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Abstract. We analyze a mathematical model for infectious diseases that
progress through distinct stages within infected hosts. An example of such
a disease is AIDS, which results from HIV infection. For a general n-stage
stage-progression (SP) model with bilinear incidences, we prove that the global
dynamics are completely determined by the basic reproduction number R0. If
R0 ≤ 1, then the disease-free equilibrium P0 is globally asymptotically stable
and the disease always dies out. If R0 > 1, P0 is unstable, and a unique
endemic equilibrium P ∗ is globally asymptotically stable, and the disease per-
sists at the endemic equilibrium. The basic reproduction numbers for the SP
model with density dependent incidence forms are also discussed.

1. Introduction. For diseases that progress through a long infectious period, in-
fectivity or infectiousness can vary greatly in time. The progression of a typical
HIV infection can take eight to ten years before the clinical syndrome (AIDS) oc-
curs, and the progression goes through several distinct stages, marked by drastically
different CD4+ T-cell counts and viral RNA levels. HIV-infected individuals are
highly infectious in the first few weeks after infection, then remain in an asymptotic
stage of low infectiousness for many years and become gradually more infectious
as the immune system becomes compromised and they progress to AIDS. Variabil-
ity of infectiousness in time has been modelled in the literature by Markov chain
models or staged-progression (SP) models (see, e.g. [1]-[10]). A deterministic SP
model was proposed and analyzed in [4]. To formulate an SP model, the total host
population is partitioned into the following compartments: the susceptible com-
partment S; the infectious compartment Ii, whose members are in the i-th stage
of the disease progression, where i = 1, 2, · · · , n; and the terminal compartment A.
Let δi be the mean progression rate from the i-th stage to the (i + 1)-th stage, for
i = 1, 2, · · · , n − 1, and δn the mean progression rate from the n-th stage to the
terminal stage of the disease. We assume that hosts in the terminal compartment
are non-infectious due to inactivity. In the case of AIDS, the terminal compartment
consists of people with active AIDS. AIDS patients typically either become sexually
inactive or isolated from the infection process, and their infectivity is negligible. We
also assume that there is no recovery from the disease, and thus the only exit from
compartment A is death. Let λi be the transmission coefficient for the infection
of a susceptible from an infectious in the class Ii, which takes into account aver-
age number of contact and probability of infection for each contact; then the total
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Figure 1. The transfer diagram for model (1).

incidence is given by
∑n

i=1 λiIiSf(N), where N = S + I1 + · · · + In is the total
active population. Here we assume that the density dependence of the incidence is
given by a function f(N), which will be specified later. A class of special interest
is f(N) = N−α, 0 ≤ α ≤ 1, the resulting incidence term includes two of the most
common incidence forms: the standard incidence form (α = 1) and the bilinear
incidence (α = 0). The average death rate for the susceptible compartment is d0;
for the compartment Ii it is di, which may include death due to infection; and for
the terminal compartment it is dA. We assume the inflow of susceptibles is a con-
stant Λ. The population transfer among compartments is schematically depicted in
the transfer diagram in Figure 1. All parameters in the model are assumed to be
positive.

Based on our assumptions and the transfer diagram, the following system of
differential equations can be derived for the n-stage SP model:

S
′

= Λ− d0S − λS,

I
′
1 = λS − (d1 + δ1)I1,

I
′
i = δi−1Ii−1 − (di + δi)Ii, i = 2, . . . , n,

(1)

and
A
′
= δnIn − dAA.

The incidence form is λS, where the force of infection

λ = f(N)
n∑

i=1

λiIi (2)

is density dependent. We assume that the function f(N) satisfies the following
assumptions, for N > 0,

(H) f(N) > 0, f
′
(N) ≤ 0, |Nf

′
(N)| ≤ f(N), and Nf(N) is monotonically

increasing.

The assumptions that f(N) > 0 and f ′(N) ≤ 0 are biologically motivated. As
the total population N increases, the probability of a contact with a susceptible
decreases, and thus the force of infection is expected to be a decreasing function of
N. The other two conditions we impose on f are needed for our analysis. It can be
verified that the class f(N) = N−α, 0 ≤ α ≤ 1, satisfies (H). This class contains
the standard incidence (α = 1) and the bilinear incidence (α = 0).

Adding the equations in (1) we obtain

N
′
= Λ− d0S − d1I1 − · · · − dnIn − δnIn ≤ Λ− dN,

where d = min{d0, d1, · · · dn}. It follows that lim
t→∞

sup N(t) ≤ Λ
d

. Similarly, from

the first equation of (1) we obtain S
′ ≤ Λ− d0S, and thus lim

t→∞
sup S(t) ≤ Λ

d0
. The
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feasible region for (1) can be chosen as the closed set

Γ = {(S, I1, · · · , In) ∈ Rn+1
+ : 0 ≤ S ≤ Λ

d0
, 0 ≤ S + I1 + · · ·+ In ≤ Λ

d
},

which can be verified to be positively invariant with respect to (1).
We show in Section 4 that the basic reproduction number for model (1) is given

by

R0 =
[ λ1

d1 + δ1
+

λ2

d1 + δ1

δ1

d2 + δ2
+ · · ·+ λn

d1 + δ1

δ1

d2 + δ2
· · · δn−1

dn + δn

] Λ
d0

f
( Λ

d0

)
. (3)

We prove that the global dynamics of model (1) are completely determined by the
basic reproduction number R0. If R0 ≤ 1, then the disease-free equilibrium P0 =
(Λ/d0, 0, · · · , 0) is globally asymptotically stable in the feasible region Γ, and the
disease always dies out. If R0 > 1, then P0 becomes unstable, and system (1) is uni-
formly persistent. Moreover, a unique endemic equilibrium P ∗ = (S∗, I∗1 , · · · , I∗n)
exists in the interior of Γ. For the case of bilinear incidence, namely, when f(N) = 1,
we prove that P ∗ is globally asymptotically stable in the interior of Γ if R0 > 1.

In the next section, we prove the uniqueness of the endemic equilibrium when
R0 > 1. In Section 3, global stability of P0 is established for R0 ≤ 1. Concrete
expressions of R0 are derived in Section 4. The global stability of P ∗ for the case
f(N) = 1 is proved in Section 5.

2. Equilibria. An equilibrium (S, I1, · · · , In) of (1) satisfies

0 = Λ− d0S − λS,
0 = λS − (d1 + δ1)I1,
0 = δi−1Ii−1 − (di + δi)Ii, i = 2, · · · , n,

(4)

where λ is given in (2). The disease-free equilibrium P0 = (Λ/d0, 0, · · · , 0) exists for
all positive parameter values. Next we consider the existence of endemic equilibria
P ∗ = (S∗, I∗1 , · · · , I∗n), S∗ > 0, I∗i > 0, i = 1, · · · , n.

Let

A =




−d1 − δ1

δ1 −d2 − δ2

δ2 −d3 − δ3

. . . . . .
δn−1 −dn − δn




. (5)

Then the following properties of the matrix A follow from the definition and prop-
erties of M -matrices given in the Appendix.

Proposition 2.1. The following holds for the matrix A defined above.
(1) −A is a M-matrix.
(2) −A−1 exists and is a non-negative matrix.
(3) There exists α > 0 such that −A−1x ≥ α x for x ≥ 0.

By Proposition 2.1, we know that

β = −(λ1, · · · , λn)A−1




1
0
...
0


 > 0. (6)
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Define the basic reproduction number of (1) as

R0 = β
Λ
d0

f
( Λ

d0

)
. (7)

In Section 4, we will derive the explicit expression of R0 and give its justification.
We have the following result on the number of equilibria.

Theorem 2.1. Assume that f satisfies (H). If R0 ≤ 1, then P0 is the only equilib-
rium in Γ. If R0 > 1, then a unique endemic equilibrium P ∗ exists in the interior
of Γ.

Proof. The last n equations of (4) can be written in the form

A




I1

I2

...
In


 =




−λS
0
...
0


 , or




I1

I2

...
In


 = A−1




−λS
0
...
0


 . (8)

Multiplying the row vector (λ1, · · · , λn) to (8), we have

n∑

i=1

λiIi = (λ1, · · · , λn)




I1

I2

...
In


 = (λ1, · · · , λn)A−1




−λS
0
...
0


 .

Using λ = f(N)
n∑

i=1

λiIi we have

n∑

i=1

λiIi = (λ1, · · · , λn)A−1




−λS
0
...
0


 = (λ1, · · · , λn)A−1




−f(N)S
0
...
0




n∑

i=1

λiIi.

Since
∑n

i=1 λiIi 6= 0, we obtain

1 = (λ1, · · · , λn)A−1




−f(N)S
0
...
0


 = −Sf(N)(λ1, · · · , λn)A−1




1
0
...
0


 = β S f(N).

(9)
Also, by (8),

(1, · · · , 1)




I1

I2

...
In


 = (1, · · · , 1)A−1




1
0
...
0


 (

n∑

i=1

λiIi)(−f(N)S) = pSf(N)
n∑

i=1

λiIi,

(10)
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where, by Proposition 2.1,

p
.= −(1, · · · , 1)A−1




1
0
...
0


 > 0. (11)

From the first equation of (4) we get

f(N)S
n∑

i=1

λiIi = Λ− d0S,

which, together with (10), implies
n∑

i=1

Ii = p(Λ− d0S),

and thus

N = S +
n∑

i=1

Ii = S + p(Λ− d0S) = pΛ + (1− pd0)S. (12)

Substitute (12) into (9), and we obtain the equation for an endemic equilibrium
(S, I1, · · · , In)

Sf(pΛ + (1− pd0)S) =
1
β

. (13)

We will show that equation (13) has a unique positive solution in the interval
(0, Λ/d0) when R0 > 1. Let

g(S) = S f(pΛ + (1− pd0)S).

Then g(0) = 0, and

g
( Λ

d0

)
=

Λ
d0

f
(
pΛ + (1− pd0)

Λ
d0

)
=

Λ
d0

f
( Λ

d0

)
=

R0

β
.

Furthermore, by our assumption (H) on function f(N),

g′(S) = f(pΛ + (1− pd0)S) + (1− pd0)Sf ′(pΛ + (1− pd0)S)

= f(N) + N f ′(N)− p Λ f ′(N) > 0,

where N = pΛ + (1− pd0)S. Thus the function y = g(S) is strictly monotonically
increasing, and its graph has at most one intersection with the line y = 1/β. Such an
intersection exists for S ∈ (0, Λ/d0) if and only if g(Λ/d0) > 1/β, namely, R0 > 1.
This completes the proof of Theorem 2.1.

3. Stability of the disease-free equilibrium P0. The following stability result
can be derived from a more general result in [14] for a model with arbitrarily
distributed infectious stages. The proof we presented here provides a motivation
for our definition of R0.

Theorem 3.1. Assume that f satisfies (H). If R0 ≤ 1, then P0 is globally asymp-
totically stable in Γ. If R0 > 1, then P0 is unstable, and system (1) is uniformly
persistent with respect to Γ.
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Proof. The last n equations in (1) can be rewritten as



I ′1
I ′2
...

I ′n


 =




λS
0
...
0


 + A




I1

I2

...
In


 ,

where A is given as in (5). Multiplying a row vector (c1, c2, · · · , cn) to the above
equation, we obtain

(c1, c2, · · · , cn)




I ′1
I ′2
...

I ′n


 = (c1, c2, · · · , cn)




λS
0
...
0


 + (c1, c2, · · · , cn)A




I1

I2

...
In


 .

Choose
(c1, c2, · · · , cn) = −(λ1, λ2, · · · , λn)A−1. (14)

Since −A−1 is nonnegative, we know ck ≥ 0, k = 1, · · · , n. In particular,

c1 = −(λ1, λ2, · · · , λn)A−1




1
0
...
0


 = β > 0.

For the choice of ci in (14), define a Lyapunov function

L =
n∑

k=1

ckIk.

Then, using assumption (H) we obtain, along a solution of (1),

L′ = c1f(N)S
n∑

i=1

λiIi −
n∑

i=1

λiIi = (c1f(N)S − 1)
n∑

i=1

λiIi

= (βf(N)S − 1)
n∑

i=1

λiIi ≤ (βf(S)S − 1)
n∑

i=1

λiIi

≤
[
βf

( Λ
d0

) Λ
d0
− 1

] n∑

i=1

λiIi = (R0 − 1)
n∑

i=1

λiIi ≤ 0, if R0 ≤ 1.

Furthermore, L′ = 0 if and only if either (a) I1 = I2 = · · · = In = 0 or (b) R0 = 1
and S = Λ/d0 are satisfied. In either case, the largest compact invariant subset of
the set

G = {(S, I1, · · · , In) ∈ Γ : L′ = 0}
is the singleton {P0}. To see this, let K be the largest compact invariant subset
of G. In case (a), each solution in K satisfies equation S′(t) = Λ − d0S, and the
only solution that is bounded for t ∈ (−∞,∞) is S = Λ/d0. In case (b), S = Λ/d0

satisfies equation

S′ = Λ− d0S − [f(N)
n∑

k=1

λkIk]S,

which implies
∑n

k=1 λkIk = 0, i.e., I1 = · · · = In = 0. Therefore, all solutions in Γ
converge to P0, by LaSalle’s Invariance Principle (see [11]). The global attractivity
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of P0 and the Lyapunov function L imply that P0 is also locally stable, since other-
wise P0 will have a homoclinic orbit that is entirely contained in G, contradicting
that the largest compact invariant set in G is {P0}. This establishes the global
stability of P0 when R0 ≤ 1.

If R0 > 1, L′ > 0 for S sufficiently close to Λ/d0, and thus solutions in Γ suffi-
ciently close to P0 move away from P0, except those on the invariant S-axis, along
which solutions converge to P0. Therefore, P0 is unstable. Furthermore, {P0} is the
only compact invariant set on the boundary of Γ and is isolated. The local dynam-
ics near P0 and the boundary of Γ imply that system (1) is uniformly persistent
(see [12]) with respect to Γ, when R0 > 1. The proof of uniform persistence of (1)
is similar to that of Proposition 3.3 in [13].

4. The basic reproduction number R0. Theorems 2.1 and 3.1 establish R0 as a
sharp threshold parameter. If R0 ≤ 1, the disease dies out irrespective of the initial
number of cases. If R0 > 1, then the disease persists in the feasible region and there
is a unique endemic equilibrium. Such a role of threshold parameter is expected of
the basic reproduction number, the average number of infections caused by a single
infective in a population at the disease-free equilibrium ([15, 16, 17, 18, 19, 20]). It is
then reasonable to regard the parameter R0 defined in (7) as the basic reproduction
number.

Our derivation of R0 is based on the stability analysis of the disease-free equi-
librium P0 using a Lyapunov function, as in [19]. Other methods of deriving R0

exist in the literature; among them are the method of second generation matrix
in [17], which was later modified in [20], and the derivation based on the linear
stability analysis of P0 (see [18]). In the following, we show that the method of
next generation matrix as formulated in [20] for deriving the basic reproduction
number leads to the same R0 as given in (7).

Set y = (I1, · · · , In, S)T . Then model (1) can be written as

y′ = F(y) + V(y),

where

F(y) =




λS
0
...
0


 , V(y) =




−(d1 + δ1)I1

δ1I1 − (d2 + δ2)I2

...
δn−1In−1 − (dn + δn)In

Λ− d0S − λS




.

At the disease-free equilibrium in the new coordinates, P̃0 = (0, 0, · · · , 0, Λ/d0),

∂F
∂y

(P̃0) =
[
Fn×n 0

0 0

]
,

where

Fn×n =




−λ1 −λ2 · · · −λn

0 · · · · · · 0
...

...
0 · · · · · · 0


 g

( Λ
d0

)
,
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and g(N) = Nf(N). Moreover,

∂V
∂y

(P̃0) =




0

Vn×n

...
0

−λ1g
(

Λ
d0

)
· · · −λng

(
Λ
d0

)
−d0




.

Here Vn×n = A, where A is defined in (5). Hence, the next generation matrix (see
[20])

FV −1 =




c1 c2 · · · cn

0 · · · · · · 0
...

...
0 · · · · · · 0


 g

( Λ
d0

)
,

where ci are defined in (14), and thus c1 = β. The basic reproduction number is
defined in [20] as the spectral radius, ρ(FV −1), of the matrix FV −1. It is easy to
see that

ρ(FV −1) = c1 g
( Λ

d0

)
= β

Λ
d0

f
( Λ

d0

)
,

which gives the same R0 as in (7).
Next, we derive the explicit expression of β defined in (6) and then derive R0

according to (7). Let In×n be the identity matrix. Solving the matrix equation
−AX = In×n, we obtain that X = −A−1 is a lower triangular matrix

−A−1 =




c11 0
c21 c22

...
...

. . .
cn1 cn2 . . . cnn


 , (15)

where cij ’s are determined by the following iterative relations:

cii =
1

di + δi
, i = 1, · · · , n,

cki =
δk−1

dk + δk
c(k−1)i, i = 1, · · · , n, k = 2, · · · , n, k 6= i.

Therefore

R0 =
[ λ1

d1 + δ1
+

λ2

d1 + δ1

δ1

d2 + δ2
+· · ·+ λn

d1 + δ1

δ1

d2 + δ2
· · · δn−1

dn + δn

] Λ
d0

f
( Λ

d0

)
. (16)

For the class f(N) = N−α, 0 ≤ α ≤ 1, we have the corresponding basic reproduc-
tion number

R0,α =
[ λ1

d1 + δ1
+

λ2

d1 + δ1

δ1

d2 + δ2
+ · · ·+ λn

d1 + δ1

δ1

d2 + δ2
· · · δn−1

dn + δn

]( Λ
d0

)1−α

.

(17)
If α = 1, then R0,1 gives the same expression for the basic reproduction number for
the standard incidence as in [4, 20], while if α = 0, R0,0 gives the basic reproduction
number for the bilinear incidence. We also note from (17) that R0,α decreases as α
increases, if Λ/d0 > 1; the bilinear incidence gives the largest value of R0,α while
the standard incidence gives the smallest value (see Figure 2).
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0 1

α

R0,α

R0,0

R0,1

Figure 2. Dependence of R0,α on α.

5. Stability of the endemic equilibrium P ∗. In this section, for f(N) ≡ 1, we
prove the global stability of the endemic equilibrium P ∗ when R0 > 1.

Theorem 5.1. Assume that f(N) ≡ 1 and R0 > 1. Then the endemic equilibrium
P ∗ is asymptotically stable. Furthermore, all solutions in the interior of Γ converge
to P ∗.

Proof. Rewrite the equilibrium equations (4) for P ∗ = (S∗, I∗1 , · · · , I∗n) as

Λ = d0S
∗ + (

n∑

i=1

λiI
∗
i )S∗,

n∑

i=1

λiI
∗
i S∗ = (d1 + δ1)I∗1 ,

δi−1I
∗
i−1 = (di + δi)I∗i , i = 2, . . . , n,

(18)

which leads to

S∗ =
(d1 + δ1)I∗1

n∑
i=1

λiI∗i

, (19)

and
δi−1I

∗
i−1

di + δi
= I∗i , i = 2, · · · , n. (20)

Set x = (S, I1, I2, · · · , In) ∈ Γ ⊂ R+
n+1. Consider a Lyapunov function

W = W (x) =
(
S−S∗−S∗ ln

S

S∗

)
+

(
I1−I∗1 −I∗1 ln

I1

I∗1

)
+

n∑

i=2

bi

(
Ii−I∗i −I∗i ln

Ii

I∗i

)
,

where x∗ = P ∗ = (S∗, I∗1 , · · · , I∗n), and bi > 0 is defined inductively in the following
way:

bi =
bi+1δi + λiS

∗

di + δi
, i = 2, · · · , n− 1, and bn =

λnS∗

dn + δn
. (21)

We note that W (x) ≥ 0, for x ∈ Int Γ, the interior of Γ, and W (x) = 0 ⇐⇒ x = x∗.
So function W is positive definite with respect to the endemic equilibrium x∗ = P ∗.
Solving the inductive relation (21), we obtain

bi =

n∑
k=i

λkI∗kS∗

(di + δi)I∗i
, i = 2, · · · , n, (22)
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or equivalently

bi(di + δi)I∗i =
n∑

k=i

λkI∗kS∗, i = 2, · · · , n. (23)

Computing the derivative of W along solutions of system (1), we obtain

dW

dt
= (1− S∗

S
)S

′
+ (1− I∗1

I1
)I
′
1 +

n∑

i=2

bi(1− I∗i
Ii

)I
′
i . (24)

Using (1) we have

(1− S∗

S
)S

′

= Λ− d0S −
n∑

i=1

λiIiS − ΛS∗

S
+ d0S

∗ +
n∑

i=1

λiIiS
∗

= 2d0S
∗ +

n∑

i=1

λiI
∗
i S∗ − d0S −

n∑

i=1

λiIiS − d0S
∗2

S
−

n∑

i=1

λiI
∗
i

S∗2

S
+

n∑

i=1

λiIiS
∗

=
(

2d0S
∗ − d0S − d0S

∗2

S

)
−

n∑

i=1

λiIiS +
n∑

i=1

λiIiS
∗ +

n∑

i=1

λiI
∗
i S∗ −

n∑

i=1

λiI
∗
i

S∗2

S

≤ −
n∑

i=1

λiIiS +
n∑

i=1

λiIiS
∗ +

n∑

i=1

λiI
∗
i S∗ −

n∑

i=1

λiI
∗
i

S∗2

S
,

(25)
since (

2d0S
∗ − d0S − d0S

∗2

S

)
= d0S

∗
(

2− S

S∗
− S∗

S

)
≤ 0.

In the second step of the above derivation, we substituted Λ by the right-hand side
of the first equation of (18). Similarly, using (1) and (18), we obtain

(1− I∗1
I1

)I
′
1 =

n∑

i=1

λiIiS − (d1 + δ1)I1 −
n∑

i=1

λiIiS
I∗1
I1

+ (d1 + δ1)I∗1

=
n∑

i=1

λiIiS − (d1 + δ1)I1 −
n∑

i=1

λiIiS
I∗1
I1

+
n∑

i=1

λiI
∗
i S∗.

(26)

For i = 2, 3, · · · , n, using (1),

bi(1− I∗i
Ii

)I
′
i = biδi−1Ii−1 − bi(di + δi)Ii − biδi−1Ii−1I

∗
i

Ii
+ bi(di + δi)I∗i . (27)

Notice that
n∑

i=1

λiIiS
∗ − (d1 + δ1)I1 +

n∑

i=2

[biδi−1Ii−1 − bi(di + δi)Ii]

= λ1I1S
∗ − (d1 + δ1)I1 +

n∑

i=2

(λiIiS
∗ + biδi−1Ii−1 − bi(di + δi)Ii)

= (λ1S
∗ − (d1 + δ1) + b2δ1)I1 +

n−1∑

i=2

(λiS
∗ + bi+1δi − bi(di + δi))Ii

+ (λnS∗ − bn(dn + δn))In

= 0.

(28)
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It is straightforward to verify that the last two terms of the above expression are
0, using the inductive relation (21) of bi, i = 2, · · · , n. To see that the first term is
zero, we observe

λ1S
∗ − (d1 + δ1) + b2δ1

= λ1S
∗ +

∑n
k=2 λkI∗kS∗

(d2 + δ2)I∗2
δ1 − (d1 + δ1) = λ1S

∗ +
n∑

k=2

λkI∗kS∗
δ1

δ1I∗1
− (d1 + δ1)

= λ1S
∗ +

n∑

k=2

λkI∗kS∗
1
I∗1
− (d1 + δ1) =

1
I∗1

[
n∑

k=1

λkI∗kS∗ − (d1 + δ1)I∗1

]
= 0

by (19). Using (25)-(28), we can calculate and simplify (24) as

dW

dt
≤

(
−

n∑

i=1

λiI
∗
i

S∗2

S
−

n∑

i=1

λiIiS
I∗1
I1
−

n∑

i=2

biδi−1Ii−1I
∗
i

Ii

)

+

(
n∑

i=2

bi(di + δi)I∗i + 2
n∑

i=1

λiI
∗
i S∗

)

.= A + B.

(29)

From (23) we have

B =
n∑

i=2

bi(di + δi)I∗i + 2
n∑

i=1

λiI
∗
i S∗

=
n∑

i=1

(i + 1)λiI
∗
i S∗.

(30)

By (22), (20), and exchange of order of summation, we have
n∑

i=2

biδi−1Ii−1I
∗
i

Ii
=

n∑

i=2

∑n
k=i λkI∗kS∗

(di + δi)I∗i

δi−1Ii−1I
∗
i

Ii
=

n∑

i=2

n∑

k=i

λkI∗kS∗
δi−1Ii−1

(di + δi)Ii

=
n∑

i=2

n∑

k=i

λkI∗kS∗
I∗i Ii−1

I∗i−1Ii
=

n∑

i=2

λiI
∗
i S∗

i∑

k=2

I∗kIk−1

IkI∗k−1

.

(31)
Therefore, from (29) - (31), we have

dW

dt
≤

n∑

i=2

[
(i + 1)λiI

∗
i S∗ − λiI

∗
i

S∗2

S
− λiIiS

I∗1
I1
− λiI

∗
i S∗

i∑

k=2

I∗kIk−1

IkI∗k−1

]

=
n∑

i=2

λiI
∗
i S∗

[
(i + 1)− S∗

S
− SIiI

∗
1

S∗I∗i I1
−

i∑

k=2

I∗kIk−1

IkI∗k−1

]
.

(32)

For each i, we have

−S∗

S
− SIiI

∗
1

S∗I∗i I1
−

i∑

k=2

I∗kIk−1

IkI∗k−1

≤ −(i + 1), (33)

by the inequality

a1 + a2 + · · ·+ an ≥ n n
√

a1 · a2 · · · an, for ai ≥ 0, i = 1, · · · , n.
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Therefore, along any solution (S(t), I1(t), I2(t), · · · , In(t)) in Int Γ, we conclude

from (32) and (33) that
dW

dt
≤ 0. Furthermore,

dW

dt
= 0, if and only if equalities

hold in (25), (29), (32), and (33), and if and only if (S(t), I1(t), I2(t), · · · , In(t))
is the endemic equilibrium P ∗. Therefore the directional derivative of W in the
direction of the vector field of (1) is negative definite in Int Γ with respect to the
endemic equilibrium P ∗. This implies that the basin of attraction of P ∗ contains
Int Γ. The positive definiteness of W (x) with respect to P ∗ implies that P ∗ is also
locally stable. This completes the proof of Theorem 5.1.

Remark 1. Lyapunov functions of the type used in the proof of Theorem 5.1 have
been used in the literature, for ecological models (e.g., see [21]) and more recently
for epidemic models (e.g., see [22]).

Acknowledgments. The authors wish to thank two anonymous referees whose
suggestions have improved the manuscript. This research is supported in part
by grants from the National Science Foundation (US), the Natural Science and
Engineering Research Council of Canada, and Canada Foundation for Innovation.

6. Appendix. The following definition and properties of M -matrices are used in
our analysis. They can be found in most of the texts on matrix theory; see, e.g.,
[23].

Definition 6.1. Bn×n is a M -matrix if
(1) Off-diagonal entries of B are non-positive, and
(2) B is positively stable, namely, all eigenvalues of B have positive real parts.

Proposition 6.1. Properties of M -matrices
(1) B = αI − P, P ≥ 0, α > ρ(P ), the spectral radius of P .
(2) B is nonsingular and B−1 ≥ 0.
(3) There exists β > 0 such that B−1x ≥ β x for x ≥ 0.
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