Research article Special Issues

Certain k-fractional calculus operators and image formulas of k-Struve function

  • Received: 12 November 2019 Accepted: 18 January 2020 Published: 13 February 2020
  • MSC : Primary: 26A33; Secondary: 33E12, 33C45

  • In this article, the Saigo's k-fractional order integral and derivative operators involving k-hypergeometric function in the kernel are applied to the k-Struve function; outcome are expressed in the term of k-Wright function, which are used to present image formulas of integral transforms including beta transform. Also special cases related to fractional calculus operators and Struve functions are considered.

    Citation: D. L. Suthar, D. Baleanu, S. D. Purohit, F. Uçar. Certain k-fractional calculus operators and image formulas of k-Struve function[J]. AIMS Mathematics, 2020, 5(3): 1706-1719. doi: 10.3934/math.2020115

    Related Papers:

  • In this article, the Saigo's k-fractional order integral and derivative operators involving k-hypergeometric function in the kernel are applied to the k-Struve function; outcome are expressed in the term of k-Wright function, which are used to present image formulas of integral transforms including beta transform. Also special cases related to fractional calculus operators and Struve functions are considered.



    加载中


    [1] A. Alaria, A. M. Khan, D. L. Suthar, et al., Application of fractional operators in Modelling for charge carrier transport in amorphous semiconductor with multiple trapping, Int. J. Appl. Comput. Math, 5 (2019), doi.org/10.1007/s40819-019-0750-8.
    [2] K. S. Al-Ghafri, H. Rezazadeh, Solitons and other solutions of (3+1)-dimensional space-time fractional modified KdV-Zakharov Kuznetsov equation, Appl. Math. Nonlinear Sci., 4 (2019), 289-304. doi: 10.2478/AMNS.2019.2.00026
    [3] D. Kumar, J. Singh, S. D. Purohit, et al., A hybrid analytic algorithm for nonlinear wave-like equations, Math. Model. Nat. Phenom., 14 (2019), 304.
    [4] K. M. Owolabi, Z. Hammouch, Mathematical modeling and analysis of two-variable system with non integer-order derivative, Chaos, 29 (2019), 013145, doi.org/10.1063/1.5086909.
    [5] X. J. Yang, New general fractional-order rheological models with kernels of Mittag-Leffler functions, Rom. Rep. Phys., 69 (2017), 1-18.
    [6] X. J. Yang, New rheological problems involving general fractional derivatives with nonsingular power-law kernels, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci., 19 (2018), 45-52.
    [7] A. Yokus, S. Gülbahar, Numerical solutions with linearization techniques of the fractional Harry Dym equation, Appl. Math. Nonlinear Sci., 4 (2019), 35-41. doi: 10.2478/AMNS.2019.1.00004
    [8] S. Mubeen, G. M. Habibullah, k-fractional integrals and application, Int. J. Contemp. Math. Sci., 7 (2012), 89-94.
    [9] G. A. Dorrego, An alternative definition for the k-Riemann-Liouville fractional derivative, Appl. Math. Sci., 9 (2015), 481-491.
    [10] A. Gupta, C. L. Parihar, Saigo's k-fractional calculus operators, Malaya J. Mat., 5 (2017), 494-504.
    [11] S. Mubeen, G. M. Habibullah, An integral representation of some k-hypergeometric functions, Int. J. Contemp. Math. Sci., 7 (2012), 203-207.
    [12] M. Saigo, A Remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. Kyushu Univ, 11 (1978), 135-143.
    [13] K. S. Nisar, S. R. Mondal, J. Choi, Certain inequalities involving k-Struve function, J. Inequalities Appl., 71 (2016), 8.
    [14] R. Díaz, E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., 15 (2007), 179-192.
    [15] Á. Baricz, Generalized Bessel functions of the first kind, Lecture Notes in Mathematics, Springer, Berlin, 1994.
    [16] H. Habenom, D. L. Suthar, M. Gebeyehu, Application of Laplace transform on fractional kinetic equation pertaining to the generalized Galué type Struve function, Advances in Mathematical Physics, 2019, Article ID 5074039, 8.
    [17] K. S. Nisar, D. L. Suthar, S. D. Purohit, et al., Some unified integral associated with the generalized Struve function, Proc. Jangjeon Math. Soc., 20 (2017), 261-267.
    [18] D. L. Suthar, M. Andualem, Integral formulas involving product of Srivastava's polynomials and Galué type Struve functions, Kyunpook Math. J., 59 (2019), 725-734.
    [19] D. L. Suthar, M. Ayene, Generalized fractional integral formulas for the k-Bessel function, J. Math., (2018), Article ID 5198621, 8, doi.org/10.1155/2018/5198621.
    [20] D. L. Suthar, S. D. Purohit, K. S. Nisar, Integral transforms of the Galué type Struve function, TWMS J. App. Eng. Math., 8 (2018), 114-121.
    [21] H. Tadesse, D. L. Suthar, Z. Gebru, Certain integral transforms of the generalized k-Struve function, Acta Univ. Apulensis Math. Inform., 59 (2019), 77-89.
    [22] R. Díaz, C. Teruel, q, k-Generalized gamma and beta functions, J. Nonlinear Math. Phys., 12 (2005), 118-134.
    [23] R. Díaz, C. Ortiz, E. Pariguan, On the k-gamma q-distribution, Cent. Eur. J. Math., 8 (2010), 448-458. doi: 10.2478/s11533-010-0029-0
    [24] S. Mubeen, A. Rehman, A note on k-gamma function and Pochhammer k-symbol, J. Tnequalities Math. Sci., 6 (2014), 93-107.
    [25] K. S. Gehlot, J. C. Prajapati, Fractional calculus of generalized k-Wright function, J. Fractional Calculus Appl., 4 (2013), 283-289.
    [26] G. Rahman, K. S. Nisar, J. Choi, et al., Formulas for Saigo fractional integral operators with 2F1 generalized k-Struve functions, Far East J. Math. Sci., 102 (2017), 55-66.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3999) PDF downloads(411) Cited by(6)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog