Citation: Ruofeng Rao, Xiaodi Li. Input-to-state stability in the meaning of switching for delayed feedback switched stochastic financial system[J]. AIMS Mathematics, 2021, 6(1): 1040-1064. doi: 10.3934/math.2021062
[1] | C. D. Huang, L. M. Cai, J. D. Cao, Linear control for synchronization of a fractional-order time-delayed chaotic financial system, Chaos Solit. Frac., 113 (2018), 326-332. doi: 10.1016/j.chaos.2018.05.022 |
[2] | Q. Gao, J. H. Ma, Chaos and Hopf bifurcation of a finance system, Nonlinear Dyn., 58 (2009), 209-216. doi: 10.1007/s11071-009-9472-5 |
[3] | X. L. Gong, X. Liu, X. Xiong, Chaotic analysis and adaptive synchronization for a class of fractional order financial system, Phys. A: SMA., 522 (2019), 33-42. doi: 10.1016/j.physa.2019.01.138 |
[4] | M. C. Zhao, J. W. Wang, H∞ control of a chaotic finance system in the presence of external disturbance and input time-delay, Appl. Math. Comput., 233 (2014), 320-327. |
[5] | Y. Cao, Chaotic synchronization based on fractional order calculus financial system, Chaos Solit. Frac., 130 (2020), 1-7. |
[6] | A. Hajipour, H. Tavakoli, Dynamic Analysis and Adaptive Sliding Mode Controller for a Chaotic Fractional Incommensurate Order Financial System, Int. J. Bifur. Chaos, 27 (2017), 1-14. |
[7] | R. F. Rao, S. M. Zhong, Impulsive control on delayed feedback chaotic financial system with Markovian jumping, Adv. Diff. Equ., 2020 (2020), 1-18. doi: 10.1186/s13662-019-2438-0 |
[8] | R. F. Rao, S. M. Zhong, Input-to-state stability and no-inputs stabilization of delayed feedback chaotic financial system involved in open and closed economy, Disc. Contin. Dyn. Sys., Ser. S., 2020 (2020), 1-19. |
[9] | R. F. Rao, Global stability of a markovian jumping chaotic financial system with partially unknown transition rates under impulsive control involved in the positive interest rate, Mathematics, 7 (2019), 1-15. |
[10] | J. Duan, Financial system modeling using deep neural networks (DNNs) for effective risk assessment and prediction, J. Franklin Inst., 356 (2019), 4716-4731. doi: 10.1016/j.jfranklin.2019.01.046 |
[11] | Q. K. Song, J. D. Cao, Dynamical behaviors of discrete-time fuzzy cellular neural networks with variable delays and impulses, J. Franklin Inst., 345 (2008), 39-59. doi: 10.1016/j.jfranklin.2007.06.001 |
[12] | D. H. Zheng, H. B. Zhang, J. A. Zhang, W. X. Zheng, S. W. Su, Stability of asynchronous switched systems with sequence-based average dwell time approaches, J. Franklin Inst., 357 (2020), 2149-2166. doi: 10.1016/j.jfranklin.2019.11.067 |
[13] | R. Sakthivel, S. Selvi, K. Mathiyalagan, P. Shi, Reliable mixed H∞ and passivity-based control for fuzzy markovian switching systems with probabilistic time delays and actuator failures, IEEE Trans. Cyb., 23 (2015), 2720-2731. |
[14] | T. Takagi, M. Sugeno, Fuzzy identification of systems and its application to modeling and control, IEEE Trans. Syst., 15 (1985), 116-132. |
[15] | Q. K. Song, Z. J. Zhao, J. X. Yang, Passivity and passification for stochastic Takagi-Sugeno fuzzy systems with mixed time-varying delays, Neurocomputing, 122 (2013), 330-337. doi: 10.1016/j.neucom.2013.06.018 |
[16] | Z. P. Wang, H. N. Wu, Fuzzy impulsive control for uncertain nonlinear systems with guaranteed cost, Fuzzy Sets Syst., 302 (2016), 143-162. doi: 10.1016/j.fss.2015.09.026 |
[17] | Q. K. Song, Z. D. Wang, Dynamical behaviors of fuzzy reaction-diffusion periodic cellular neural networks with variable coefficients and delays, Appl. Math. Mod., 33 (2009), 3533-3545. doi: 10.1016/j.apm.2008.11.017 |
[18] | S. J. Long, Q. K. Song, X. H. Wang, D. S. Li, Stability analysis of fuzzy cellular neural networks with time delay in the leakage term and impulsive perturbations, J. Franklin Inst., 349 (2012), 2461-2479. doi: 10.1016/j.jfranklin.2012.05.009 |
[19] | D. Yang, X. D. Li, S. J. Song, Design of state-dependent switching laws for stability of switched stochastic neural networks with time-delays, IEEE Trans. Neu. Net. Learn. Sys., 31 (2020), 1808-1819. doi: 10.1109/TNNLS.2019.2927161 |
[20] | J. Cheng, J. H. Park, Y. J. Liu, Z. J. Liu, L. M. Tang, Finite-time H∞ fuzzy control of nonlinear Markovian jump delayed systems with partly uncertain transition descriptions, Fuzzy Sets Syst., 314 (2017), 99-115. doi: 10.1016/j.fss.2016.06.007 |
[21] | J. J. Ren, X. Z. Liu, H. Zhu, S. M. Zhong, C. Wu, Exponential H∞ synchronization of switching fuzzy systems with time-varying delay and impulses, Fuzzy Sets Syst., 365 (2019), 116-139. doi: 10.1016/j.fss.2018.05.019 |
[22] | Q. Li, X. Z. Liu, Q. X. Zhu, S. M. Zhong, D. Zhang, Distributed state estimation for stochastic discrete-time sensor networks with redundant channels, Appl. Math. Comput., 343 (2019), 230-246. |
[23] | S. Y. Dong, H. Zhu, S. M. Zhong, K. B. Shi, J. Cheng, W. Kang, New result on reliable H∞ performance state estimation for memory static neural networks with stochastic sampled-data communication, Appl. Math. Comput., 364 (2020), 1-17. |
[24] | M. Z. Luo, X. Z. Liu, S. M. Zhong, J. Cheng, Synchronization of multi-stochastic-link complex networks via aperiodically intermittent control with two different switched periods, Phys. A: SMA., 509 (2018), 20-38. doi: 10.1016/j.physa.2018.05.145 |
[25] | X. D. Li, X. L. Fu, Stability analysis of stochastic functional differential equations with infinite delay and its application to recurrent neural networks, J. Comput. Appl. Math., 234 (2010), 407-417. doi: 10.1016/j.cam.2009.12.033 |
[26] | R. F. Rao, S. M. Zhong, Z. L. Pu, Fixed point and p-stability of T-S fuzzy impulsive reaction-diffusion dynamic neural networks with distributed delay via Laplacian semigroup, Neurocomputing, 335 (2019), 170-184. doi: 10.1016/j.neucom.2019.01.051 |
[27] | H. Cheng, S. M. Zhong, X. Q. Li, Q. S. Zhong, J. Cheng, Exponential synchronization of delayed memristor-based neural networks with stochastic perturbation via nonlinear control, Neurocomputing, 340 (2019), 90-98. doi: 10.1016/j.neucom.2019.02.032 |
[28] | D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes Math., 840, Berlin, New York : Springer-Verlag, 1981. |
[29] | D. Horstmann, M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Diff. Equ., 215 (2005), 52-107. doi: 10.1016/j.jde.2004.10.022 |
[30] | R. F. Rao, Delay-dependent exponential stability for nonlinear reaction-diffusion uncertain cohen-grossberg neural networks with partially known transition rates via Hardy-Poincare inequality, Chin. Ann. Math., Ser. S., 35 (2014), 575-598. doi: 10.1007/s11401-014-0839-7 |
[31] | R. F. Rao, S. M. Zhong, X. R. Wang, Stochastic stability criteria with LMI conditions for Markovian jumping impulsive BAM neural networks with mode-dependent time-varying delays and nonlinear reaction-diffusion, Commun. Nonlinear Sci. Num. Simu., 19 (2014), 258-273. doi: 10.1016/j.cnsns.2013.05.024 |
[32] | R. F. Rao, Stability analysis of nontrivial stationary solution and constant equilibrium point of reaction-diffusion neural networks with time delays under Dirichlet zero boundary value, Preprint, 2020, 2020040277 (doi: 10.20944/preprints202004.0277.v6).Availablefrom:https://www.preprints.org/manuscript/202004.0277/v6 |
[33] | X. R. Mao, Stochastic Differential Equations and Applications, Horwood, 1997. |
[34] | D. Xu, Z. G. Yang, Y. M. Huang, Existence-uniqueness and continuation theorems for stochastic functional differential equations, J. Diff. Equ., 245 (2008), 1681-1703. doi: 10.1016/j.jde.2008.03.029 |
[35] | W. J. Xie, Q. X. Zhu, Input-to-state stability of stochastic nonlinear fuzzy Cohen-Grossberg neural networks with the event-triggered control, Int. J. Control, 93 (2020), 2043-2052. doi: 10.1080/00207179.2018.1540887 |
[36] | X. D. Li, X. L. Zhang, S. J. Song, Effect of delayed impulses on input-to-state stability of nonlinear systems, Automatica, 76 (2017), 378-382. doi: 10.1016/j.automatica.2016.08.009 |
[37] | X. D. Li, X. Y. Yang, J. D. Cao, Event-triggered impulsive control for nonlinear delay systems, Automatica, 117 (2020), 108981. |
[38] | P. Li, X. D. Li, Input-to-state stability of nonlinear impulsive systems via Lyapunov method involving indefinite derivative, Math. Comp. Simu., 155 (2019), 314-323. doi: 10.1016/j.matcom.2018.06.010 |
[39] | H. T. Zhu, P. Li, X. D. Li, H. Akca, Input-to-state stability for impulsive switched systems with incommensurate impulsive switching signals, Commun. Nonlinear Sci. Num. Simu., 80 (2020), 104969. |
[40] | X. D. Li, X. Y. Yang, S. J. Song, Lyapunov conditions for finite-time stability of time-varying time-delay systems, Automatica, 103 (2019), 135-140. doi: 10.1016/j.automatica.2019.01.031 |
[41] | X. D. Li, X. Y. Yang, T. W. Huang, Persistence of delayed cooperative models: Impulsive control method, Appl. Math. Comput., 342 (2019), 130-146. |
[42] | X. D. Li, J. H. Shen, R. Rakkiyappan, Persistent impulsive effects on stability of functional differential equations with finite or infinite delay, Appl. Math. Comput., 329 (2018), 14-22. |
[43] | D. Yang, X. D. Li, J. H. Shen, Z. J. Zhou, State-dependent switching control of delayed switched systems with stable and unstable modes, Math. Meth. Appl. Sci., 41 (2018), 6968-6983. doi: 10.1002/mma.5209 |
[44] | P. Li, X. D. Li, Input-to-state stability of nonlinear impulsive systems via Lyapunov method involving indefinite derivative, Math. Comput. Simu., 155 (2019), 314-323. doi: 10.1016/j.matcom.2018.06.010 |
[45] | W. C. Chen, Dynamics and control of a financial system with time-delayed feedbacks, Chaos Soli. Frac., 37 (2008), 1198-1207. doi: 10.1016/j.chaos.2006.10.016 |
[46] | J. H. Ma, Y. S. Chen, Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (I), Appl. Math. Mech., 11 (2001), 1240-1251. |
[47] | J. H. Ma, Y. S. Chen, Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (II), Appl. Math. Mech., 12 (2001), 1375-1382. |