nonlinear incidence rate, 2016, 01704214, 10.1002/mma.4130
    7. Suxia Zhang, Hongbin Guo, Global analysis of age-structured multi-stage epidemic models for infectious diseases, 2018, 337, 00963003, 214, 10.1016/j.amc.2018.05.020
    8. Elamin H. Elbasha, Global Stability of Equilibria in a Two-Sex HPV Vaccination Model, 2008, 70, 0092-8240, 10.1007/s11538-007-9283-0
    9. Peter J. Witbooi, Stability of an SEIR epidemic model with independent stochastic perturbations, 2013, 392, 03784371, 4928, 10.1016/j.physa.2013.06.025
    10. Zhaohui Yuan, Xingfu Zou, Global threshold property in an epidemic model for disease with latency spreading in a heterogeneous host population, 2010, 11, 14681218, 3479, 10.1016/j.nonrwa.2009.12.008
    11. GLOBAL ANALYSIS IN DELAYED RATIO-DEPENDENT GAUSE-TYPE PREDATOR-PREY MODELS, 2017, 7, 2156-907X, 1095, 10.11948/2017068
    12. Cruz Vargas-De-León, On the global stability of SIS, SIR and SIRS epidemic models with standard incidence, 2011, 44, 09600779, 1106, 10.1016/j.chaos.2011.09.002
    13. Suli Liu, Michael Y. Li, Epidemic models with discrete state structures, 2021, 01672789, 132903, 10.1016/j.physd.2021.132903
    14. Yali Yang, Jianquan Li, Yicang Zhou, Global stability of two tuberculosis models with treatment and self-cure, 2012, 42, 0035-7596, 10.1216/RMJ-2012-42-4-1367
    15. Chadi M. Saad-Roy, Bryan T. Grenfell, Simon A. Levin, Lorenzo Pellis, Helena B. Stage, P. van den Driessche, Ned S. Wingreen, Superinfection and the evolution of an initial asymptomatic stage, 2021, 8, 2054-5703, 202212, 10.1098/rsos.202212
    16. Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility, 2013, 10, 1551-0018, 369, 10.3934/mbe.2013.10.369
    17. Julie Nadeau, C. Connell McCluskey, Global stability for an epidemic model with applications to feline infectious peritonitis and tuberculosis, 2014, 230, 00963003, 473, 10.1016/j.amc.2013.12.124
    18. Andrei Korobeinikov, Global Properties of SIR and SEIR Epidemic Models with Multiple Parallel Infectious Stages, 2009, 71, 0092-8240, 75, 10.1007/s11538-008-9352-z
    19. Derdei Bichara, Abderrahman Iggidr, Laura Smith, Multi-stage Vector-Borne Zoonoses Models: A Global Analysis, 2018, 80, 0092-8240, 1810, 10.1007/s11538-018-0435-1
    20. Hongbin Guo, Michael Y. Li, Global dynamics of a staged-progression model with amelioration for infectious diseases, 2008, 2, 1751-3758, 154, 10.1080/17513750802120877
    21. Global asymptotic properties of staged models with multiple progression pathways for infectious diseases, 2011, 8, 1551-0018, 1019, 10.3934/mbe.2011.8.1019
    22. Muhammad Aslam, Rashid Murtaza, Thabet Abdeljawad, Ghaus ur Rahman, Aziz Khan, Hasib Khan, Haseena Gulzar, A fractional order HIV/AIDS epidemic model with Mittag-Leffler kernel, 2021, 2021, 1687-1847, 10.1186/s13662-021-03264-5
    23. Chadi M. Saad-Roy, Ned S. Wingreen, Simon A. Levin, Bryan T. Grenfell, Dynamics in a simple evolutionary-epidemiological model for the evolution of an initial asymptomatic infection stage, 2020, 117, 0027-8424, 11541, 10.1073/pnas.1920761117
    24. C. Connell McCluskey, Complete global stability for an SIR epidemic model with delay — Distributed or discrete, 2010, 11, 14681218, 55, 10.1016/j.nonrwa.2008.10.014
    25. Kwang Ik Kim, Zhigui Lin, Qunying Zhang, An SIR epidemic model with free boundary, 2013, 14, 14681218, 1992, 10.1016/j.nonrwa.2013.02.003
    26. Hui Zhang, Li Yingqi, Wenxiong Xu, Global Stability of an SEIS Epidemic Model with General Saturation Incidence, 2013, 2013, 2090-5572, 1, 10.1155/2013/710643
    27. ASHRAFI M. NIGER, ABBA B. GUMEL, Immune Response and Imperfect Vaccine in Malaria Dynamics, 2011, 18, 0889-8480, 55, 10.1080/08898480.2011.564560
    28. P. Magal, C.C. McCluskey, G.F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, 2010, 89, 0003-6811, 1109, 10.1080/00036810903208122
    29. Dessalegn Y. Melesse, Abba B. Gumel, Global asymptotic properties of an SEIRS model with multiple infectious stages, 2010, 366, 0022247X, 202, 10.1016/j.jmaa.2009.12.041
    30. Anna Mummert, Howard Weiss, James M McCaw, Controlling viral outbreaks: Quantitative strategies, 2017, 12, 1932-6203, e0171199, 10.1371/journal.pone.0171199
    31. R. N. Mohapatra, Donald Porchia, Zhisheng Shuai, 2015, Chapter 51, 978-81-322-2484-6, 619, 10.1007/978-81-322-2485-3_51
    32. Xiaoguang Zhang, Rui Song, Gui-Quan Sun, Zhen Jin, Global Dynamics of Infectious Disease with Arbitrary Distributed Infectious Period on Complex Networks, 2014, 2014, 1026-0226, 1, 10.1155/2014/161509
    33. Yi Wang, Jinde Cao, Global stability of a multiple infected compartments model for waterborne diseases, 2014, 19, 10075704, 3753, 10.1016/j.cnsns.2014.03.028
    34. Hongbin Guo, Michael Y. Li, Global dynamics of a staged-progression model for HIV/AIDS with amelioration, 2011, 12, 14681218, 2529, 10.1016/j.nonrwa.2011.02.021
    35. Jean Jules Tewa, Samuel Bowong, S.C. Oukouomi Noutchie, Mathematical analysis of a two-patch model of tuberculosis disease with staged progression, 2012, 36, 0307904X, 5792, 10.1016/j.apm.2012.01.026
    36. Horst R. Thieme, Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators, 2011, 250, 00220396, 3772, 10.1016/j.jde.2011.01.007
    37. C. Connell McCluskey, Global stability for a class of mass action systems allowing for latency in tuberculosis, 2008, 338, 0022247X, 518, 10.1016/j.jmaa.2007.05.012
    38. Jianquan Li, Zhien Ma, Fengqin Zhang, Stability analysis for an epidemic model with stage structure, 2008, 9, 14681218, 1672, 10.1016/j.nonrwa.2007.05.002
    39. Yoshiaki Muroya, Yukihiko Nakata, Giuseppe Izzo, Antonia Vecchio, Permanence and global stability of a class of discrete epidemic models, 2011, 12, 14681218, 2105, 10.1016/j.nonrwa.2010.12.025
    40. Zhisheng Shuai, P. van den Driessche, Global dynamics of cholera models with differential infectivity, 2011, 234, 00255564, 118, 10.1016/j.mbs.2011.09.003
    41. Jianquan Li, Yanni Xiao, Fengqin Zhang, Yali Yang, An algebraic approach to proving the global stability of a class of epidemic models, 2012, 13, 14681218, 2006, 10.1016/j.nonrwa.2011.12.022
    42. Martin Luther Mann Manyombe, Joseph Mbang, Jean Lubuma, Berge Tsanou, Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers, 2016, 13, 1551-0018, 813, 10.3934/mbe.2016019
    43. Bradley G. Wagner, David J.D. Earn, Population dynamics of live-attenuated virus vaccines, 2010, 77, 00405809, 79, 10.1016/j.tpb.2009.08.003
    44. Deqiong Ding, Wendi Qin, Xiaohua Ding, Lyapunov functions and global stability for a discretized multigroup SIR epidemic model, 2015, 20, 1553-524X, 1971, 10.3934/dcdsb.2015.20.1971
    45. Gergely Röst, Tamás Tekeli, Stability and oscillations of multistage SIS models depend on the number of stages, 2020, 380, 00963003, 125259, 10.1016/j.amc.2020.125259
    46. David Champredon, Jonathan Dushoff, David J. D. Earn, Equivalence of the Erlang-Distributed SEIR Epidemic Model and the Renewal Equation, 2018, 78, 0036-1399, 3258, 10.1137/18M1186411
    47. Jianquan Li, Yali Yang, SIR-SVS epidemic models with continuous and impulsive vaccination strategies, 2011, 280, 00225193, 108, 10.1016/j.jtbi.2011.03.013
    48. Zizi Wang, Zhiming Guo, Dynamical Behavior of a New Epidemiological Model, 2014, 2014, 1110-757X, 1, 10.1155/2014/854528
    49. Luju Liu, Weiyun Cai, Yusen Wu, Global dynamics for an SIR patchy model with susceptibles dispersal, 2012, 2012, 1687-1847, 10.1186/1687-1847-2012-131
    50. Timothy C. Reluga, Rachel A. Smith, David P. Hughes, Dynamic and game theory of infectious disease stigmas, 2019, 476, 00225193, 95, 10.1016/j.jtbi.2019.05.020
    51. Zhisheng Shuai, P. van den Driessche, Global Stability of Infectious Disease Models Using Lyapunov Functions, 2013, 73, 0036-1399, 1513, 10.1137/120876642
    52. Li-Ming Cai, Xue-Zhi Li, Mini Ghosh, Global stability of a stage-structured epidemic model with a nonlinear incidence, 2009, 214, 00963003, 73, 10.1016/j.amc.2009.03.088
    53. Zhaohui Yuan, Lin Wang, Global stability of epidemiological models with group mixing and nonlinear incidence rates, 2010, 11, 14681218, 995, 10.1016/j.nonrwa.2009.01.040
    54. Yakui Xue, Xiaohong Wang, Global Stability of a SLIT TB Model with Staged Progression, 2012, 2012, 1110-757X, 1, 10.1155/2012/571469
    55. Hongbin Guo, Michael Yi Li, Impacts of migration and immigration on disease transmission dynamics in heterogeneous populations, 2012, 17, 1553-524X, 2413, 10.3934/dcdsb.2012.17.2413
    56. Modeling the effects of carriers on transmission dynamics of infectious diseases, 2011, 8, 1551-0018, 711, 10.3934/mbe.2011.8.711
    57. Suzanne M. O’Regan, Thomas C. Kelly, Andrei Korobeinikov, Michael J.A. O’Callaghan, Alexei V. Pokrovskii, Lyapunov functions for SIR and SIRS epidemic models, 2010, 23, 08939659, 446, 10.1016/j.aml.2009.11.014
    58. Jianquan Li, Yali Yang, Yicang Zhou, Global stability of an epidemic model with latent stage and vaccination, 2011, 12, 14681218, 2163, 10.1016/j.nonrwa.2010.12.030
    59. Ihsan Ullah, Saeed Ahmad, Qasem Al-Mdallal, Zareen A. Khan, Hasib Khan, Aziz Khan, Stability analysis of a dynamical model of tuberculosis with incomplete treatment, 2020, 2020, 1687-1847, 10.1186/s13662-020-02950-0
    60. Junli Liu, Tailei Zhang, Global stability for a tuberculosis model, 2011, 54, 08957177, 836, 10.1016/j.mcm.2011.03.033
    61. C. Connell McCluskey, Using Lyapunov Functions to Construct Lyapunov Functionals for Delay Differential Equations, 2015, 14, 1536-0040, 1, 10.1137/140971683
    62. Horst R. Thieme, Hal L. Smith, Chemostats and epidemics: Competition for nutrients/hosts, 2013, 10, 1551-0018, 1635, 10.3934/mbe.2013.10.1635
    63. S. Bowong, A. Temgoua, Y. Malong, J. Mbang, Mathematical Study of a Class of Epidemiological Models with Multiple Infectious Stages, 2020, 21, 2191-0294, 259, 10.1515/ijnsns-2017-0244
    64. Suli Liu, Guyue Liu, Huilai Li, Discrete state-structured epidemic models with distributed delays, 2022, 15, 1793-5245, 10.1142/S1793524522500401
    65. Shanshan Chen, Junping Shi, Zhisheng Shuai, Yixiang Wu, Two Novel proofs of Spectral Monotonicity of Perturbed Essentially Nonnegative Matrices with Applications in Population Dynamics, 2022, 82, 0036-1399, 654, 10.1137/20M1345220
    66. Zahurul Islam, Shohel Ahmed, M. M. Rahman, M. F. Karim, M. R. Amin, Ryusuke Kon, Global Stability Analysis and Parameter Estimation for a Diphtheria Model: A Case Study of an Epidemic in Rohingya Refugee Camp in Bangladesh, 2022, 2022, 1748-6718, 1, 10.1155/2022/6545179
    67. Abderrahman Iggidr, Max O. Souza, On the limits of the Volterra function in the Lyapunov method: The Anderson-May-Gupta model as a cautionary example, 2023, 517, 0022247X, 126465, 10.1016/j.jmaa.2022.126465
    68. Florin Avram, Rim Adenane, Lasko Basnarkov, Gianluca Bianchin, Dan Goreac, Andrei Halanay, An Age of Infection Kernel, an R Formula, and Further Results for Arino–Brauer A, B Matrix Epidemic Models with Varying Populations, Waning Immunity, and Disease and Vaccination Fatalities, 2023, 11, 2227-7390, 1307, 10.3390/math11061307
    69. Derdei M. Bichara, Characterization of differential susceptibility and differential infectivity epidemic models, 2024, 88, 0303-6812, 10.1007/s00285-023-02023-2
    70. Luis Sanz-Lorenzo, Rafael Bravo de la Parra, Discrete-time staged progression epidemic models, 2024, 30, 1387-3954, 496, 10.1080/13873954.2024.2356681
    71. Binod Pant, Abba B. Gumel, Mathematical assessment of the roles of age heterogeneity and vaccination on the dynamics and control of SARS-CoV-2, 2024, 9, 24680427, 828, 10.1016/j.idm.2024.04.007
    72. Chao Liu, Peng Chen, Qiyu Jia, Lora Cheung, Effects of Media Coverage on Global Stability Analysis and Optimal Control of an Age-Structured Epidemic Model with Multi-Staged Progression, 2022, 10, 2227-7390, 2712, 10.3390/math10152712
    73. Tigabu Kasie Ayele, Emile Franc Doungmo Goufo, Stella Mugisha, MATHEMATICAL MODELING OF TUBERCULOSIS WITH DRUG RESISTANCE IN THE PRESENCE OF OPTIMAL CONTROL: A CASE STUDY IN ETHIOPIA, 2024, 32, 0218-3390, 1541, 10.1142/S0218339024400084
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3340) PDF downloads(692) Cited by(72)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog