Citation: Pavel Bělík, Brittany Dahl, Douglas Dokken, Corey K. Potvin, Kurt Scholz, Mikhail Shvartsman. Possible implications of self-similarity for tornadogenesis and maintenance[J]. AIMS Mathematics, 2018, 3(3): 365-390. doi: 10.3934/Math.2018.3.365
[1] | E. J. Adlerman and K. Droegemeier, A numerical simulation of cyclic tornadogenesis, 20th Conference on Severe Local Storms, Orlando, FL, American Meteorological Society, 2000. |
[2] | J. C. André and M. Lesieur, Influence of helicity on the evolution of isotropic turbulence at high Reynolds number, J. Fluid Mech., 81 (1977), 187-207. |
[3] | V. I. Arnold and B. A. Khesin, Topological Methods in Hydrodynamics, Applied Mathematical Sciences, Vol. 125, Springer, New York, 2 edition, 1998. |
[4] | G. R. Baker and M. J. Shelley, On the connection between thin vortex layers and vortex sheet, J. Fluid Mech., 215 (1990), 161-194. |
[5] | A. I. Barcilon, Vortex decay above a stationary boundary, J. Fluid Mech., 27 (1967), 155-157. |
[6] | G. I. Barenblatt, Scaling, Self-similarity, and Intermediate Asymptotics, Cambridge University Press, 1996. |
[7] | G. I. Barenblatt, Scaling, Cambridge University Press, 2003. |
[8] | M. Barnsley, Fractals Everywhere, Academic Press, 1988. |
[9] | S. J. Benavides and A. Alexakis, Critical transitions in thin layer turbulence, J. Fluid Mech., 822 (2017), 364-385. |
[10] | T. B. Benjamin, Theory of the vortex breakdown phenomenon, J. Fluid Mech., 14 (1962), 593-629. |
[11] | H. B. Bluestein, Severe Convective Storms and Tornadoes, Observations and Dynamics, Springer-Praxis books in Environmental Sciences, Springer, 2013. |
[12] | H. B. Bluestein and A. L. Pazmany, Observations of tornadoes and other convective phenomena with a mobile, 3-mm wavelength, Doppler radar: The spring 1999 field experiment, B. Am. Meteorol. Soc., 81 (2000), 2939-2951. |
[13] | R. Bohac, May 31, 2013 EF5 El Reno Tornado Showing Multiple Funnels/Sub Vortices Filmed from Dominator. Retrieved May 11, 2018. Available from: http://www.youtube.com/watch?v=C34EVyWRZbk. |
[14] | G. H. Bryan and J. M. Fritsch, A benchmark simulation for moist nonhydrostatic numerical models, Mon. Weather Rev., 130 (2002), 2917-2928. |
[15] | K. Bürger, M. Treib, R. Westermann, et al. Vortices within vortices: hierarchical nature of vortex tubes in turbulence, eprint arXiv: 1210.3325[physics.flu-dyn], Mar. 2013. |
[16] | O. R. Burggraf and M. R. Foster, Continuation or breakdown in tornado-like vortices, J. Fluid Mech., 80 (1977), 685-703. |
[17] | P. Bělík, D. Dokken, C. Potvin, et al. Applications of vortex gas models to tornadogenesis and maintenance, Open Journal of Fluid Dynamics, 7 (2017), 596-622. |
[18] | P. Bělík, D. P. Dokken, K. Scholz, et al. Fractal powers in Serrin's swirling vortex model, Asymptot. Anal., 90 (2014), 53-82. |
[19] | H. Cai, Comparison between tornadic and nontornadic mesocyclones using the vorticity (pseudovorticity) line technique, Mon. Weather Rev., 133 (2005), 2535-2551. |
[20] | A. J. Chorin, Vorticity and Turbulence, Springer Verlag, New York, 1994. |
[21] | A. J. Chorin and J. H. Akao, Vortex equilibria in turbulence and quantum analogues, Physica D: Nonlinear Phenomena, 52 (1991), 403-414. |
[22] | C. R. Church, J. T. Snow and E. M. Agee, Tornado vortex simulation at Purdue University, B. Am. Meteorol. Soc., 58 (1977), 900-908. |
[23] | G. P. Cressman, An operational objective in analysis system, Mon. Weather Rev., 87 (1959), 367-374. |
[24] | R. Davies-Jones. A review of supercell and tornado dynamics, Atmos. Res., 158 (2015), 274-291. |
[25] | J. W. Deardorff, Stratocumulus-capped mixed layer derived from a three-dimensional model, Boundary-Layer Meteorology, 18 (1980), 495-527. |
[26] | D. C. Dowell and H. B. Bluestein, The 8 June 1995 McLean, Texas, storm. Part Ⅰ: Observations of cyclic tornadogenesis, Mon. Weather Rev., 130 (2002), 2626-2648. |
[27] | D. C. Dowell and H. B. Bluestein, The 8 June 1995 McLean, Texas, storm. Part Ⅱ: Cyclic tornado formation, maintenance, and dissipation, Mon. Weather Rev., 130 (2002), 2649-2670. |
[28] | R. E. Ecke, From 2D to 3D in fluid turbulence: unexpected critical transitions, J. Fluid Mech., 828 (2017), 1-4. |
[29] | B. H. Fiedler and R. Rotunno, A theory for the maximum windspeeds in tornado-like vortices, J. Atmos. Sci., 43 (1986), 2328-2440. |
[30] | R. Frehlich and R. Sharman, The use of structure functions and spectra from numerical model output to determine e_ective model resolution, Mon. Weather Rev., 136 (2008), 1537-1553. |
[31] | T. T. Fujita, Tornadoes and downbursts in the context of generalized planetary scales, J. Atmos. Sci., 38 (1981), 1511-1534. |
[32] | T. P. Grazulis, Significant Tornadoes Update, 1992-1995, Environmental Films, St. Johnsbury, VT, 1997. |
[33] | A. Y. Klimenko, Strong swirl approximation and intensive vortices in the atmosphere, J. Fluid Mech., 738 (2014), 268-298. |
[34] | A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds number, Dokl. Akad. Nauk SSSR, 30 (1941), 9-13. |
[35] | K. A. Kosiba and J.Wurman, Dow observations of multiple vortex structures in several tornadoes, In Preprints, 24th Conf. on Severe Local Storms, Vol. 3, 2008. |
[36] | K. A. Kosiba, R. J. Trapp and J. Wurman, An analysis of the axisymmetric three-dimensional low level wind field in a tornado using mobile radar observations, Geophys. Res. Lett., 35 (2008). |
[37] | S. P. Kuznetsov, Dynamical chaos and uniformly hyperbolic attractors: from mathematics to physics, Physics-Uspekhi, 54 (2011), 119-144. |
[38] | D. C. Lewellen, W. S. Lewellen and R. I. Sykes, Large-eddy simulation of a tornado's interaction with the surface, J. Atmos. Sci., 54 (1997), 581-605. |
[39] | D. K. Lilly, Tornado dynamics, NCAR Manuscript 69-117, 1969. |
[40] | D. K. Lilly, Sources of rotation and energy in the tornado, Proc. Symp. on Tornadoes: Assessment of Knowledge and Implications for Man, pp 145-150, Lubbock, TX, 1976. |
[41] | D. K. Lilly, The structure, energetics and propagation of rotating convective storms. Part Ⅰ: Energy exchange with the mean flow, J. Atmos. Sci., 43 (1986), 113-125. |
[42] | D. K. Lilly, The structure, energetics and propagation of rotating convective storms. Part Ⅱ: Helicity and storm stablization, J. Atmos. Sci., 43 (1986), 126-140. |
[43] | D. E. Lund and J. T. Snow, Laser Doppler velocimeter mesaurements in tornadolike vortices, The Tornado: Its Structure, Dynamics, Prediction, and Hazards, volume Monograph 79, pp 297-306, American Geophysiscal Union, 1993. |
[44] | K. J. Mallen, M. T. Montgomery and B. Wang, Reexamining the near-core radial structure of the tropical cyclone primary circulation: Implications for vortex resiliency, J. Atmos. Sci., 62 (2005), 408-425. |
[45] | B. B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman and Company, 1983. |
[46] | B. I. Miller, Characteristics of hurricanes, Science, 157 (1967), 1389-1399. |
[47] | H. Morrison, J. A. Curry and V. I. Khvorostyanov, A new double-moment microphysics parametrization for application in cloud and climate models. Part Ⅰ: Description, J. Atmos. Sci., 62 (2005), 1665-1677. |
[48] | L. Orf, R. Wilhelmson, B. Lee, et al. Evolution of a long-track violent tornado within a simulated supercell, B. Am. Meteorol. Soc., 98 (2017), 45-68. |
[49] | PBS NOVA, Hunt for the Supertwister, Originally aired March 30, 2004. Retrieved May 11, 2018. Available from: http://www.pbs.org/wgbh/nova/earth/hunt-for-the-supertwister.html. |
[50] | Y. Pesin and V. Climenhaga, Lectures on Fractal Geometry and Dynamical Systems, Vol. 52, American Mathematical Soc., 2009. |
[51] | C. K. Potvin, A variational method for detecting and characterizing convective vortices in Cartesian wind fields, Mon. Weather Rev., 141 (2013), 3102-3115. |
[52] | A. Pouquet and P. D. Mininni, The interplay between helicity and rotation in turbulence: implications for scaling laws and small-scale dynamics, Philos. T. R. Soc. A, 368 (2010), 1635-1662. |
[53] | Y. K. Sasaki, Entropic balance theory and variational field Lagrangian formalism: Tornadogenesis, J. Atmos. Sci., 71 (2014), 2104-2113. |
[54] | L. Schwartz, Lectures on disintegration of measures, Tata Institute of Fundamental Research, Vol. 50, 1976. |
[55] | J. Serrin, The swirling vortex, Philos. T. R. Soc. A, 271 (1972), 325-360. |
[56] | R. Timmer, Violent Minnesota wedge tornado intercept!!!, Jun 17, 2010. Retrieved May 11, 2018. Available from: http://www.youtube.com/watch?v=AvD2nDyXSQo. |
[57] | R. J. Trapp, Observations of nontornadic low-level mesocyclones and attendant tornadogenesis failure during VORTEX 94, Mon. Weather Rev., 124 (1999), 384-407. |
[58] | D. L. Turcotte, Fractals in fluid mechanics, Annu. Rev. Fluid Mech., 20 (1988), 5-16. |
[59] | R. M. Wakimoto and H. Cai, Analysis of a nontornadic storm during VORTEX 95, Mon. Weather Rev., 128 (2000), 565-592. |
[60] | R. M. Wakimoto, C. Liu and H. Cai, The Garden City, Kansas, storm during VORTEX 95. Part Ⅰ: Overview of the storm's life cycle and mesocyclogenesis, Mon.Weather Rev., 126 (1998), 372-392. |
[61] | F. Waleffe, The nature of triad interactions in homogeneous turbulence, Phys. Fluids A, 4 (1992), 350-363. |
[62] | J. Wurman, The multiple-vortex structure of a tornado, Weather and Forecasting, 17 (2002), 473-505. |
[63] | J. Wurman and C. R. Alexander, The 30 May 1998 Spencer, South Dakota, storm. Part Ⅱ: Comparison of observed damage and radar-derived winds in the tornadoes, Mon. Weather Rev., 133 (2005), 97-119. |
[64] | J.Wurman and S. Gill, Fine-scale radar observations of the Dimmitt, Texas (2 June 1995) tornado, Mon. Weather Rev., 128 (2000), 2135-2164. |
[65] | N. Yokoi and A. Yoshizawa, Statistical analysis of the e_ects of helicity in inhomogeneous turbulence, Phys. Fluids A, 5 (1993), 464-477. |