Research article

Input-to-state stability in the meaning of switching for delayed feedback switched stochastic financial system

  • † Contributed equally as the first author
  • Received: 30 August 2020 Accepted: 03 November 2020 Published: 06 November 2020
  • MSC : 34D23, 93D05

  • Financial system is essentially chaotic and unstable if there is not any external inputs. By means of Lyapunov function method, design of switching law, novel fuzzy assumption, $L^p$ estimation technique and Laplace semigroup theory, the author presents the boundedness and LMI-based (globally) asymptotical input-to-state stability criteria of financial systems. Particularly, the globally asymptotical stability in the meaning of switching implies that when the time $t$ is big enough, the dynamic of any subsystem must approach its unique equilibrium point. Besides, the global stability in the classical sense is not applicable to eruption of the periodical financial crisis. So the stability in the meaning of switching proposed in this paper is suitable and appropriate. Numerical examples illuminate the effectiveness of the obtained results.

    Citation: Ruofeng Rao, Xiaodi Li. Input-to-state stability in the meaning of switching for delayed feedback switched stochastic financial system[J]. AIMS Mathematics, 2021, 6(1): 1040-1064. doi: 10.3934/math.2021062

    Related Papers:

  • Financial system is essentially chaotic and unstable if there is not any external inputs. By means of Lyapunov function method, design of switching law, novel fuzzy assumption, $L^p$ estimation technique and Laplace semigroup theory, the author presents the boundedness and LMI-based (globally) asymptotical input-to-state stability criteria of financial systems. Particularly, the globally asymptotical stability in the meaning of switching implies that when the time $t$ is big enough, the dynamic of any subsystem must approach its unique equilibrium point. Besides, the global stability in the classical sense is not applicable to eruption of the periodical financial crisis. So the stability in the meaning of switching proposed in this paper is suitable and appropriate. Numerical examples illuminate the effectiveness of the obtained results.


    加载中


    [1] C. D. Huang, L. M. Cai, J. D. Cao, Linear control for synchronization of a fractional-order time-delayed chaotic financial system, Chaos Solit. Frac., 113 (2018), 326-332. doi: 10.1016/j.chaos.2018.05.022
    [2] Q. Gao, J. H. Ma, Chaos and Hopf bifurcation of a finance system, Nonlinear Dyn., 58 (2009), 209-216. doi: 10.1007/s11071-009-9472-5
    [3] X. L. Gong, X. Liu, X. Xiong, Chaotic analysis and adaptive synchronization for a class of fractional order financial system, Phys. A: SMA., 522 (2019), 33-42. doi: 10.1016/j.physa.2019.01.138
    [4] M. C. Zhao, J. W. Wang, H control of a chaotic finance system in the presence of external disturbance and input time-delay, Appl. Math. Comput., 233 (2014), 320-327.
    [5] Y. Cao, Chaotic synchronization based on fractional order calculus financial system, Chaos Solit. Frac., 130 (2020), 1-7.
    [6] A. Hajipour, H. Tavakoli, Dynamic Analysis and Adaptive Sliding Mode Controller for a Chaotic Fractional Incommensurate Order Financial System, Int. J. Bifur. Chaos, 27 (2017), 1-14.
    [7] R. F. Rao, S. M. Zhong, Impulsive control on delayed feedback chaotic financial system with Markovian jumping, Adv. Diff. Equ., 2020 (2020), 1-18. doi: 10.1186/s13662-019-2438-0
    [8] R. F. Rao, S. M. Zhong, Input-to-state stability and no-inputs stabilization of delayed feedback chaotic financial system involved in open and closed economy, Disc. Contin. Dyn. Sys., Ser. S., 2020 (2020), 1-19.
    [9] R. F. Rao, Global stability of a markovian jumping chaotic financial system with partially unknown transition rates under impulsive control involved in the positive interest rate, Mathematics, 7 (2019), 1-15.
    [10] J. Duan, Financial system modeling using deep neural networks (DNNs) for effective risk assessment and prediction, J. Franklin Inst., 356 (2019), 4716-4731. doi: 10.1016/j.jfranklin.2019.01.046
    [11] Q. K. Song, J. D. Cao, Dynamical behaviors of discrete-time fuzzy cellular neural networks with variable delays and impulses, J. Franklin Inst., 345 (2008), 39-59. doi: 10.1016/j.jfranklin.2007.06.001
    [12] D. H. Zheng, H. B. Zhang, J. A. Zhang, W. X. Zheng, S. W. Su, Stability of asynchronous switched systems with sequence-based average dwell time approaches, J. Franklin Inst., 357 (2020), 2149-2166. doi: 10.1016/j.jfranklin.2019.11.067
    [13] R. Sakthivel, S. Selvi, K. Mathiyalagan, P. Shi, Reliable mixed H and passivity-based control for fuzzy markovian switching systems with probabilistic time delays and actuator failures, IEEE Trans. Cyb., 23 (2015), 2720-2731.
    [14] T. Takagi, M. Sugeno, Fuzzy identification of systems and its application to modeling and control, IEEE Trans. Syst., 15 (1985), 116-132.
    [15] Q. K. Song, Z. J. Zhao, J. X. Yang, Passivity and passification for stochastic Takagi-Sugeno fuzzy systems with mixed time-varying delays, Neurocomputing, 122 (2013), 330-337. doi: 10.1016/j.neucom.2013.06.018
    [16] Z. P. Wang, H. N. Wu, Fuzzy impulsive control for uncertain nonlinear systems with guaranteed cost, Fuzzy Sets Syst., 302 (2016), 143-162. doi: 10.1016/j.fss.2015.09.026
    [17] Q. K. Song, Z. D. Wang, Dynamical behaviors of fuzzy reaction-diffusion periodic cellular neural networks with variable coefficients and delays, Appl. Math. Mod., 33 (2009), 3533-3545. doi: 10.1016/j.apm.2008.11.017
    [18] S. J. Long, Q. K. Song, X. H. Wang, D. S. Li, Stability analysis of fuzzy cellular neural networks with time delay in the leakage term and impulsive perturbations, J. Franklin Inst., 349 (2012), 2461-2479. doi: 10.1016/j.jfranklin.2012.05.009
    [19] D. Yang, X. D. Li, S. J. Song, Design of state-dependent switching laws for stability of switched stochastic neural networks with time-delays, IEEE Trans. Neu. Net. Learn. Sys., 31 (2020), 1808-1819. doi: 10.1109/TNNLS.2019.2927161
    [20] J. Cheng, J. H. Park, Y. J. Liu, Z. J. Liu, L. M. Tang, Finite-time H fuzzy control of nonlinear Markovian jump delayed systems with partly uncertain transition descriptions, Fuzzy Sets Syst., 314 (2017), 99-115. doi: 10.1016/j.fss.2016.06.007
    [21] J. J. Ren, X. Z. Liu, H. Zhu, S. M. Zhong, C. Wu, Exponential H synchronization of switching fuzzy systems with time-varying delay and impulses, Fuzzy Sets Syst., 365 (2019), 116-139. doi: 10.1016/j.fss.2018.05.019
    [22] Q. Li, X. Z. Liu, Q. X. Zhu, S. M. Zhong, D. Zhang, Distributed state estimation for stochastic discrete-time sensor networks with redundant channels, Appl. Math. Comput., 343 (2019), 230-246.
    [23] S. Y. Dong, H. Zhu, S. M. Zhong, K. B. Shi, J. Cheng, W. Kang, New result on reliable H performance state estimation for memory static neural networks with stochastic sampled-data communication, Appl. Math. Comput., 364 (2020), 1-17.
    [24] M. Z. Luo, X. Z. Liu, S. M. Zhong, J. Cheng, Synchronization of multi-stochastic-link complex networks via aperiodically intermittent control with two different switched periods, Phys. A: SMA., 509 (2018), 20-38. doi: 10.1016/j.physa.2018.05.145
    [25] X. D. Li, X. L. Fu, Stability analysis of stochastic functional differential equations with infinite delay and its application to recurrent neural networks, J. Comput. Appl. Math., 234 (2010), 407-417. doi: 10.1016/j.cam.2009.12.033
    [26] R. F. Rao, S. M. Zhong, Z. L. Pu, Fixed point and p-stability of T-S fuzzy impulsive reaction-diffusion dynamic neural networks with distributed delay via Laplacian semigroup, Neurocomputing, 335 (2019), 170-184. doi: 10.1016/j.neucom.2019.01.051
    [27] H. Cheng, S. M. Zhong, X. Q. Li, Q. S. Zhong, J. Cheng, Exponential synchronization of delayed memristor-based neural networks with stochastic perturbation via nonlinear control, Neurocomputing, 340 (2019), 90-98. doi: 10.1016/j.neucom.2019.02.032
    [28] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes Math., 840, Berlin, New York : Springer-Verlag, 1981.
    [29] D. Horstmann, M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Diff. Equ., 215 (2005), 52-107. doi: 10.1016/j.jde.2004.10.022
    [30] R. F. Rao, Delay-dependent exponential stability for nonlinear reaction-diffusion uncertain cohen-grossberg neural networks with partially known transition rates via Hardy-Poincare inequality, Chin. Ann. Math., Ser. S., 35 (2014), 575-598. doi: 10.1007/s11401-014-0839-7
    [31] R. F. Rao, S. M. Zhong, X. R. Wang, Stochastic stability criteria with LMI conditions for Markovian jumping impulsive BAM neural networks with mode-dependent time-varying delays and nonlinear reaction-diffusion, Commun. Nonlinear Sci. Num. Simu., 19 (2014), 258-273. doi: 10.1016/j.cnsns.2013.05.024
    [32] R. F. Rao, Stability analysis of nontrivial stationary solution and constant equilibrium point of reaction-diffusion neural networks with time delays under Dirichlet zero boundary value, Preprint, 2020, 2020040277 (doi: 10.20944/preprints202004.0277.v6).Availablefrom:https://www.preprints.org/manuscript/202004.0277/v6
    [33] X. R. Mao, Stochastic Differential Equations and Applications, Horwood, 1997.
    [34] D. Xu, Z. G. Yang, Y. M. Huang, Existence-uniqueness and continuation theorems for stochastic functional differential equations, J. Diff. Equ., 245 (2008), 1681-1703. doi: 10.1016/j.jde.2008.03.029
    [35] W. J. Xie, Q. X. Zhu, Input-to-state stability of stochastic nonlinear fuzzy Cohen-Grossberg neural networks with the event-triggered control, Int. J. Control, 93 (2020), 2043-2052. doi: 10.1080/00207179.2018.1540887
    [36] X. D. Li, X. L. Zhang, S. J. Song, Effect of delayed impulses on input-to-state stability of nonlinear systems, Automatica, 76 (2017), 378-382. doi: 10.1016/j.automatica.2016.08.009
    [37] X. D. Li, X. Y. Yang, J. D. Cao, Event-triggered impulsive control for nonlinear delay systems, Automatica, 117 (2020), 108981.
    [38] P. Li, X. D. Li, Input-to-state stability of nonlinear impulsive systems via Lyapunov method involving indefinite derivative, Math. Comp. Simu., 155 (2019), 314-323. doi: 10.1016/j.matcom.2018.06.010
    [39] H. T. Zhu, P. Li, X. D. Li, H. Akca, Input-to-state stability for impulsive switched systems with incommensurate impulsive switching signals, Commun. Nonlinear Sci. Num. Simu., 80 (2020), 104969.
    [40] X. D. Li, X. Y. Yang, S. J. Song, Lyapunov conditions for finite-time stability of time-varying time-delay systems, Automatica, 103 (2019), 135-140. doi: 10.1016/j.automatica.2019.01.031
    [41] X. D. Li, X. Y. Yang, T. W. Huang, Persistence of delayed cooperative models: Impulsive control method, Appl. Math. Comput., 342 (2019), 130-146.
    [42] X. D. Li, J. H. Shen, R. Rakkiyappan, Persistent impulsive effects on stability of functional differential equations with finite or infinite delay, Appl. Math. Comput., 329 (2018), 14-22.
    [43] D. Yang, X. D. Li, J. H. Shen, Z. J. Zhou, State-dependent switching control of delayed switched systems with stable and unstable modes, Math. Meth. Appl. Sci., 41 (2018), 6968-6983. doi: 10.1002/mma.5209
    [44] P. Li, X. D. Li, Input-to-state stability of nonlinear impulsive systems via Lyapunov method involving indefinite derivative, Math. Comput. Simu., 155 (2019), 314-323. doi: 10.1016/j.matcom.2018.06.010
    [45] W. C. Chen, Dynamics and control of a financial system with time-delayed feedbacks, Chaos Soli. Frac., 37 (2008), 1198-1207. doi: 10.1016/j.chaos.2006.10.016
    [46] J. H. Ma, Y. S. Chen, Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (I), Appl. Math. Mech., 11 (2001), 1240-1251.
    [47] J. H. Ma, Y. S. Chen, Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (II), Appl. Math. Mech., 12 (2001), 1375-1382.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3073) PDF downloads(171) Cited by(5)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog