Citation: Filippo Dell'Oro, Claudio Giorgi, Vittorino Pata. Steady states of elastically-coupled extensible double-beam systems[J]. AIMS Mathematics, 2017, 2(1): 28-69. doi: 10.3934/Math.2017.1.28
[1] | I.V. Andrianov, On the theory of berger plates. J. Appl. Math. Mech., 47 (1983), 142-144. |
[2] | J.M. Ball, Stability theory for an extensible beam. J. Differential Equations, 14 (1973), 399-418. |
[3] | I. Bochicchio and E. Vuk, Buckling and longterm dynamics of a nonlinear model for the extensible beam. Math. Comput. Modelling, 51 (2010), 833-846. |
[4] | P.G. Ciarlet, A justification of the von Kármán equations. Arch. Rational Mech. Anal., 73 (1980), 349-389. |
[5] | P.G. Ciarlet and L. Gratie, From the classical to the generalized von Kármán and Marguerre-von Kármán equations. J. Comput. Appl. Math., 190 (2006), 470-486. |
[6] | A. Ciekot and S. Kukla, Frequency analysis of a double-nanobeam-system. J. Appl. Math. Comput. Mech., 13 (2014), 23-31. |
[7] | M. Coti Zelati, Global and exponential attractors for the singularly perturbed extensible beam. Discrete Contin. Dyn. Syst., 25 (2009), 1041-1060. |
[8] | M. Coti Zelati, C. Giorgi and V. Pata, Steady states of the hinged extensible beam with external load. Math. Models Methods Appl. Sci., 20 (2010), 43-58. |
[9] | J.M. Davies, Lightweight sandwich construction, Wiley-Blackwell, Oxford, 2001. |
[10] | R.W. Dickey, Free vibrations and dynamic buckling of the extensible beam. J. Math. Anal. Appl., 29 (1970), 443-454. |
[11] | R.W. Dickey, Dynamic stability of equilibrium states of the extensible beam. Proc. Amer. Math. Soc., 41 (1973), 94-102. |
[12] | A. Eden and A.J. Milani, Exponential attractors for extensible beam equations. Nonlinearity, 6 (1993), 457-479. |
[13] | C. Giorgi and M.G. Naso, Modeling and steady state analysis of the extensible thermoelastic beam. Math. Comp. Modelling, 53 (2011), 896-908. |
[14] | C. Giorgi, V. Pata and E. Vuk, On the extensible viscoelastic beam. Nonlinearity, 21 (2008), 713-733. |
[15] | P. Holmes and J. Marsden, A partial di erential equation with infinitely many periodic orbits: chaotic oscillations of a forced beam. Arch. Rational Mech. Anal., 76 (1981), 135-165. |
[16] | N. Kamiya, Governing equations for large deflections of sandwich plates. AIAA Journal, 14(1976), 250-253. |
[17] | S.G. Kelly and S. Srinivas, Free vibrations of elastically connected stretched beams. J. Sound Vibration, 326 (2009), 883-893. |
[18] | W. Lacarbonara, Nonlinear structural mechanics. Theory, dynamical phenomena and modeling, Springer, New York, 2013. |
[19] | J.E. Lagnese and J.L. Lions, Modelling analysis and control of thin plates, Masson, Paris, 1988. |
[20] | P.J. McKenna, Oscillations in suspension bridges, vertical and torsional. Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 785-791. |
[21] | T. Murmu and S. Adhikari, Axial instability of a double-nanobeam-systems. Phys. Lett. A, 375 (2011), 601-608. |
[22] | Z. Oniszczuk, Forced transverse vibrations of an elastically connected complex simply supported double-beam system. J. Sound Vibration, 264 (2003), 273-286. |
[23] | F.J. Plantema, Sandwich construction: the bending and buckling of sandwich beams, plates, and shells, John Wiley and Sons, New York, 1966. |
[24] | E.L. Reiss and B.J. Matkowsky, Nonlinear dynamic buckling of a compressed elastic column. Quart. Appl. Math., 29 (1971), 245-260. |
[25] | R. Taylor and A. Wiles, Ring-theoretic properties of certain Hecke algebras. Ann. of Math., 141 (1995), 553-572. |
[26] | H.V. Vu, A.M. Ord′o?nez and B.K. Karnopp, Vibration of a double-beam system. J. Sound Vibration, 229 (2000), 807-822. |
[27] | D.H. Wang and G.F. Wang, Surface e ects on the vibration and buckling of double-nanobeamsystems. Journal of Nanomaterials, vol. 2011 (2011), Article ID 518706, 7 pages. |
[28] | A. Wiles, Modular elliptic curves and Fermat's last theorem. Ann. of Math., 141 (1995), 443-551. |
[29] | S.Woinowsky-Krieger, The e ect of an axial force on the vibration of hinged bars. J. Appl. Mech., 17 (1950), 35-36. |
[30] | D. Zenkert, An introduction to sandwich construction, EMAS Publications,West Midlands, United Kingdom, 1995. |
[31] | Y.Q. Zhang, Y. Lu and G.W. Ma, E ect of compressive axial load on forced transverse vibrations of a double-beam system. Int. J. Mech. Sci., 50 (2008), 299-305. |
[32] | Y.Q. Zhang, Y. Lu, S.L. Wang and X. Liu, Vibration and buckling of a double-beam system under compressive axial loading. J. Sound Vibration, 318 (2008), 341-352. |