We first verify that the time from the emergence of larva to the emergence of pupa (i.e., the duration of the larva stage) for Aedes aegypti is approximately gamma distributed, provided that the pupation process is successful. This is illustrated by fitting a multi-stage model to temperature-controlled pupation rate data of Aedes aegypti. We then determine the temperature dependent gamma distribution parameters, and found that both the shape and rate parameters and the survival probability are unimodal functions of temperature. We then use a Gaussian unimodal function to describe the dependence of these parameters on temperature, and fit the model to the pupation rate data. We found that the optimal pupation temperature is about 28℃, with a mean time from the emergence of larva to the emergence of pupa about 3.8 days, and standard deviation of 0.5 days. For very high and very low temperatures, the death rate is $ 1 $.
Citation: Meili Li, Rongrong Guo, Wei Ding, Junling Ma. Temperature dependent developmental time for the larva stage of Aedes aegypti[J]. Mathematical Biosciences and Engineering, 2022, 19(5): 4396-4406. doi: 10.3934/mbe.2022203
We first verify that the time from the emergence of larva to the emergence of pupa (i.e., the duration of the larva stage) for Aedes aegypti is approximately gamma distributed, provided that the pupation process is successful. This is illustrated by fitting a multi-stage model to temperature-controlled pupation rate data of Aedes aegypti. We then determine the temperature dependent gamma distribution parameters, and found that both the shape and rate parameters and the survival probability are unimodal functions of temperature. We then use a Gaussian unimodal function to describe the dependence of these parameters on temperature, and fit the model to the pupation rate data. We found that the optimal pupation temperature is about 28℃, with a mean time from the emergence of larva to the emergence of pupa about 3.8 days, and standard deviation of 0.5 days. For very high and very low temperatures, the death rate is $ 1 $.
[1] | H. Gong, A. T. Degaetano, L. C. Harrington, Climate-based models for West Nile Culex mosquito vectors in the Northeastern US, Int. J. Biometeorol., 55 (2011), 435–446. https://doi.org/10.1007/s00484-010-0354-9 doi: 10.1007/s00484-010-0354-9 |
[2] | X. Wang, S. Tang, R. A. Cheke, A stage structured mosquito model incorporating effects of precipitation and daily temperature fluctuations, J. Theor. Biol., 411 (2016), 27–36. https://doi.org/10.1016/j.jtbi.2016.09.015 doi: 10.1016/j.jtbi.2016.09.015 |
[3] | P. J. Sharpe, D. W. DeMichele, Reaction kinetics of poikilotherm development, J. Theor. Biol., 64 (1977), 649–670. https://doi.org/10.1016/0022-5193(77)90265-X doi: 10.1016/0022-5193(77)90265-X |
[4] | J.-M. O. Depinay, C. M. Mbogo, G. Killeen, B. Knols, J. Beier, J. Carlson, et al., A simulation model of African Anopheles ecology and population dynamics for the analysis of malaria transmission, Malar. J., 3 (2004), 1–21. https://doi.org/10.1186/1475-2875-3-29 doi: 10.1186/1475-2875-3-29 |
[5] | L. M. Rueda, K. J. Patel, R. C. Axtell, R. E. Stinner, Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae), J. Med. Entomol., 27 (1990), 892–898. https://doi.org/10.1093/jmedent/27.5.892 doi: 10.1093/jmedent/27.5.892 |
[6] | J. Jian, Y. Zhang, L. Gao, Models of intergrated effects of temperature and photoperiod on survival, development of stayes of Culex Pipiens Quinquefasciatus PRE-ADULT, J. Hengyang Med. Coll., 22 (1994), 332–335. |
[7] | M. N. Bayoh, S. W. Lindsay, Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera: Culicidae), Bull. Entomol. Res., 93 (2003), 375–381. https://doi.org/10.1079/ber2003259 doi: 10.1079/ber2003259 |
[8] | K. B. Healy, E. Dugas, D. M. Fonseca, Development of a degree-day model to predict egg hatch of Aedes albopictus, J. Am. Mosq. Control. Assoc., 35 (2019), 249–257. https://doi.org/10.2987/19-6841.1 doi: 10.2987/19-6841.1 |
[9] | A. Mohammed, D. D. Chadee, Effects of different temperature regimens on the development of Aedes aegypti (L.) (Diptera: Culicidae) mosquitoes, Acta. Trop., 119 (2011), 38–43. https://doi.org/10.1016/j.actatropica.2011.04.004 doi: 10.1016/j.actatropica.2011.04.004 |
[10] | V. Romeo Aznar, M. S. De Majo, S. Fischer, D. Francisco, M. A. Natiello, H. G. Solari, A model for the development of Aedes (Stegomyia) aegypti as a function of the available food, J. Theor. Biol., 365 (2015), 311–324. https://doi.org/10.1016/j.jtbi.2014.10.016 doi: 10.1016/j.jtbi.2014.10.016 |
[11] | S. Thangamani, J. Huang, C. E. Hart, H. Guzman, R. B. Tesh, Vertical transmission of Zika virus in Aedes aegypti mosquitoes, Am. J. Trop. Med. Hyg., 95 (2016), 1169–1173. https://doi.org/10.4269/ajtmh.16-0448 doi: 10.4269/ajtmh.16-0448 |
[12] | C. C. Jansen, N. W. Beebe, The dengue vector Aedes aegypti: What comes next, Microbes. Infect., 12 (2010), 272–279. https://doi.org/10.1016/j.micinf.2009.12.011 doi: 10.1016/j.micinf.2009.12.011 |
[13] | S. Leta, T. J. Beyene, E. M. De Clercq, K. Amenu, C. Revie, Global risk mapping for major diseases transmitted by aedes aegypti and aedes albopictus, Int. J. Infect. Dis., 67 (2017), 25–35. https://doi.org/10.1016/j.ijid.2017.11.026 doi: 10.1016/j.ijid.2017.11.026 |
[14] | Baidu Baike, Mosquito, 2021, Available from: https://baike.baidu.com/item/ |
[15] | B. M. Bolker, Ecological Models and Data in R, Princeton University Press, Princeton, 2008. https://doi.org/10.1515/9781400840908 |