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Abstract: Today industries related to finance are essentially implementing advanced mathematical
tools. In 1973, Fisher Black and Myron Scholes developed an eminent stochastic model which later
coined as Black-Scholes differential equations for option pricing. This paper illustrates a convenient
time integration scheme based on the generalized trapezoidal formulas (GTF [α = 1

3 ]) introduced by
Chawla et al. in 1996. GTF is applied for the temporal discretization along with the classical finite
difference schemes in space direction. The proposed scheme yields the (uniform) stability employing
the uniform bound of the inverse operator, as well as second-order spatial accuracy and third-order
temporal accuracy under reasonable conditions. Finally, the numerical illustrations and comparison
with existing schemes demonstrate the stability and accuracy of the method.
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1. Introduction

Pricing of options is an amplified area of discussion among financial practitioners. An option is a
bond between two parties in which the option buyer buys the right, not the obligation to buy or sell an
underlying asset at a prefixed strike price from or to the option writer within a fixed period. According
to the option rights, options are classified into Call and Put options. An option that brings the owner
the right to buy at a specific price is known as a call; an option that brings the right of the owner to
sell at a particular price is known as a put. Option styles are classified into American and European
options. American options can be exercised at any time up to and including the expiry. European
options can only be exercised on the day of expiration. Fischer Black and Myron Scholes [1, 2] have
given a mathematics model under the assumptions:
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1. The change in stock price dS of the underlying satisfies the stochastic differential equation

dS = (µ − D)S dt + σS dW,

where, µ is the drift rate , D is the dividend yield,σ is the market volatility and dW is the increment
of a standard Wiener process.

2. The risk-free rate of return r, the drift µ, dividend yield D, and the market volatility σ are
constants.

3. The market is arbitrage-free and frictionless.

In effect, the market should be complete in the sense that any financial derivative or commodity can
be hedged with a portfolio of another commodity. Now using Ito’s Lemma [3], we have

dV =
∂V
∂S

dS +
∂V
∂t

dt +
1
2
∂2V
∂S 2 dS 2 +

1
2
∂2V
∂t2 dt2 +

∂2V
∂S ∂t

dS dt

and by eliminating the market randomness, one can derive the celebrated Black-Scholes partial
differential equation as

∂V
∂t

+
1
2
σ2S 2∂

2V
∂S 2 + (r − D)S

∂V
∂S
− rV = 0, S ∈ (0,∞), t ∈ (0,T ) (1.1a)

with the terminal condition

V(S ,T ) = max(S − E, 0), (1.1b)

here, T is the expiry and E is the stike price of the commodity in the option.

The analytical solution for (1.1) in a closed form [1, 2, 4], can be obtained as

V(S , t) = S exp(−D(T − t))N(d1) − E exp(−r(T − t))N(d2). (1.2a)

which is also known as the Black-Scholes formula for European options, where

d1 =
ln S − ln E + (r − D + 1

2σ
2)(T − t)

σ
√

T − t
, d2 = d1 − σ

√
T − t, (1.2b)

and N(x) is the cumulative standard normal distribution function given as

N(x) =
1
√

2π

∫ x

−∞

exp
(
−

1
2

t2
)

dt. (1.2c)

But in the present scenario of the financial market, the parameters σ, r and D depend highly on the
asset price S and the time τ. The analytical solution of generalized Black-Scholes model

∂V
∂t

+
1
2
σ2(S , t)S 2∂

2V
∂S 2 + (r(S , t) − D(S , t))S

∂V
∂S
− r(S , t)V = 0, S ∈ (0,∞), t ∈ (0,T ), (1.3)
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with the same terminal condition, is often not available. The generalised Black-Scholes model (1.3)
is numerically solved in [4–14]. Cubic B-spline collocation method [5, 6] have second-order accuracy
in approximating the generalized Black-Scholes model. In [14], cubic polynomial spline method in
space direction after application of implicit Euler method in the time direction, producing second-
order accuracy in space. A simultaneous application of the HODIE [15] and backward differentiation
formulas [16–18] result in a second-order converging scheme [13] for generalized Black-Scholes
equation. Besides of these models, fractal behavior of a stochastic process inflames the fractional Ito
calculus for stochastic models and financial theories like time fractional Black-Scholes model [19,20].
Also numerical methods to solve these models are given in Zheng, Liu, Turner [21], R. D Staelen,
Hendy [22].

In this paper, we fixated on method of lines (MOL) to the generalised linear Black-Scholes model
for European call option, firstly by elementary finite difference schemes in space direction, and the
generalized trapezoidal formulas (GTF [α = 1

3 ]) introduced by Chawla et al. [23–26], in the temporal
discretization for the system of ordinary differential equations. Section 2 of this article portrays
the terminal value problem of linear Black- Scholes model. In Section 3, semi-discretization of the
parabolic partial differential equation along with initial and the artificial boundary conditions is done,
and the numerical scheme is derived. Section 4 deals with convergence and stability analysis of the
numerical scheme. Numerical experimentations and error comparison with existing numerical schemes
are given in Section 5, and Section 6 concludes the paper.

2. Model equation

Let r(S , t) , D(S , t) , and σ(S , t) be sufficiently smooth and bounded functions on the domain
((0,∞) × (0,T )). Consider the generalized Black-Scholes differential equation [1, 3] for European
call option

∂V
∂t

+
1
2
σ2(S , t)S 2∂

2V
∂S 2 + (r(S , t) − D(S , t))S

∂V
∂S
− r(S , t)V = 0, S ∈ (0,∞), t ∈ (0,T ), (2.1)

here, V(S , t) is the value of the European call option at the the stock price S (spatial variable) and at
time t. with V(0, t) = V0(t),V(S , t) ∼ V∞(t) as S tends to ∞ and V(S ,T ) = VT (S ). We proceed with
the often case V0(t) = 0,V∞(t) = S and VT (S ) = max{S −E, 0}. Here σ denotes a statistical measure of
the volatility of the underlying commodity, E, the exercise or striking price, T , the expiry time, D, the
dividend pay and r, the risk-free rate of return. The parameters r, D, and σ are constant functions in the
case of classical Black-Scholes equation (1.1). The existence and uniqueness of a classical solution of
(2.1) is well known [27–31]. Now, it can be seen that the above model is derived in an infinite domain
(0,∞) × (0,T ), which makes difficulties in composing the numerical solutions. Thus we are insisted
to consider the following model defined on a truncated domain (0, S max) × (0,T ) , where S max is the
suitably chosen positive number.

∂V

∂t
+

1
2
σ2(S , t)S 2∂

2V

∂S 2 + (r(S , t) − D(S , t))S
∂V

∂S
− r(S , t)V = 0; (S , t) ∈ (0, S max) × (0,T )

V (S ,T ) = max{S − E, 0}, S ∈ [0, S max]
V (0, t) = 0, t ∈ [0,T ]

V (S max, t) = S max · exp
(
−

∫ T

t
D (S max, s) ds

)
− E · exp

(
−

∫ T

t
r (S max, s) ds

)
, t ∈ [0,T ]

(2.2)
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The existence and uniqueness of analytical solution of (2.2) can be found in [27–31]. Here, the
boundary conditions are chosen according to [32]. Moreover, it is proved in [33] that if V and V are
solutions of (2.1) and (2.2) respectively, then at every point (S , t) ∈ (0, S max) × [0,T ] satisfying

ln(
S max

S
) ≥ −d(T − t),

we have

|V(S , t) − V (S , t)| ≤‖V − V ‖L∞(Λ×(t,T ))

exp

−
(
ln S max

S

) (
(T − t) ×min{0, d} + ln S max

S

)
2(T − t)

(
min(S ,t)∈[0,S max]×[0,T ] σ2(S , t)

) 


where d = inf
{
2D(S , t) − 2r(S , t) + σ2(S , t) : (S , t) ∈ (0, S max) × (0,T )

}
and Λ = {0, S max}.

Since the pay-off is not differentiable at the striking price, the resulting solution is not differentiable
for the convergence of numerical approximations [34]. We replace max{S − E, 0} in the terminal
condition by a smooth function φ(S ) = ϕ(S − E) [35] defined as

ϕ(x) =


x for x ≥ ε
c0 + c1x + c2x2 + . . . + c9x9 −ε < x < ε
0 for x ≤ −ε

where ε > 0, a small constant and ci, i = 0, 1, . . . , 9 are the constant coefficients to be determined.
Applying the following conditions on the funtion ϕ(x) :

ϕ(−ε) = ϕ′(−ε) = ϕ′′(−ε) = ϕ′′′(−ε) = ϕ(4)(−ε) = 0

ϕ(ε) = ε, ϕ′(ε) = 1, ϕ′′(ε) = ϕ′′′(ε) = ϕ(4)(ε) = 0

we can uniquely determine the unknown coefficients ci, i = 0, 1, . . . , 9 viz.:

c0 =
35

256
ε, c1 =

1
2
, c2 =

35
64ε

, c4 = −
35

128ε3

c6 =
7

64ε5 , c8 = −
5

256ε7 , c3 = c5 = c7 = c9 = 0

Figure 1 demonstrates the smoothening procedure of the pay-off terminal condition (European call
option) by the function φ, wherein the value of ε is taken as 0.5 for the better view.
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Figure 1. Smoothening of the terminal condition.

Thus we obtain another prototype in which W is treated as the worth or value of option,

∂W

∂t
+

1
2
σ2(S , t)S 2∂

2W

∂S 2 + (r(S , t) − D(S , t))S
∂W

∂S
− r(S , t)W = 0; (S , t) ∈ (0, S max) × (0,T ) (2.3)

with final condition
W (S ,T ) = φ(S ), S ∈ [0, S max]

and boundary conditions

W (0, t) = 0, t ∈ [0,T ]

W (S max, t) =S max exp
(
−

∫ T

t
D (S max, s) ds

)
− E exp

(
−

∫ T

t
r (S max, s) ds

)
, t ∈ [0,T ]

The existence and uniqueness of the analytical solution of (2.3) can be seen in [27], which also
contains the proof of the following estimate:

There exists a positive constant K independent of φ(S ) such that

|V (S , τ) −W (S , τ)| ≤ K‖φ −max(S − E, 0)‖L∞ , (S , τ) ∈ [0, S max] × [0,T ]

To dispose of the degeneracy and backwardness of (2.3), we set τ = T − t, S = ex and W (S , t) =

u(x, τ) to get

∂u
∂τ

= a2(x, τ)
∂2u
∂x2 + a1(x, τ)

∂u
∂x

+ a0(x, τ), (x, τ) ∈ Ω = (xmin, xmax) × (0,T ) (2.4a)

a2(x, τ) =
1
2
σ̂2(x, τ), σ̂(x, τ) = σ(x,T − t)

a1(x, τ) = r̂(x, τ) − D̂(x, τ) −
1
2
σ̂2(x, τ), r̂(x, τ) = r(x,T − t), D̂(x, τ) = D(x,T − t)

a0(x, τ) = −r̂(x, τ)
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with

u(x, 0) = φ(x) (2.4b)

and

u(xmin, τ) = 0, u(xmax, τ) = exp
(
xmax −

∫ τ

0
D̂(xmax, q)dq

)
− E exp

(
−

∫ τ

0
r̂(xmax, q)dq

)
(2.4c)

3. Numerical methods

A numerical approach to the generalized Black-Scholes equation becomes sensible in this
transformed settings (2.4). Here, we execute a method of vertical lines (MOL) on (2.4) to get a system
of ODEs. Thenceforth we employ the generalized trapezoidal formulas (GTF( 1

3 )) as a numerical time
integration.

3.1. Semi-discretization by Method of Lines (MOL)

Let M+1 be the number of price grid points xi = xmin+ih, i = 0, 1, ...,M, where h =
xmax − xmin

M
. For

a positive integer N, Define temporal grid τ j = jk, j = 0, 1, ...,N, where k =
T
N

. Now let ui, j = u(xi, τ j)
and discretize spacial derivatives using classical central differences,

∂ui(τ)
∂τ

=
a2,i(τ)

h2
(ui+1(τ) − 2ui(τ) + ui−1(τ))

+
a1,i(τ)

2h
(ui+1(τ) − ui−1(τ)) + a0,i(τ)ui(τ)

=

(
a2,i(τ)

h2 +
a1,i(τ)

2h

)
ui+1(τ) +

(
−

2a2,i(τ)
h2 + a0,i(τ)

)
ui(τ)

+

(
a2,i(τ)

h2 −
a1,i(τ)

2h

)
ui−1(τ), i = 1, 2, ...,M − 1

(3.1)

Suppose ~U(τ) = (u1(τ), u2(τ), ..., uM−1(τ))′ and ~UM(τ) = (0, 0, ..., uM(τ))M−1×1, then (3.1) can be
expressed as

∂ ~U(τ)
∂τ

= A(τ) ~U(τ) + B(τ) (3.2)

where

A = trid
{

a2,i

h2 −
a1,i

2h
, −

2a2,i

h2 + a0,i,
a2,i

h2 +
a1,i

2h

}
, i = 1, 2, ...,M − 1

and

B(τ) =


0
0
...(

a2,M−1((τ))
h2 +

a1,M−1((τ))
2h

)
uM(τ)

 ,
Now the system (3.2) with the initial condition ~U(0) = (φ(x1), φ(x2), ..., φ(xM−1))′ is an IVP in τ.
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3.2. Full-discretization by Generalized Trapezoidal Formulas (GTF)

Let F(τ, ~U) be the right hand side of (3.2), we apply the generalized trapezoidal formulas [23–26]
for the time integration of (3.2) to obtain,

~U j+1 − ~U j

k
=

1
2

(
2
3

F j +
1
3

F̂ j + F j+1

)
where, ~U j = ~U(τ j), F j = F(τ j, ~U j) and F̂ j = F(τ j, ~U j+1 − kF j+1), now by rearranging we have the
generalized trapezoidal formulas for the generalised Black-Scholes equation,

A j ~U j+1 = F j (3.3)

with ~U0 = (φ1, φ2, ..., φM−1), ~U j(0) = u j(xmin) = u(xmin, τ j) and ~U j(M) = u j(xmax) = u(xmax, τ j), where,

A j =

(
I −

k
6

A j +
k2

6
A jA j+1 −

k
2

A j+1

)
and

F j =

(
I +

k
3

A j

)
~U j +

k
2

(
B j + B j+1

)
−

k2

6
A jB j+1

with
A j = A(τ j) and B j = B(τ j).

4. Error analysis

Lemma 4.1. Let σ̂, D̂, r̂ be the parameters defined in (2.4), Assume that the spacial and temporal
grid sizes h and k satisfies the conditions,

i. h <
σ̂2

|(r̂ − D̂) − 1
2σ̂

2|
,

(4.1)

ii.
k2

6


a j

2,i+1

h2 −
a j

1,i+1

2h


a j+1

1,i

h
+ a j+1

0,i −
2a j+1

2,i

h2

 +
(
a j+1

0,i+1

) a j
0,i+1 −

2a j
2,i+1

h2


(4.2)

+

a j
2,i+1

h2 +
a j

1,i+1

2h



−a j+1

1,i+2

h

 +

a j+1
0,i+2 −

2a j+1
2,i+2

h2



 < 1 −

k
6

(
a j

0,i+1 + 3a j+1
0,i+1

)
Then

||A−1
j ||∞ ≤

1
α

for some α > 1, where, A j is the matrix given by (3.3).
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Proof. By the assumptions on h and k, the matrix A j is a pentadiagonal diagonally dominant matrix
with the minimum dominance

α = min
k

|a j
kk| −

∑
l,k

|a j
kl|

 ,
where A j = (a j

kl) and the l∞ bound of inverse is in agreement with Varah [36, 37]. �

Lemma 4.2. Assume the conditions in lemma (4.1) for h and k, the operator Lk
h defined by

Lk
hu j

i = A j(i) ~U j+1 = F j(i), (4.3)

where A j(i), F j(i) are the i th rows of A j, F j respectively, satisfies the consistency estimate

||Lk
h(u j

i ) − (Lu) j
i || ≤ C(h2 + k3), i = 1, 2, ...,M, j = 1, 2, ...N.

for some constant C > 0.

Proof. The derivative
∂u
∂τ

∣∣∣
x=xi

is given as

∂u
∂τ

∣∣∣
i
=

a2,i

2h2 (ui+1 − 2ui + ui−1) +
a1,i

2h
(ui+1 − ui−1) + a0,iui + e(1)

i (τ) (4.4)

where, it can be seen that (By Taylor’s expansion)

e(1)
i (τ) = −

h2

24

(
a2,i

∂4

∂x4 + 4a1,i
∂3

∂x3

)
ui(τ) + O(h4) (4.5)

To calculate error of the time integration scheme, we have

û j = u j+1 − k
∂u
∂τ

∣∣∣ j+1
= u j −

k2

2
∂2u
∂τ2

∣∣∣ j
+ O(k3) (4.6)

and
u j+1 − u j

k
=

1
2

(
2
3
∂u
∂τ

∣∣∣ j
+

1
3
∂û
∂τ

∣∣∣ j
+
∂u
∂τ

∣∣∣ j+1
)

+ e j
(2)(x) (4.7)

Use Taylor’s expansion for u j+1, ∂u
∂τ

∣∣∣ j+1
to give,

e j
(2)(x) =

k3

72
∂4u
∂t4

∣∣∣ j
(x) + O(k4) (4.8)

Now, to calculate error of the scheme, we write (4.4) in the form

∂u
∂τ

∣∣∣
i
= ψi(τ) + e(1)

i (τ) (4.9)

Then, an application of (4.7) gives

u j+1
i − u j

i

k
=

1
2

(
2
3

(ψ j
i + e(1), j

i ) +
1
3
∂û
∂τ

∣∣∣ j

i
+ ψ

j+1
i + e(1), j+1

i

)
+ e j

(2),i (4.10)
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Now under the assumption that the problem 2.4 satisfies sufficient regularity and compatibility

conditions [27, 30], we have
∣∣∣ ∂m+nu
∂xm∂τn

∣∣∣ ≤ C′, for 0 ≤ n ≤ 3 and 0 ≤ m + n ≤ 5. Further, from the
continuous problem (2.4), it can be seen that∣∣∣∂4u

∂τ4

∣∣∣ ≤ | ∂3

∂τ3 (a2(x, τ)
∂2u
∂x2 )| + |

∂3

∂τ3 (a1(x, τ)
∂u
∂x

)| + |
∂3

∂τ3 (a0(x, τ)u)| ≤ C′′ > 0

This gives

||Lk
h(u j

i −U
j
i )|| = ||Lk

h(u j
i ) − (Lu) j

i || = ||
1
3e(1), j

i + 1
2e(1), j+1

i + e j
(2),i||

≤
∣∣∣ h2

72

(
a j

2,i
∂4

∂x4 + 4a j
1,i
∂3

∂x3

)
u j

i

∣∣∣ +
∣∣∣ h2

48

(
a j+1

2,i
∂4

∂x4 + 4a j+1
1,i

∂3

∂x3

)
u j+1

i

∣∣∣ +
∣∣∣ k3

72

(
∂4

∂τ4

)
u j

i

∣∣∣
≤ C1h2 + C2k3

≤ C(h2 + k3), i = 1, 2, ...,M, j = 1, 2, ...N.

�

Theorem 4.3. Let u be the solution of the problem (2.4) andU j
i be the solution for the discrete problem

(4.3), then
||u j

i −U
j
i || ≤ C(h2 + k3), i = 1, 2, ...,M, j = 1, 2, ...,N

for some C > 0.

Proof. The lemmas 4.1 and 4.2 says that the discretisation 4.3 is stable with

||Lk
h(u j

i ) − (Lu) j
i || ≤ C(h2 + k3), i = 1, 2, ...,M, j = 1, 2, ...N.

for some constant C > 0. Together with the uniform bound of A−1
j , we obtain

||u j
i −U

j
i || ≤ C(h2 + k3), i = 1, 2, ...,M, j = 1, 2, ...,N

for some C > 0 [38–40]. �

5. Numerical illustrations

First we illustrate an example on the transformed Black-Scholes model (2.4) for which the closed
form solution is available and is given by

u(x, t) = exp(x − D̂t)N
(
d̂1

)
− E exp(−r̂t)N

(
d̂2

)
(5.1)

where

d̂1 =
x − ln E +

(
r̂ − D̂ + 1

2σ̂
2
)

t

σ̂
√

t
and d̂2 = d̂1 − σ̂

√
t

Let UM,N
i, j be the numerical approximation with M and N points in space and time directions

respectively, Compute the true L∞ norm error (maximum absolute error, eM,N
max ), L2 norm error (root

mean square error, eM,N
rms ) and corresponding orders of convergence pM,N

max and pM,N
rms as follows:

eM,N
max = max

0≤m≤M

∣∣∣u (xm, tN) −UM,N
m,N

∣∣∣
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eM,N
rms =

√∑M
m=0

(
u (xm, tN) −UM,N

m,N

)2

M + 1

and

pM,N
max = log2

(
eM,N

max

e2M,2N
max

)

pM,N
rms = log2

(
eM,N

rms

e2M,2N
rms

)
Example 1. Here we consider the Black-Scholes equation (2.4) for European call option with σ̂ =

0.4, r̂ = 0.06 D̂ = 0.02, E = 1 and T = 1. For computational purpose, we assume that xmin =

−2, xmax = +2 and ε = 10−6. The maximum and rms errors and their numerical order of convergence is
given in Table 1. Table2 gives the the maximum norm error and their numerical order of convergence
for HODIE scheme [13] for the Black-Scholes equation (σ̂ = 0.4, r̂ = 0.04 D̂ = 0.02, E = 1 and
T = 1). The solution profile is given in Figure 2.
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Figure 2. Exact solution and GTF solution for the example 1, M = N = 100.

Table 1. Example (1): Root mean square error eM,N
rms ,sup norm error eM,N

max and corresponding
orders of convergence pM,N

rms , pM,N
max .

M 26 27 28 29 210 210

N 10 × 22 10 × 23 10 × 24 10 × 25 10 × 26 10 × 27

eM,N
rms 5.6600e − 05 1.4043e − 05 3.4972e − 06 8.7262e − 07 2.1797e − 07 5.4554e − 08

pM,N
rms 2.0109 2.0055 2.0027 2.0012 1.9984

eM,N
max 1.1602e − 04 2.8566e − 05 7.0855e − 06 1.7643e − 06 4.4024e − 07 1.0995e − 07

pM,N
max 2.0220 2.0113 2.0057 2.0027 2.0014
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Table 2. Maximum norm error eM,N
max and corresponding order of convergence pM,N

max by the
HODIE scheme [13].

M 26 27 28 29 210

N 10 × 22 10 × 23 10 × 24 10 × 25 10 × 26

eM,N
max 1.7759e − 03 4.4895e − 04 1.1219e − 04 2.8068e − 05 7.0223e − 06

pM,N
max 2.0739 1.9839 2.0006 1.9989 1.9989

Due to the unavailability of exact solution data of the generalized Black-Scholes equation, we are
supposed to use the double mesh principle for computing the root mean square error (eM,N

rms ), sup norm
error (eM,N

max ) and corresponding orders of convergence pM,N
rms , pM,N

max and it is given by

eM,N
rms =

√∑M
m=0(UM,N

m,N −U
2M,2N
2m,2N )2

M + 1

eM,N
max = max

0≤m≤M
|U

M,N
m,N −U

2M,2N
2m,2N |

and

pM,N
rms = log2

(
eM,N

rms

e2M,2N
rms

)
, pM,N

max = log2

(
eM,N

max

e2M,2N
max

)
.

In this example, we have illustrated the errors on the line t = tN which is a significant subdomain
for the problem (2.4) in which the ’option premium’ (Initial option price) is approximated by the
generalised trapezoidal formulas.

Example 2. Consider the generalized Black-Scholes equation for European call option price (2.4)
with σ̂(x, t) = 0.4(2+ t sin(exp(x))) , r̂(x, t) = 0.06(1 + (T − t) exp(− exp(x))), D̂(x, t) = 0.02 exp(−t −
exp(x)),T = 1 and E = 1. Assume that xmin = −2, xmax = 2 and ε = 10−6. The numerics and the
GTF solutions are displayed in Table 3 and Figure 3 respectively. Table 4 gives the maximum norm
error and their numerical order of convergence for cubic B-spline collocation scheme combaining
θ−method [6].

Table 3. Example (2): Root mean square error eM,N
rms ,sup norm error eM,N

max and corresponding
orders of convergence pM,N

rms , pM,N
max .

M 10 20 40 80 160 320
N 10 20 40 80 160 320

eM,N
max 4.1000e − 03 1.0000e − 03 2.4544e − 04 6.0112e − 05 1.4844e − 05 3.6884e − 06

pM,N
max 2.0356 2.0265 2.0296 2.0177 2.0088

eM,N
rms 2.1000e − 03 5.4491e − 04 1.1902e − 04 2.7020e − 05 6.9777e − 06 2.0405e − 06

pM,N
rms 1.9482 2.0291 2.0167 2.0087 2.0044
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Table 4. Example (2): Maximum norm error eM,N
max and corresponding order of convergence

pM,N
max for the cubic B-spline collocation method [6].

M 10 20 40 80 160
N 10 20 40 80 160

eM,N
max (θ = 1) 1.36957e − 02 4.90074e − 03 1.96168e − 03 8.60762e − 04 4.00390e − 04

pM,N
max 1.4827 1.3209 1.1884 1.1042

eM,N
max (θ = 1

2 ) 9.71170e − 03 2.42037e − 03 6.05127e − 04 1.51402e − 04 3.78481e − 05
pM,N

max 2.0045 1.9999 1.9988 2.0001

2

X-axis:=Asset price

1

0

-1

-20Y-axis:=Current time

0.5

2

8

6

4

0

-2

1

Z
-a

x
is

:=
u

(x
,t

)

Figure 3. Solution by GTF for European call option for the example 2, M = N = 100.

Example 3. Consider the generalized Black-Scholes equation (2.4) for Binary European call option
with σ̂(x, t) = 0.4(2+ t sin(exp(x))) , r̂(x, t) = 0.06(1 + (T − t) exp(− exp(x))), D̂(x, t) = 0.02 exp(−t −
exp(x)),T = 1 and E = 1. Assume that xmin = −2, xmax = 2 and ε = 10−6. The numerics and the GTF
solutions are displayed in Table 5 and Figure 4 respectively.
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Figure 4. Solution by GTF for Binary European call option for the example 3, Q = 1,M =

100, N = 100.
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Table 5. Example 3: Root mean square error eM,N
rms ,sup norm error eM,N

max .

M 20 40 80 160 320
N 20 40 80 160 320

eM,N
max 1.5000e − 003 3.6512e − 004 8.9213e − 005 2.2010e − 005 5.4679e − 006

eM,N
rms 9.4307e − 004 2.2805e − 004 5.6190e − 005 1.3953e − 005 3.4768e − 006

Here the initial condition and boundary conditions are as follows

u(x, 0) =

{
Q : if ex ≥ E
0 : if ex ≥ E

u(xmin, t) = 0
u (xmax, t) = Q exp

(
−

∫ t

0
r̂ (xmax, s) ds

)
, t ∈ [0,T ]

Now we replace the initial condition u0(x) = u(x, 0) by a smooth function φ(x) = ϕ(ex − E) [35]
defined as

ϕ(y) =


Q for y ≥ ε
c0 + c1y + c2y2 + . . . + c9y9 −ε < y < ε
0 for y ≤ −ε

where ε > 0 is a small constant and ci, i = 0, 1, . . . , 9 are the constant coefficients to be determined.
Applying the following ten conditions on the funtion ϕ(y) :,

ϕ(−ε) = ϕ′(−ε) = ϕ′′(−ε) = ϕ′′′(−ε) = ϕ(4)(−ε) = 0

ϕ(ε) = Q, ϕ′(ε) = ϕ′′(ε) = ϕ′′′(ε) = ϕ(4)(ε) = 0

we can uniquely determine the unknown coefficients ci, i = 0, 1, . . . , 9 viz.:

c0 =
Q
2
, c1 =

315Q
256ε

, c3 =
−105Q

64ε3 , c5 = −
189Q
128ε5

c7 =
−45Q
64ε7 , c9 = −

35Q
256ε9 , c2 = c4 = c7 = c8 = 0

Figure 5 shows the smoothening procedure of the pay-off in binary European call, wherein the value
of ε taken as 0.4 for the better view.
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Figure 5. Smoothening of the terminal condition.
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Example 4. Consider the generalized Black-Scholes equation 2.4 for Butter fly spread option with
σ̂(x, t) = 0.4(2+ t sin(exp(x))) , r̂(x, t) = 0.06(1 + (T − t) exp(− exp(x))), D̂(x, t) = 0.02 exp(−t −
exp(x)),T = 1 and three singular points E1 = 1, E2 = 2, E3 = 3. Assume that xmin = −2, xmax = 2
and ε = 10−6. The numerics and the GTF solutions are displayed in Table 6 and Figure 6 respectively.

Table 6. Example 4: Root mean square error eM,N
rms ,sup norm error eM,N

max .

M 20 40 80 160 320
N 20 40 80 160 320

eM,N
max 2.8000e − 003 4.1934e − 004 1.3816e − 004 5.2798e − 005 4.5299e − 006

eM,N
rms 1.4000e − 003 2.0269e − 004 6.9207e − 005 2.7778e − 005 2.4205e − 006
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Figure 6. Solution by GTF for Butter fly spread option for the example 4, M = N = 100.

Here the initial condition and boundary conditions are as follows

u(x, 0) = max (ex − E1, 0) − 2 max (ex − E2, 0) + max (ex − E3, 0)
u(xmin, t) = 0
u (xmax, t) = 0

The payoff for butterfly option has three singularities E1, E2 and E3, So we replace the initial
condition u0(x) = u(x, 0) by a smooth function φ(x) [35] defined as follows:

φ(x) =



0 for ex ≤ E1 − ε

ϕ1 (ex − E1) for E1 − ε < ex < E1 + ε

ex − E1 for E1 + ε ≤ ex ≤ E2 − ε

ϕ2 (ex − E2) for E2 − ε < ex < E2 + ε

E3 − ex for E2 + ε ≤ ex ≤ E3 − ε

ϕ3 (ex − E3) for E3 − ε < ex < E3 + ε

0 for ex ≥ E3 + ε
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where ϕ1 (x) =
∑9

i=0 cixi and the coefficients ci, i = 0, 1, . . . , 9 are computed by solving the following
ten conditions:

ϕ1(−ε) = ϕ′1(−ε) = ϕ′′1 (−ε) = ϕ′′′1 (−ε) = ϕ(4)
1 (−ε) = 0

ϕ1(ε) = ε, ϕ′1(ε) = 1, ϕ′′1 (ε) = ϕ′′′1 (ε) = ϕ(4)
1 (ε) = 0,

ϕ2 (x) =
∑9

1=0 dixi and the coefficients di, i = 0, 1, . . . , 9 are computed by solving the following ten
conditions:

ϕ2(−ε) = E2 − E1 − ε, ϕ
′
2(−ε) = 1, ϕ′′2 (−ε) = ϕ′′′2 (−ε) = ϕ(4)

2 (−ε) = 0

ϕ2(ε) = E2 − E1 − ε, ϕ
′
2(ε) = −1, ϕ′′2 (ε) = ϕ′′′2 (ε) = ϕ(4)

2 (ε) = 0,

and ϕ3 (x) =
∑9

1=0 eixi and the coefficients ei, i = 0, 1, . . . , 9 are computed by solving the following ten
condi-

ϕ3(−ε) =ε, ϕ′3(−ε) = −1, ϕ′′2 (−ε) = ϕ′′′2 (−ε) = ϕ(4)
2 (−ε) = 0

ϕ3(ε) =ϕ′3(ε) = ϕ′′3 (ε) = ϕ′′′3 (ε) = ϕ(4)
3 (ε) = 0

The coefficients ci, di and ei, i = 0, 1, . . . , 9 take the following values:

c0 = 35
256ε, c1 = 1

2 , c2 = 35
64ε , c4 = − 35

128ε3

c6 = 7
64ε5 , c8 = − 5

256ε7 , c3 = c5 = c7 = c9 = 0

d0 =
64(E3−E1)−35ε

128 , d1 =
315(E1−2E2+E3)

256ε , d2 = −35
32ε

d3 =
−(105(E1−2E2+E3))

64ε3 , d4 = 35
64ε3 , d5 =

189(E1−2E2+E3)
128ε5

d6 = −7
32ε5 , d7 =

−(45(E1−2E2+E3))
64ε7 , d8 = 5

128ε7 , d9 =
35(E1−2E2+E3)

256ε9

and
e0 = 35

256ε, e1 = −1
2 , e2 = 35

64ε , e4 = − 35
128ε3

e6 = 7
64ε5 , e8 = − 5

256ε7 , e3 = e5 = e7 = e9 = 0
Figure 7 shows the smoothening procedure of the pay-off in butter fly spread option, wherein the

value of ε taken as 0.5 for the better view.
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Figure 7. Smoothening of the terminal condition.

AIMS Mathematics Volume 5, Issue 3, 2226–2243.



2241

6. Conclusions

In this paper, we have applied a computationally convenient time integration scheme for the
generalized Black-Scholes equations. The method is based on a central difference spatial discretization
on uniform mesh and the generalized trapezoidal formulas (GTF(1

3 )) in time-stepping. The inverse of
the matrix associated with the discrete operator is uniformly bounded by the inverse of minimum
diagonal dominance and thereby stable for arbitrary volatility and interest rate. The proposed scheme
is second-order consistent concerning the spatial variable and third-order in time, and by accepting the
uniform bound, we obtain the convergence in the same order as the consistency. Furthermore, it can
be seen that GTF ( 1

3 ) rectifies the singularities of the non-smooth payoff function by approximation
with a ninth-degree polynomial. Numerical experiments, including the smoothening of payoffs and
comparison with existing literature, are performed to demonstrate the efficiency of the proposed
scheme.
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