Research article

Study of Multivalent Spirallike Bazilevic Functions

  • Received: 22 June 2018 Accepted: 13 September 2018 Published: 19 September 2018
  • MSC : Primary 05A30, 30C45; Secondary 11B65, 47B38

  • In this paper, we introduce certain new subclasses of multivalent spirallike Bazilevic functions by using the concept of k-uniformly starlikness and k-uniformly convexity. We prove inclusion relations, su cient condition and Fekete-Szego inequality for these classes of functions. Convolution properties for these classes are also discussed.

    Citation: Nazar Khan, Ajmal Khan, Qazi Zahoor Ahmad, Bilal Khan, Shahid Khan. Study of Multivalent Spirallike Bazilevic Functions[J]. AIMS Mathematics, 2018, 3(3): 353-364. doi: 10.3934/Math.2018.3.353

    Related Papers:

  • In this paper, we introduce certain new subclasses of multivalent spirallike Bazilevic functions by using the concept of k-uniformly starlikness and k-uniformly convexity. We prove inclusion relations, su cient condition and Fekete-Szego inequality for these classes of functions. Convolution properties for these classes are also discussed.


    加载中
    [1] M. Arif, J. Dziok, M. Raza, et al. On products of multivalent close-to-star functions, J. Ineq. appl., 2015 (2015), 1-14.
    [2] I. E. Bazilevic, On a case of integrabitity in quadratures of the Loewner-Kufarev equation, Matematicheskii Sbornik, 79 (1955), 471-476.
    [3] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc., 3 (1971), 469-474.
    [4] F. R. Keogh and E. P. Merkes, A coeffcient inequality for certain classes of analytic functions, P. Am. Math. Soc., 20 (1969), 8-12.
    [5] S. Kanas, Coeffcient estimate in subclasses of the Caratheodary class related to conic domains, Acta Math. Univ. Comenianae, 74 (2005), 149-161.
    [6] S. Kanas and D. Răaducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183-1196.
    [7] S. Kanas and A. Wi'sniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327-336.
    [8] S. Kanas and A. Wi'sniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl., 45 (2000), 647-657.
    [9] S. Kanas, Techniques of the di_erential subordination for domains bounded by conic sections, International Journal of Mathematics and Mathematical Sciences, 38 (2003), 2389-2400.
    [10] N. Khan, B. Khan, Q. Z. Ahmad, et al. Some Convolution properties of multivalent analytic functions, AIMS Mathematics, 2 (2017), 260-268.
    [11] N. Khan, Q. Z. Ahmad, T. Khalid, et al. Results on spirallike p-valent functions, AIMS Mathematics, 3 (2017), 12-20.
    [12] R. Libera, Univalent a-spiral functions, Cañnad. J. Math., 19 (1967), 449-456.
    [13] K. I. Noor, N. Khan and Q. Z. Ahmad, Coeffcient bounds for a subclass of multivalent functions of reciprocal order, AIMS Mathematics, 2 (2017), 322-335.
    [14] K. I. Noor, N. Khan and M. A. Noor, On generalized spiral-like analytic functions, Filomat, 28 (2014), 1493-1503.
    [15] K. I. Noor and S. N. Malik, On coeffcient inequalities of functions associated with conic domains, Comput. Math. Appl., 62 (2011), 2209-2217.
    [16] S. Owa, K. Ochiai and H. M.Srivastava, Some coeffcients inequalities and distortion bounds associated with certain new subclasses of analytic functions, Math. Ineq. Appl., 9 (2006), 125-135.
    [17] R. Singh and S. Singh, Convolution properties of a class of starlike functions, Proceedings of the American Mathematical Society, 106 (1989), 145-152.
    [18] S. Shams, S. R. Kulkarni and J. M. Jahangiri, Classes of uniformly starlike and convex functions, International Journal of Mathematics and Mathematical Sciences, 2004 (2004), 2959-2961.
    [19] L. Spacek, Prispevek k teorii funkei prostych, Casopis pest. Mat., 62 (1933), 12-19.
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4113) PDF downloads(651) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog