Citation: Ashish Awasthi, Riyasudheen TK. An accurate solution for the generalized Black-Scholes equations governing option pricing[J]. AIMS Mathematics, 2020, 5(3): 2226-2243. doi: 10.3934/math.2020147
[1] | B. Fischer, S. Myron, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637–654. |
[2] | R. C. Merton, Theory of rational option pricing, Bell J. Econ. Manage. Sci., 4 (1973), 141–183. |
[3] | P. Wilmott, S. Howson, J. Dewynne, The mathematics of financial derivatives: A student introduction, Cambridge University Press, 1995. |
[4] | J. C. Zhao, M. Davison, R. M. Corless, Compact finite difference method for American option pricing, J. Comput. Appl. Math., 206 (2007), 306–321. |
[5] | M. K. Kadalbajoo, L. P. Tripathi, P. Arora, A robust nonuniform B-spline collocation method for solving the generalized Black–Scholes equation, IMA J. Numer. Anal., 34 (2014), 252–278. |
[6] | M. K. Kadalbajoo, L. P. Tripathi, A. Kumar, A cubic B-spline collocation method for a numerical solution of the generalized Black–Scholes equation, Mathe. Comput. Modell., 55 (2012), 1483–1505. |
[7] | R. Company, E. Navarro, J. R. Pintos, Numerical solution of linear and nonlinear Black–Scholes option pricing equations, Comput. Math. Appl., 56 (2008), 813–821. |
[8] | M. K. Salahuddin, M. Ahmed S. K. Bhowmilk, A note on numerical solution of a linear BlackScholes model, GANIT: J. Bangladesh Math. Soc., 33 (2013), 103–115. |
[9] | R. Mohammadi, Quintic B-spline collocation approach for solving generalized Black–Scholes equation governing option pricing, Comput. Math. Appl., 69 (2015), 777–797. |
[10] | R. Valkov, Fitted finite volume method for a generalized Black–Scholes equation transformed on finite interval, Numer. Algorithms, 65 (2014), 195–220. |
[11] | S. Wang, A novel fitted finite volume method for the Black–Scholes equation governing option pricing, IMA J. Numer. Anal., 24 (2004), 699–720. |
[12] | M. Ehrhardt, R. E. Mickens, A fast, stable and accurate numerical method for the Black–Scholes equation of American options, Inter. J. Theor. Appl. Finance, 11 (2008), 471–501. |
[13] | C. S. Rao, Numerical solution of generalized Black–Scholes model, Appl. Math. Comput., 321 (2018), 401–421. |
[14] | J. Huang, Z. D. Cen, Cubic spline method for a generalized Black-Scholes equation, Math. Probl. Eng., 2014 (2014). |
[15] | R. E. Lynch, J. R. Rice, A high-order difference method for differential equations, Math. Comput., 34 (1980), 333–372. |
[16] | R. D. Skeel, The second-order backward differentiation formula is unconditionally zero-stable, Appl. Numer. Math., 5 (1989), 145–149. |
[17] | J. R. Cash, On the integration of stiff systems of ODEs using extended backward differentiation formulae, Numer. Math., 34 (1980), 235–246. |
[18] | C. F. Curtiss, J. O. Hirschfelder, Integration of stiff equations, P. Natl. Acad. Sci., 38 (1952), 235–243. |
[19] | W. Wyss, The fractional black-scholes equation, Fract. Calc. Appl. Anal., 3 (2000), 51–66. |
[20] | J. R. Liang, J. Wang, W. J. Zhang, et al, Option pricing of a bi-fractional Black–Merton–Scholes model with the Hurst exponent H in [12, 1], Appl. Math. Lett., 23 (2010), 859–863. |
[21] | M. L. Zheng, F. W. Liu, I. Turner, et al, A novel high order space-time spectral method for the time fractional Fokker–Planck equation, SIAM J. Sci. Comput., 37 (2015), A701–A724. |
[22] | R. H. De Staelen, A. S. Hendy, Numerically pricing double barrier options in a time-fractional Black–Scholes model, Comput. Math. Appl., 74 (2017), 1166–1175. |
[23] | M. M. Chawla, M. A. Al-Zanaidi, D. J. Evans, A class of generalized trapezoidal formulas for the numerical integration of, Inter. J. Comput. Math., 62 (1996), 131–142. |
[24] | M. M. Chawla, M. A. Al-Zanaidi, D. J. Evans, Generalized trapezoidal formulas for parabolic equations, Inter. J. Comput. Math., 70 (1999), 429–443. |
[25] | M. M. Chawla, M. A. Al-Zanaidi, D. J. Evans, Generalized trapezoidal formulas for convectiondiffusion equations, Inter. J. Comput. Math., 72 (1999), 141–154. |
[26] | M. M. Chawla, M. A. Al-Zanaidi, D. J. Evans, Generalized trapezoidal formulas for the Black– Scholes equation of option pricing, Inter. J. Comput. Math., 80 (2003), 1521–1526. |
[27] | O. A. Ladyzhenskaia, V. A Solonnikov, N. N. Ural'ceva, Linear and quasi-linear equations of parabolic type, Am. Math.Soc., 1968. |
[28] | G. M. Lieberman, Second order parabolic differential equations, World Scientific, 1996. |
[29] | D. Wei, Existence, uniqueness, and numerical analysis of solutions of a quasilinear parabolic problem, SIAM J. Numer. Anal., 29 (1992), 484–497. |
[30] | A. Friedman, Partial differential equations of parabolic type, Courier Dover Publications, 2008. |
[31] | V. Isakov, Inverse problems for partial differential equations, Springer International Publishing, 2017. |
[32] | C. Vázquez, An upwind numerical approach for an American and European option pricing model, Appl. Math. Comput., 97 (1998), 273–286. |
[33] | R. Kangro, R. Nicolaides, Far field boundary conditions for Black-Scholes equations, SIAM J. Numer. Anal., 38 (2000), 1357–1368. |
[34] | C. K. Cho, T. Kim, Y. H. Kwon, Estimation of local volatilities in a generalized Black–Scholes model, Appl. Math. Comput., 162 (2005), 1135–1149. |
[35] | Z. Cen, A. Le, A robust and accurate finite difference method for a generalized Black–Scholes equation, J. Comput. Appl. Math., 235 (2011), 3728–3733. |
[36] | J. M. Varah, A lower bound for the smallest singular value of a matrix, Linear Algebra Appl., 11 (1975), 3–5. |
[37] | R. S. Varga, Matrix iterative analysis, Second Revised and Expanded Edition, 2009. |
[38] | R. Teman, Numerical analysis, D. Reidel Publishing Company, Dordrecht, Holland, 2012. |
[39] | K. Atkinson, W. Han, Theoretical numerical analysis: A functional analysis framework, Springer New York, 2001. |
[40] | J. W. Thomas, Numerical partial differential equations: Finite difference methods, Springer New York, 2013. |