
In this paper, our study is divided into two parts. The first part involves analyzing a coupled system of beam deflection type that involves nonlinear equations with sequential Caputo derivatives. The also system incorporates the Caputo derivatives in the initial conditions, which adds a layer of complexity and realism to the problem. We focus on proving the existence of a unique solution for this system, and highlighting the robustness and applicability of fractional derivatives in modeling complex physical phenomena. In the second part of the paper, we employ conformable fractional derivatives, as defined by Khalil, to examine another system consisting of two coupled evolution equations. By the Tanh method, we derive new progressive waves. The connection between these two parts lies in the use of fractional calculus to extend and enhance classical problems.
Citation: Abdelkader Lamamri, Iqbal Jebril, Zoubir Dahmani, Ahmed Anber, Mahdi Rakah, Shawkat Alkhazaleh. Fractional calculus in beam deflection: Analyzing nonlinear systems with Caputo and conformable derivatives[J]. AIMS Mathematics, 2024, 9(8): 21609-21627. doi: 10.3934/math.20241050
[1] | Giuseppe Maria Coclite, Carlotta Donadello . Vanishing viscosity on a star-shaped graph under general transmission conditions at the node. Networks and Heterogeneous Media, 2020, 15(2): 197-213. doi: 10.3934/nhm.2020009 |
[2] | John D. Towers . An explicit finite volume algorithm for vanishing viscosity solutions on a network. Networks and Heterogeneous Media, 2022, 17(1): 1-13. doi: 10.3934/nhm.2021021 |
[3] | Boris Andreianov, Kenneth H. Karlsen, Nils H. Risebro . On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2010, 5(3): 617-633. doi: 10.3934/nhm.2010.5.617 |
[4] | Wen Shen . Traveling wave profiles for a Follow-the-Leader model for traffic flow with rough road condition. Networks and Heterogeneous Media, 2018, 13(3): 449-478. doi: 10.3934/nhm.2018020 |
[5] | Martin Gugat, Mario Sigalotti . Stars of vibrating strings: Switching boundary feedback stabilization. Networks and Heterogeneous Media, 2010, 5(2): 299-314. doi: 10.3934/nhm.2010.5.299 |
[6] |
Giuseppe Maria Coclite, Nicola De Nitti, Mauro Garavello, Francesca Marcellini .
Vanishing viscosity for a |
[7] | Michael Herty, Niklas Kolbe, Siegfried Müller . Central schemes for networked scalar conservation laws. Networks and Heterogeneous Media, 2023, 18(1): 310-340. doi: 10.3934/nhm.2023012 |
[8] | Joachim von Below, José A. Lubary . Isospectral infinite graphs and networks and infinite eigenvalue multiplicities. Networks and Heterogeneous Media, 2009, 4(3): 453-468. doi: 10.3934/nhm.2009.4.453 |
[9] | Alessia Marigo . Equilibria for data networks. Networks and Heterogeneous Media, 2007, 2(3): 497-528. doi: 10.3934/nhm.2007.2.497 |
[10] | Gen Qi Xu, Siu Pang Yung . Stability and Riesz basis property of a star-shaped network of Euler-Bernoulli beams with joint damping. Networks and Heterogeneous Media, 2008, 3(4): 723-747. doi: 10.3934/nhm.2008.3.723 |
In this paper, our study is divided into two parts. The first part involves analyzing a coupled system of beam deflection type that involves nonlinear equations with sequential Caputo derivatives. The also system incorporates the Caputo derivatives in the initial conditions, which adds a layer of complexity and realism to the problem. We focus on proving the existence of a unique solution for this system, and highlighting the robustness and applicability of fractional derivatives in modeling complex physical phenomena. In the second part of the paper, we employ conformable fractional derivatives, as defined by Khalil, to examine another system consisting of two coupled evolution equations. By the Tanh method, we derive new progressive waves. The connection between these two parts lies in the use of fractional calculus to extend and enhance classical problems.
We consider a family of scalar conservation laws defined on an oriented graph
On the edge
∂tρi+∂xfi(ρi)=0,t>0,x<0,i=1,...,m, | (1) |
and on the outgoing ones
∂tρj+∂xfj(ρj)=0,t>0,x>0,j=m+1,...,m+n. | (2) |
The fluxes
(H.1) for each
(H.2) for any
We augment (1) and (2) with the initial conditions
{ρi(0,x)=ρi,0(x),x<0,i=1,...,m,ρj(0,x)=ρj,0(x),x>0,j=m+1,...,m+n, | (3) |
assuming that
(H.3)
and
Finally, we introduce the necessary conservation assumption at the node, which transforms our family of independent equations into a single problem
m∑i=1fi(ρi(t,0−))=m+n∑j=m+1fj(ρj(t,0+)) for a.e. t≥0. |
Questions related to existence, uniqueness and stability of solutions for problems of this kind have been extensively investigated in recent years, mainly in relation with traffic modeling. The interested reader can refer to [7,13] for an overview of the subject. Here our point of view is different, as we do not focus on a specific model. We consider a parabolic regularization of the problem, similarly to what has been done in [11,10], but instead of enforcing a continuity condition at the node for the regularized solutions, we introduce a more general set of transmission conditions on the parabolic fluxes.
In this work we adopt the following definition of weak solution for the problem (1), (2), and (3). We stress that this definition is for sure not sufficient to ensure uniqueness. On the contrary it fix somehow a minimal set of properties that any reasonable solution is expected to satisfy, see [3] and references therein for a more detailed discussion on this point.
Definition 1.1. Let
(D.1)
(D.2) for every
∫∞0∫0−∞(|ρi−c|∂tφ+sign(ρi−c)(fi(ρi)−fi(c))∂xφ)dtdx+∫0−∞|ρi,0(x)−c|φ(0,x)dx≥0; |
(D.3) for every
∫∞0∫∞0(|ρj−c|∂tφ+sign(ρj−c)(fj(ρR)−fj(c))∂xφ)dtdx+∫∞0|ρj,0(x)−c|φ(0,x)dx≥0; |
(D.4)
In [10] the authors approximated (1), (2), and (3) in the following way
{∂tρi,ε+∂xfi(ρi,ε)=ε∂2xxρi,ε,t>0,x<0,i,∂tρj,ε+∂xfj(ρj,ε)=ε∂2xxρj,ε,t>0,x>0,j,ρi,ε(t,0)=ρj,ε(t,0),t>0,i,j,m∑i=1(fi(ρi,ε(t,0))−ε∂xρi,ε(t,0))=m+n∑j=m+1(fj(ρj,ε(t,0))−ε∂xρj,ε(t,0)),t>0,ρi,ε(0,x)=ρi,0,ε(x),x<0,i,ρj,ε(0,x)=ρj,0,ε(x),x>0,j, | (4) |
where
ρi,ε→ρia.e. in (0,∞)×(−∞,0) andin Lploc((0,∞)×(−∞,0)),1≤p<∞, as ε→0 for every i,ρj,ε→ρja.e. in (0,∞)×(0,∞) and in Lploc((0,∞)×(0,∞)),1≤p<∞, as ε→0 for every j, |
where
In this paper we modify the transmission condition of (4) and inspired by [14] we consider the following viscous approximation of (1), (2), and (3)
{∂tρi,ε+∂xfi(ρi,ε)=ε∂2xxρi,ε,t>0,x<0,i,∂tρj,ε+∂xfj(ρj,ε)=ε∂2xxρj,ε,t>0,x>0,j,fi(ρi,ε(t,0))−ε∂xρi,ε(t,0)=βi(ρ1,ε(t,0),....,ρm+n,ε(t,0)),t>0,i,fj(ρj,ε(t,0))−ε∂xρj,ε(t,0)=βj(ρ1,ε(t,0),....,ρm+n,ε(t,0)),t>0,j,ρi,ε(0,x)=ρi,0,ε(x),x<0,i,ρj,ε(0,x)=ρj,0,ε(x),x>0,j, | (5) |
where, of course,
m∑i=1βi(ρ1,ε(t,0),…,ρm+n,ε(t,0))=m+n∑j=m+1βj(ρ1,ε(t,0),…,ρm+n,ε(t,0)). | (6) |
The additional assumptions we make on the functions
The main result of the paper is the following.
Theorem 1.2. Assume(H.1), (H.2), and (H.3). There exist a sequence
ρi,εk⟶ρi,a.e.andinLploc((0,∞)×(−∞,0)), | (7) |
ρj,εk⟶ρj,a.e.andinLploc((0,∞)×(0,∞)), | (8) |
f1(ρ1),...,fm(ρm)∈BV((0,∞)×(−∞,0)),fm+1(ρm+1),...,fm+n(ρm+n)∈BV((0,∞)×(0,∞)), | (9) |
for every
It worth mentioning that a complete characterization of the limit solution obtained from (4) as
At the moment we are not able to formulate a similar characterization of the limit of (5). In general, however, the limits coming from parabolic regularization subject to the two different kinds of transmission conditions are different.
To show this consider the simple case of a junction with one incoming and one outgoing edges. So we have the conservation law
∂tρ1+∂xf1(ρ1)=0,t>0,x<0, | (10) |
on the incoming edge and
∂tρ2+∂xf2(ρ2)=0,t>0,x>0, | (11) |
on the outgoing one. Assume that
f1(0)=f1(1)=f2(0)=f2(1)=0,f″1,f″2<0,there exists 0<ˇρ<ˆρ<1 and G>0 such that f1(ˆρ)=f2(ˇρ)=G(ˆρ−ˇρ). | (12) |
Consider the simplified version of (5)
{∂tρ1,ε+∂xf1(ρ1,ε)=ε∂2xxρ1,ε,t>0,x<0,∂tρ2,ε+∂xf2(ρ2,ε)=ε∂2xxρ2,ε,t>0,x>0,f1(ρ1,ε(t,0))−ε∂xρ1,ε(t,0)=f2(ρ2,ε(t,0))−ε∂xρ2,ε(t,0)=G(ρ1,ε−ρ2,ε),t>0,ρ1,ε(0,x)=ˆρ,x<0,ρ2,ε(0,x)=ˇρ,x>0. | (13) |
The unique solution of (13) is
ρ1,ε(⋅,⋅)=ˆρ,ρ2,ε(⋅,⋅)=ˇρ,ε>0. | (14) |
Therefore, as
ρ1(⋅,⋅)=ˆρ,ρ2(⋅,⋅)=ˇρ. | (15) |
This stationary solution is not admissible in the sense of the classical vanishing viscosity germ, see [5,Sec. 5], as it consists of a nonclassical shock. However, when dealing with conservation laws with discontinuous flux, it is well known that infinitely many
It is worth noticing that entropy solutions admissible in the sense of a
It is difficult, however, to establish a direct equivalence between the aforementioned results and the one we put forward in this paper. In particular, in the present case we miss information on the boundary layers at the parabolic level and we do not know how the transmission conditions we impose on the parabolic fluxes translates into a condition for the hyperbolic problem.
This means in particular that we have little information on the germ associated to the family of limit solutions obtained in Theorem 1.2 and, so far, we have not been able to prove that this germ is
The paper is organized as follows: Section 2 contains the precise list of assumptions on the initial and transmission conditions in the parabolic problem (5). In Section 3 we present the proofs of all necessary a priori estimates on (5). Finally, in Section 4 we detail the proof of Theorem 1.2.
The initial conditions
Once the functions
ρi,0,ε∈C∞((−∞,0])∩L1(−∞,0),ρj,0,ε∈C∞([0,∞))∩L1(0,∞),ε>0,ρi,0,ε→ρi,0a.e. in (−∞,0) and in Lploc(−∞,0),1≤p<∞, as ε→0,ρj,0,ε→ρj,0a.e. in (0,∞) and in Lploc(0,∞),1≤p<∞, as ε→0,0≤ρi,0,ε,ρj,0,ε≤1,ε>0,‖ρi,0,ε‖L1(−∞,0)≤‖ρi,0‖L1(−∞,0),‖ρj,0,ε‖L1(0,∞)≤‖ρj,0‖L1(0,∞),ε>0,‖ρi,0,ε‖L2(−∞,0)≤‖ρi,0‖L2(−∞,0),‖ρj,0,ε‖L2(0,∞)≤‖ρj,0‖L2(0,∞),ε>0,‖∂xρi,0,ε‖L1(−∞,0)≤TV(ρi,0),‖∂xρj,0,ε‖L1(0,∞)≤TV(ρj,0),ε>0,ε‖∂xρi,0,ε‖L1(−∞,0),ε‖∂2xxρj,0,ε‖L1(0,∞)≤C,ε>0, | (16) |
for some constant
The functions
βi(ρ1,ε(t,0),....,ρm+n,ε(t,0))=m+n∑j=m+1Gi,j(ρi,ε(t,0),ρj,ε(t,0))+ε(m∑h=1Ki,h(ρi,ε(t,0),ρh,ε(t,0))−m+n∑h=1Kh,i(ρh,ε(t,0),ρi,ε(t,0))); | (17) |
for
βj(ρ1,ε(t,0),....,ρm+n,ε(t,0))=m∑i=1Gi,j(ρi,ε(t,0),ρj,ε(t,0))+ε(m+n∑h=m+1Kh,j(ρh,ε(t,0),ρj,ε(t,0))−m+n∑h=1Kj,h(ρj,ε(t,0),ρh,ε(t,0))). | (18) |
The functions
∂vGi,j(⋅,⋅)≤0≤∂uGi,j(⋅,⋅),Gi,j(0,0)=Gi,j(1,1)=0,∂uKh,ℓ(⋅,⋅)≤0≤∂vKh,ℓ(⋅,⋅),Kh,ℓ(0,0)=Kh,ℓ(1,1)=0. | (19) |
In particular, (19) implies
(sign(u)−sign(v))∇Gi,j(⋅,⋅)⋅(u,v)≥0,u,v∈R,(sign(u)−sign(v))∇Kh,ℓ(⋅,⋅)⋅(u,v)≤0,u,v∈R,(sign(u−u′)−sign(v−v′))(Gi,j(u,v)−Gi,j(u′,v′))≥0,u,u′,v,v′∈R,(sign(u−u′)−sign(v−v′))(Kh,ℓ(u,v)−Kh,ℓ(u′,v′))≤0,u,u′,v,v′∈R,(χ(−∞,0)(u)−χ(−∞,0)(v))Gi,j(u,v)≤0,u,v∈R,(χ(−∞,0)(u)−χ(−∞,0)(v))Kh,ℓ(u,v)≥0,u,v∈R, | (20) |
where
This specific form of transmission conditions is reminiscent of the parabolic transmission conditions considered in [14,8], which were originally inspired from the Kedem-Katchalsky conditions for membrane permeability introduced in [16]
Gh,ℓ(u,v)=ch,ℓ(u−v), | (21) |
for some constants
Gh,ℓ(u,v)(u−v)≥0, | (22) |
that allows the authors in [14] to get the
We can observe that the equality (6) holds as
m∑i=1βi(ρ1,ε(t,0),....,ρm+n,ε(t,0))=m∑i=1m+n∑j=m+1Gi,j(ρi,ε(t,0),ρj,ε(t,0))+εm∑i=1(m∑h=1Ki,h(ρi,ε(t,0),ρh,ε(t,0))−m+n∑h=1Kh,i(ρh,ε(t,0),ρi,ε(t,0)))=m∑i=1m+n∑j=m+1(Gi,j(ρi,ε(t,0),ρj,ε(t,0))−εKj,i(ρj,ε(t,0),ρi,ε(t,0))) | (23) |
and analogously
m+n∑j=m+1βj(ρ1,ε(t,0),....,ρm+n,ε(t,0))=m+n∑j=m+1m∑i=1(Gi,j(ρi,ε(t,0),ρj,ε(t,0))−εKj,i(ρj,ε(t,0),ρi,ε(t,0))). | (24) |
This section is devoted to establish a priori estimates, uniform with respect to
For every
Lemma 3.1 (
0≤ρi,ε,ρj,ε≤1,i,j. | (25) |
Proof. Consider the function
η(ξ)=−ξχ(−∞,0)(ξ). |
Since
η′(ξ)=−χ(−∞,0)(ξ), |
using (19) we obtain
ddt(m∑i=1∫0−∞η(ρi,ε)dx+m+n∑j=m+1∫∞0η(ρj,ε)dx)=m∑i=1∫0−∞η′(ρi,ε)∂tρi,εdx+m+n∑j=m+1∫∞0η′(ρj,ε)∂tρj,εdx=−m∑i=1∫0−∞χ(−∞,0)(ρi,ε)∂tρi,εdx−m+n∑j=m+1∫∞0χ(−∞,0)(ρj,ε)∂tρj,εdx=m∑i=1∫0−∞χ(−∞,0)(ρi,ε)∂x(fi(ρi,ε)−ε∂xρi,ε)dx+m+n∑j=m+1∫∞0χ(−∞,0)(ρj,ε)∂x(fj(ρj,ε)−ε∂xρj,ε)dx=m∑i=1χ(−∞,0)(ρi,ε(t,0))(fi(ρi,ε(t,0))−ε∂xρi,ε(t,0))−m+n∑j=m+1χ(−∞,0)(ρj,ε(t,0))(fj(ρj,ε(t,0))−ε∂xρj,ε(t,0))+m∑i=1∫0−∞∂xρi,ε(fi(ρi,ε)−ε∂xρi,ε)dδ{ρi,ε=0}⏟≤0+m+n∑j=m+1∫∞0∂xρj,ε(fj(ρj,ε)−ε∂xρj,ε)dδ{ρj,ε=0}⏟≤0≤m+n∑j=m+1m∑i=1(χ(−∞,0)(ρi,ε(t,0))−χ(−∞,0)(ρj,ε(t,0)))⋅⋅(Gi,j(ρi,ε(t,0),ρj,ε(t,0))−εKj,i(ρj,ε(t,0),ρi,ε(t,0)))≤0, |
where
0≤m∑i=1∫0−∞η(ρi,ε(t,x))dx+m+n∑j=m+1∫∞0η(ρj,ε(t,x))dx≤m∑i=1∫0−∞η(ρi,0,ε)dx+m+n∑j=m+1∫∞0η(ρj,0,ε)dx=0 |
and then
ρi,ε,ρj,ε≥0,i,j, |
that proves the lower bounds in (25). The upper bounds in (25) can be proved in the same way using the function
Lemma 3.2 (
m∑i=1‖ρi,ε(t,⋅)‖L1(−∞,0)+m+n∑j=m+1‖ρj,ε(t,⋅)‖L1(0,∞)≤m∑i=1‖ρi,0‖L1(−∞,0)+m+n∑j=m+1‖ρj,0‖L1(0,∞),t≥0. | (26) |
Proof. Thanks to (5), (23), (24), and (25), we have that
ddt(m∑i=1∫0−∞|ρi,ε|dx+m+n∑j=m+1∫∞0|ρj,ε|dx)=ddt(m∑i=1∫0−∞ρi,εdx+m+n∑j=m+1∫∞0ρj,εdx)=m∑i=1∫0−∞∂tρi,εdx+m+n∑j=m+1∫∞0∂tρj,εdx=−m∑i=1∫0−∞∂x(fi(ρi,ε)−ε∂xρi,ε)dx−m+n∑j=m+1∫∞0∂x(fj(ρj,ε)−ε∂xρj,ε)dx=−m∑i=1βi(ρ1,ε(t,0),…,ρm+n,ε(t,0))+m+n∑j=m+1βj(ρ1,ε(t,0),…,ρm+n,ε(t,0))=0. |
Integrating over
Lemma 3.3 (
m∑i=1‖ρi,ε(t,⋅)‖2L2(−∞,0)+m+n∑j=m+1‖ρj,ε(t,⋅)‖2L2(0,∞)+2ε∫t0(m∑i=1‖∂xρi,ε(s,⋅)‖2L2(−∞,0)+m+n∑j=m+1‖∂xρj,ε(s,⋅)‖2L2(0,∞))ds≤m∑i=1‖ρi,0‖2L2(−∞,0)+m+n∑j=m+1‖ρj,0‖2L2(0,∞)+2(m+n∑ℓ=1‖βℓ‖L∞((0,1)m+n)+m∑i=1‖fi‖L1(0,1))t, | (27) |
for every
Proof. Thanks to (5), we have that
ddt(m∑i=1∫0−∞ρ2i,ε2dx+m+n∑j=m+1∫∞0ρ2j,ε2dx)=m∑i=1∫0−∞ρi,ε∂tρi,εdx+m+n∑j=m+1∫∞0ρj,ε∂tρj,εdx=−m∑i=1∫0−∞ρi,ε∂x(fi(ρi,ε)−ε∂xρi,ε)dx−m+n∑j=m+1∫∞0ρj,ε∂x(fj(ρj,ε)−ε∂xρj,ε)dx=−m∑i=1ρi,ε(t,0)(fi(ρi,ε(t,0))−ε∂xρi,ε(t,0))+m+n∑j=m+1ρj,ε(t,0)(fj(ρj,ε(t,0))−ε∂xρj,ε(t,0))+m∑i=1∫0−∞∂x(∫ρi,ε(t,x)0fi(ξ)dξ)dx+m+n∑j=m+1∫∞0∂x(∫ρj,ε(t,x)0fj(ξ)dξ)dx−εm∑i=1∫0−∞(∂xρi,ε)2dx−εm+n∑j=m+1∫∞0(∂xρj,ε)2dx=m∑i=1ρj,ε(t,0)βi(ρ1,ε(t,0),....,ρm+n,ε(t,0))−m+n∑j=m+1ρi,ε(t,0))βj(ρ1,ε(t,0),....,ρm+n,ε(t,0))+m∑i=1∫ρi,ε(t,0)0fi(ξ)dξ−m+n∑j=m+1∫ρj,ε(t,0)0fj(ξ)dξ⏟≤0−εm∑i=1∫0−∞(∂xρi,ε)2dx−εm+n∑j=m+1∫∞0(∂xρj,ε)2dx≤m+n∑ℓ=1‖βℓ‖L∞((0,1)m+n)+m∑i=1‖fi‖L1(0,1)−εm∑i=1∫0−∞(∂xρi,ε)2dx−εm+n∑j=m+1∫∞0(∂xρj,ε)2dx. |
Integrating over
Lemma 3.4 (
m∑i=1‖∂tρi,ε(t,⋅)‖L1(−∞,0)+m+n∑j=m+1‖∂tρj,ε(t,⋅)‖L1(0,∞)≤(m+n)C+m∑i=1‖f′i‖L∞(0,1)TV(ρi,0)+m+n∑j=m+1‖f′j‖L∞(0,1)TV(ρj,0), | (28) |
for every
Proof. From (5) we get
∂2ttρi,ε+∂x(f′i(ρi,ε)∂tρi,ε)=ε∂3txxρi,ε,∂2ttρj,ε+∂x(f′j(ρj,ε)∂tρj,ε)=ε∂3txxρj,ε,f′i(ρi,ε(t,0))∂tρi,ε(t,0)−ε∂2txρi,ε(t,0)=m+n∑j=m+1∇Gi,j(ρi,ε(t,0),ρj,ε(t,0))⋅(∂tρi,ε(t,0),∂tρj,ε(t,0))+εm∑h=1∇Ki,h(ρi,ε(t,0),ρh,ε(t,0))⋅(∂tρi,ε(t,0),∂tρh,ε(t,0))−εm+n∑h=1∇Kh,i(ρh,ε(t,0),ρi,ε(t,0))⋅(∂tρh,ε(t,0),∂tρi,ε(t,0)),f′j(ρj,ε(t,0))∂tρj,ε(t,0)−ε∂2txρj,ε(t,0)=m∑i=1∇Gi,j(ρi,ε(t,0),ρj,ε(t,0))⋅(∂tρi,ε(t,0),∂tρj,ε(t,0))+εm+n∑h=m+1∇Kh,j(ρh,ε(t,0),ρj,ε(t,0))⋅(∂tρh,ε(t,0),∂tρj,ε(t,0))−εm+n∑h=1∇Kj,h(ρj,ε(t,0),ρh,ε(t,0))⋅(∂tρi,ε(t,0),∂tρh,ε(t,0)). |
Thanks to (20), we have that
ddt(m∑i=1∫0−∞|∂tρi,ε|dx+m+n∑j=m+1∫∞0|∂tρj,ε|dx)=m∑i=1∫0−∞∂2ttρi,εsign(∂tρi,ε)dx+m+n∑j=m+1∫∞0∂2ttρj,εsign(∂tρj,ε)dx=−m∑i=1∫0−∞sign(∂tρi,ε)∂x(f′i(ρi,ε)∂tρi,ε−ε∂2txρi,ε)dx−m+n∑j=m+1∫∞0sign(∂tρj,ε)∂x(f′j(ρj,ε)∂tρj,ε−ε∂2txρj,ε)dx=−m∑i=1sign(∂tρi,ε(t,0))(f′i(ρi,ε(t,0))∂tρi,ε(t,0)−ε∂2txρi,ε(t,0))+m+n∑j=m+1sign(∂tρj,ε(t,0))(f′j(ρj,ε(t,0))∂tρj,ε(t,0)−ε∂2txρj,ε(t,0))+2m∑i=1∫0−∞∂2txρi,ε(f′i(ρi,ε)∂tρi,ε−ε∂2txρi,ε)dδ{∂tρi,ε=0}⏟≤0+2m+n∑j=m+1∫0−∞∂2txρj,ε(f′j(ρj,ε)∂tρj,ε−ε∂2txρj,ε)dδ{∂tρj,ε=0}⏟≤0≤−m∑i=1m+n∑j=m+1(sign(∂tρi,ε(t,0))−sign(∂tρj,ε(t,0)))××∇Gi,j(ρi,ε(t,0),ρj,ε(t,0))⋅(∂tρi,ε(t,0),∂tρj,ε(t,0))+εm∑i=1m+n∑j=m+1(sign(∂tρi,ε(t,0))−sign(∂tρj,ε(t,0)))××∇Kj,i(ρi,ε(t,0),ρj,ε(t,0))⋅(∂tρi,ε(t,0),∂tρj,ε(t,0))≤0, |
where
Integrating over
m∑i=1‖∂tρi,ε(t,⋅)‖L1(−∞,0)+m+n∑j=m+1‖∂tρj,ε(t,⋅)‖L1(0,∞)≤m∑i=1‖∂tρi,ε(0,⋅)‖L1(−∞,0)+m+n∑j=m+1‖∂tρj,ε(0,⋅)‖L1(0,∞)=m∑i=1‖ε∂2xxρi,0,ε−∂xfi(ρi,0,ε)‖L1(−∞,0)+m+n∑j=m+1‖ε∂2xxρj,0,ε−∂xfj(ρj,0,ε)‖L1(0,∞)≤m∑i=1(ε‖∂2xxρi,0,ε‖L1(−∞,0)+‖f′i(ρi,0,ε)‖L∞(−∞,0)‖∂xρi,0,ε‖L1(−∞,0))+m+n∑j=m+1(ε‖∂2xxρj,0,ε‖L1(0,∞)+‖f′j(ρj,0,ε)‖L∞(0,∞)‖∂xρj,0,ε‖L1(0,∞))≤(m+n)C+m∑i=1‖f′i‖L∞(0,1)TV(ρi,0)+m+n∑j=m+1‖f′j‖L∞(0,1)TV(ρj,0), |
that is (28).
Lemma 3.5 (Stability estimate). Let
m∑i=1‖ρi,ε(t,⋅)−¯ρi,ε(t,⋅)‖L1(−∞,0)+m+n∑j=m+1‖ρj,ε(t,⋅)−¯ρj,ε(t,⋅)‖L1(0,∞)≤m∑i=1‖ρi,0,ε−¯ρi,0,ε‖L1(−∞,0)+m+n∑j=m+1‖ρj,0,ε−¯ρj,0,ε‖L1(0,∞),t≥0. | (29) |
Proof. From (5) we get
∂t(ρi,ε−¯ρi,ε)+∂x(fi(ρi,ε)−fi(¯ρi,ε))=ε∂2xx(ρi,ε−¯ρi,ε),∂t(ρj,ε−¯ρj,ε)+∂x(fj(ρj,ε)−fj(¯ρj,ε))=ε∂2xx(ρj,ε−¯ρj,ε). |
Thanks to (5), (20), and (25), we have that
ddt(m∑i=1∫0−∞|ρi,ε−¯ρi,ε|dx+m+n∑j=m+1∫∞0|ρj,ε−¯ρj,ε|dx)=m∑i=1∫0−∞sign(ρi,ε−¯ρi,ε)∂t(ρi,ε−¯ρi,ε)dx+m+n∑j=m+1∫∞0sign(ρj,ε−¯ρj,ε)∂t(ρj,ε−¯ρj,ε)dx=−m∑i=1∫0−∞sign(ρi,ε−¯ρi,ε)∂x((fi(ρi,ε)−fi(¯ρi,ε))−ε∂x(ρi,ε−¯ρi,ε))dx−m+n∑j=m+1∫∞0sign(ρj,ε−¯ρj,ε)∂x((fj(ρj,ε)−fj(¯ρj,ε))−ε∂x(ρj,ε−¯ρj,ε))dx=−m∑i=1m+n∑j=m+1[sign(ρi,ε(t,0)−¯ρi,ε(t,0))−sign(ρj,ε(t,0)−¯ρj,ε(t,0))]××[Gi,j(ρi,ε(t,0),ρj,ε(t,0))−Gi,j(¯ρi,ε(t,0),¯ρj,ε(t,0))]+εm∑i=1m+n∑j=m+1[sign(ρi,ε(t,0)−¯ρi,ε(t,0))−sign(ρj,ε(t,0)−¯ρj,ε(t,0))]××[Kj,i(ρi,ε(t,0),ρj,ε(t,0))−Gi,j(¯ρi,ε(t,0),¯ρj,ε(t,0))]+2m∑i=1∫0−∞∂x(ρi,ε−¯ρi,ε)((fi(ρi,ε)−fi(¯ρi,ε))−ε∂x(ρi,ε−¯ρi,ε))dδ{ρi,ε=¯ρi,ε}⏟≤0+2m+n∑j=m+1∫∞0∂x(ρj,ε−¯ρj,ε)((fi(ρj,ε)−fi(¯ρj,ε))−ε∂x(ρj,ε−¯ρj,ε))dδ{ρj,ε=¯ρj,ε}⏟≤0≤0, |
where we use [6,Lemma 2] and we denote by
Integrating over
The well-posedness of smooth solutions for (5) can be proved following the argument used in [10,Theorem 1.2] to establish the well-posedness of smooth solutions for (4). Indeed, the existence of a linear semigroup of solutions in the linear case (i.e., when
The main result of this section is the following.
Lemma 4.1. Let
ρ1,...,ρm∈L1((0,∞)×(−∞,0))∩L∞((0,∞)×(−∞,0)), | (30) |
ρm+1,...,ρm+n∈L1((0,∞)×(0,∞))∩L∞((0,∞)×(0,∞)), | (31) |
0≤ρℓ≤1,ℓ∈{1,...,m+n}, | (32) |
ρi,εk⟶ρi,a.e.andinLploc((0,∞)×(−∞,0)), | (33) |
ρj,εk⟶ρj,a.e.andinLploc((0,∞)×(0,∞)), | (34) |
for every
m∑i=1‖ρi(t,⋅)‖L1(−∞,0)+m+n∑j=m+1‖ρj(t,⋅)‖L1(0,∞) | (35) |
≤m∑i=1‖ρi,0‖L1(−∞,0)+m+n∑j=m+1‖ρj,0‖L1(0,∞),m∑i=1‖ρi(t,⋅)‖2L2(−∞,0)+m+n∑j=m+1‖ρj(t,⋅)‖2L2(0,∞) | (36) |
≤m∑i=1‖ρi,0‖2L2(−∞,0)+m+n∑j=m+1‖ρj,0‖2L2(0,∞)+2(m+n∑ℓ=1‖βℓ‖L∞((0,1)m+n)+m∑i=1‖fi‖L1(0,1))t,m∑i=1TV(fi(ρi(t,⋅)))+m+n∑j=m+1TV(fj(ρj(t,⋅)))=m∑i=1‖∂tρi(t,⋅)‖M(−∞,0)+m+n∑j=m+1‖∂tρj(t,⋅)‖M(0,∞)≤(m+n)C+m∑i=1‖f′i‖L∞(0,1)TV(ρi,0)+m+n∑j=m+1‖f′j‖L∞(0,1)TV(ρj,0). | (37) |
Thanks to the genuine nonlinearity of
Theorem 4.2 (Tartar). Let
‖vν‖L∞((0,T)×R)≤MT,T,ν>0, |
and the family
{∂tη(vν)+∂xqℓ(vν)}ν>0 |
is compact in
vνn⟶va.e.andinLploc((0,∞)×R),1≤p<∞. |
The following compact embedding of Murat [17] is useful.
Theorem 4.3 (Murat). Let
Ln=L1,n+L2,n, |
where
Proof of Lemma 4.1. Let us fix
Let
∂tη(ρi,ε)+∂xqi(ρi,ε)=ε∂2xxη(ρi,ε)⏟L1,ε−εη″(ρi,ε)(∂xρi,ε)2⏟L2,ε. | (38) |
We claim that
L1,ε⟶0inH−1((0,T)×(−∞,0)),T>0,asε→0,{L2,ε}εisuniformlyboundedinL1((0,T)×(−∞,0)),T>0. | (39) |
Indeed, (25) and (27) imply
‖ε∂xη(ρi,ε)‖L2((0,T)×(−∞,0))≤√ε‖η′‖L∞(0,1)‖√ε∂xρi,ε‖L2((0,∞)×(−∞,0))≤√ε‖η′‖L∞(0,1)(m∑i=1‖ρi,ε,0‖L2(−∞,0)+m+n∑j=m+1‖ρj,ε,0‖L2(0,∞)+√2(m+n∑ℓ=1‖βℓ‖L∞((0,1)m+n)+m∑i=1‖fi‖L1(0,1))T)→0,‖εη″(ρi,ε)(∂xρi,ε)2‖L1((0,T)×(−∞,0))≤‖η″‖L∞(0,1)(m∑i=1‖ρi,ε,0‖2L2(−∞,0)+m+n∑j=m+1‖ρj,ε,0‖2L2(0,∞)+2(m+n∑ℓ=1‖βℓ‖L∞((0,1)m+n)+m∑i=1‖fi‖L1(0,1))T). |
Due to (16), (39) follows. Therefore, Theorems 4.3 and 4.2 give the existence of a subsequence
ρi,εk⟶ρiinLploc((0,∞)×(−∞,0))foranyp∈[1,∞),ρi,εk⟶ρia.e.in(0,∞)×(−∞,0), | (40) |
that guarantees (32) and (33).
Finally, thanks to Lemmas 3.2, 3.3, and 3.4 we have (35), (36), and (37).
Proof of Theorem 1.2.. The first part of the statement related to the convergence of vanishing viscosity approximations has been proved in Lemma 4.1.
Let us fix
Thanks to (3.4) and (33), for all
∫∞0∫0−∞ρi∂tφdxdt=limk∫∞0∫0−∞ρi,εk∂tφdxdt=−limk∫∞0∫0−∞∂tρi,εkφdxdt≤‖φ‖L∞((0,∞)×(−∞,0))((m+n)C+m∑i=1‖f′i‖L∞(0,1)TV(ρi,0)+m+n∑j=m+1‖f′j‖L∞(0,1)TV(ρj,0)), |
therefore
∂tρi∈M((0,∞)×(−∞,0)), | (41) |
where
∂xfi(ρi)∈M((0,∞)×(−∞,0)). | (42) |
Clearly (41) and (42) give (9) and so the trace at the junction
We prove now that the identity
m∑i=1fi(ρi(t,0−))=n+m∑j=m+1fj(ρj(t,0+)) | (43) |
holds for a.e.
Let
0≤rν(x)≤1,rν(0)=1,supp(rν)⊆[0,1ν], | (44) |
for every
From (5) we have that
0=m∑i=1∫∞0∫0−∞(∂tρi,εk+∂xfi(ρi,εk)−εk∂2xxρi,εk)φ(t)˜rν(x)dxdt+m+n∑j=m+1∫∞0∫∞0(∂tρj,εk+∂xfj(ρj,εk)−εk∂2xxρj,εk)φ(t)rν(x)dxdt=−m∑i=1∫∞0∫0−∞(ρi,εkφ′(t)˜rν(x)+fi(ρi,εk)φ(t)˜r′ν(x)−εk∂xρi,εkφ(t)˜r′ν(x))dxdt−m+n∑j=m+1∫∞0∫∞0(ρj,εkφ′(t)rν(x)+fj(ρj,εk)φ(t)r′ν(x)−εk∂xρj,εkφ(t)r′ν(x))dxdt+m∑i=1∫∞0(fi(ρi,εk(t,0))−εk∂xρi,εk(t,0))φ(t)dt−m+n∑j=m+1∫∞0(fj(ρj,εk(t,0))−εk∂xρj,εk(t,0))φ(t)dt=−m∑i=1∫∞0∫0−∞(ρi,εkφ′(t)˜rν(x)+fi(ρi,εk)φ(t)˜r′ν(x)−εk∂xρi,εkφ(t)˜r′ν(x))dxdt−m+n∑j=m+1∫∞0∫∞0(ρj,εkφ′(t)rν(x)+fj(ρj,εk)φ(t)r′ν(x)−εk∂xρj,εkφ(t)r′ν(x))dxdt. |
As
0=−m∑i=1∫∞0∫0−∞(ρiφ′(t)˜rν(x)+fi(ρi)φ(t)˜r′ν(x))dxdt−m+n∑j=m+1∫∞0∫∞0(ρjφ′(t)rν(x)+fj(ρj)φ(t)r′ν(x))dxdt. |
Finally, sending
0=−m∑i=1∫∞0fi(ρi(t,0−))φ(t)dt+m+n∑j=m+1∫∞0fj(ρj(t,0+))φ(t)dt, |
that gives (43).
[1] |
T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
![]() |
[2] |
A. R. Aftabizadeh, Existence and uniqueness theorems for fourth-order boundary value problems, J. Math. Anal. Appl., 116 (1986), 415–426. https://doi.org/10.1016/S0022-247X(86)80006-3 doi: 10.1016/S0022-247X(86)80006-3
![]() |
[3] | R. Agarwal, On fourth-order boundary value problems arising in beam analysis, Differ. Integr. Equ., 2 (1989), 91–110. |
[4] |
B. Ahmad, S. K. Ntouyas, Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions, Appl. Math. Comput., 266 (2015), 615–622. https://doi.org/10.1016/j.amc.2015.05.116 doi: 10.1016/j.amc.2015.05.116
![]() |
[5] |
A. Alsaedi, M. Alnahdi, B. Ahmad, S. K. Ntouyas, On a nonlinear coupled Caputo-type fractional differential system with coupled closed boundary conditions, AIMS Math., 8 (2023), 17981–17995. https://doi.org/10.3934/math.2023914 doi: 10.3934/math.2023914
![]() |
[6] |
E. Alvarez, H. Cabrales, T. Castro, Optimal control theory for a system of partial differential equations associated with stratified fluids, Mathematics, 9 (2021), 1–23. https://doi.org/10.3390/math9212672 doi: 10.3390/math9212672
![]() |
[7] | A. Anber, Z. Dahmani, The SGEM method for solving some time and Space-Conformable fractional evolution problems, Int. J. Open Prob. Comput. Math., 16 (2023), 33–44. |
[8] |
A. Anber, I. Jebril, Z. Dahmani, N. Bedjaoui, A. Lamamri, The Tanh method and the (G'/G)-expansion method for solving the space-time conformable FZK and FZZ evolution equations, Int. J. Innov. Comput. Inf. Contr., 20 (2024), 557–573. https://doi.org/10.24507/ijicic.20.02.557 doi: 10.24507/ijicic.20.02.557
![]() |
[9] | I. M. Batiha, S. Alshorm, I. H. Jebril, M. A. Hammad, A brief review about fractional calculus, J. Open Prob. Comput. Math., 15 (2022), 39–56. |
[10] |
I. M. Batiha, S. A. Njadat, R. M. Batyha, A. Zraiqat, A. Dababneh, S. Momani, Design fractional-order PID controllers for Single-Joint robot arm model, Int. J. Adv. Soft Comput. Appl., 14 (2022), 96–114. https://doi.org/10.15849/IJASCA.220720.07 doi: 10.15849/IJASCA.220720.07
![]() |
[11] | K. Bensaassa, R. Wael Ibrahim, Z. Dahmani, Existence, uniqueness and numerical simulation for solutions of a class of fractional differential problems, Submitted, 2023. |
[12] | K. Bensaassa, Z. Dahmani, M. Rakah, M. Z. Sarikaya, Beam deflection coupled systems of fractional differential equations: Existence of solutions, Ulam-Hyers stability and travelling waves, Anal. Math. Phys., 14 (2024). https://doi.org/10.1007/s13324-024-00890-6 |
[13] | A. Carpinteri, F. Mainardi, Fractional calculus in continuum mechanics, 2 Eds., New York: Academic Press, 1997. https://doi.org/10.1007/978-3-7091-2664-6 |
[14] | Z. Dahmani, A. Anber, Y. Gouari, M. Kaid, I. Jebril, Extension of a method for solving nonlinear evolution equations via conformable fractional approach, Int. Conf. Infor. Tech., 2021, 38–42. http://doi.org/10.1109/ICIT52682.2021.9491735 |
[15] |
Z. Dahmani, A. Anber, I. Jebril, Solving conformable evolution equations by an extended numerical method, Jordan J. Math. Stat., 15 (2022), 363–380. https://doi.org/10.47013/15.2.14 doi: 10.47013/15.2.14
![]() |
[16] |
M. A. Del Pino, R. F. Manasevich, Existence for a fourth-order boundary value problem under a two-parameter nonresonance condition, Proc. American Math. Soc., 112 (1991), 81–86. https://doi.org/10.2307/2048482 doi: 10.2307/2048482
![]() |
[17] |
B. M. Dia, M. S. Goudiaby, O. Dorn, Boundary feedback stabilization of Two-Dimensional shallow water equations with viscosity term, Mathematics, 10 (2022), 4036,132–143. https://doi.org/10.3390/math10214036 doi: 10.3390/math10214036
![]() |
[18] |
Y. Gouari, Z. Dahmani, I. Jebril, Application of fractional calculus on a new differential problem of duffing type, Adv. Math. Sci. J., 9 (2020), 10989–11002. https://doi.org/10.37418/amsj.9.12.82 doi: 10.37418/amsj.9.12.82
![]() |
[19] |
Y. Gouari, Z. Dahmani, S. E. Farooq, F. Ahmad, Fractional singular differential systems of Lane-Emden type: Existence and uniqueness of solutions, Axioms, 9 (2020), 95. https://doi.org/10.3390/axioms9030095 doi: 10.3390/axioms9030095
![]() |
[20] |
Y. Gouari, Z. Dahmani, Stability of solutions for two classes of fractional differential equations of Lane-Emden type, J. Int. Math., 24 (2021), 2087–2099. http://doi.org/10.1080/09720502.2020.1856343 doi: 10.1080/09720502.2020.1856343
![]() |
[21] |
R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
![]() |
[22] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier B.V., 2006. |
[23] | P. Li, Y. Lu, C. Xu, J. Ren, Dynamic exploration and control of bifurcation in a fractional-order Lengyel-Epstein model owing time delay, MATCH Commun. Math. Comput. Chem., 92 (2024), 437–482. |
[24] |
P. Li, C. Xu, M. Farman, A. Akgül, Y. Pang, Qualitative and stability analysis with lyapunov function of emotion panic spreading model insight of fractional operator, Fractals, 32 (2024), 2440011. http://doi.org/10.1142/S0218348X24400115 doi: 10.1142/S0218348X24400115
![]() |
[25] |
W. Malfliet, W. Hereman, The Tanh method: I. Exact solutions of nonlinear evolution and wave equations, Phys. Scripta, 54 (1996), 563–568. http://doi.org/10.1088/0031-8949/54/6/003 doi: 10.1088/0031-8949/54/6/003
![]() |
[26] |
M. Marin, A. Öchsner, M. M. Bhatti, Some results in Moore-Gibson-Thompson thermoelasticity of dipolar bodies, ZAMM J. Appl. Math. Mech., 100 (2020), e202000090. https://doi.org/10.1002/zamm.202000090 doi: 10.1002/zamm.202000090
![]() |
[27] |
M. Marin, A. Hobiny, I. Abbas, Finite element analysis of nonlinear bioheat model in skin tissue due to external thermal sources, Mathematics, 9 (2021), 1459. https://doi.org/10.3390/math9131459 doi: 10.3390/math9131459
![]() |
[28] |
M. Rakah, Z. Dahmani, A. Senouci, New uniqueness results for fractional differential equations with a Caputo and khalil derivatives, Appl. Math. Inf. Sci., 16 (2022), 943–952. http://dx.doi.org/10.18576/amis/160611 doi: 10.18576/amis/160611
![]() |
[29] | M. Rakah, Y. Gouari, R. Ibrahim, Z. Dahmani, H. Kahtan, Unique solutions, stability and travelling waves for some generalized fractional differential problems, Appl. Math. Sci. Engineer., 23 (2023). https://doi.org/10.1080/27690911.2023.2232092 |
[30] |
U. Sadiya, M. Inc, M. A. Arefin, M. H. Uddin, Consistent travelling waves solutions to the non-linear time fractional Klein-Gordon and Sine-Gordon equations through extended tanh-function approach, J. Taibah Univ. Sci., 16 (2022), 594–607. https://doi.org/10.1080/16583655.2022.2089396 doi: 10.1080/16583655.2022.2089396
![]() |
[31] |
A. Tudorache, R. Luca, On a system of sequential Caputo fractional differential equations with nonlocal boundary conditions, Frac. Fract., 7 (2023), 1–23. https://doi.org/10.3390/fractalfract7020181 doi: 10.3390/fractalfract7020181
![]() |
[32] | Q. Wang, L. Yang, Positive solution for a nonlinear system of fourth-order ordinary differential equations, Electr. J. Differ. Equat., 2020 (2020), 1–15. |
[33] |
A. M. Wazwaz, The Tanh method for compact and non compact solutions for variants of the KdV-Burger and the K(n, n)-Burger equations, Phys. Nonlinear Phen., 213 (2006), 147–151. https://doi.org/10.1016/j.physd.2005.09.018 doi: 10.1016/j.physd.2005.09.018
![]() |
[34] |
M. Xia, X. Zhang, D. Kang, C. Liu, Existence and concentration of nontrivial solutions for an elastic beam equation with local nonlinearity, AIMS Math., 7 (2021), 579–605. https://doi.org/10.3934/math.2022037 doi: 10.3934/math.2022037
![]() |
[35] |
Y. Yang, Q. Qi, J. Hu, J. Dai, C. Yang, Adaptive Fault-Tolerant control for consensus of nonlinear fractional order Multi-Agent systems with diffusion, Frac. Fract., 7 (2023), 760. https://doi.org/10.3390/fractalfract7100760 doi: 10.3390/fractalfract7100760
![]() |
[36] | M. Younis, Soliton solutions of fractional order KdV-Burger's equation, J. Adv. Phys., 3 (2014), 325–328. |
[37] |
J. L. Zhou, Y. B. He, S. Q. Zhang, H. Y. Deng, X. Y. Lin, Existence and stability results for nonlinear fractional integrodifferential coupled systems, Boundary Value Pro., 10 (2023), 1–14. https://doi.org/10.1186/s13661-023-01698-2 doi: 10.1186/s13661-023-01698-2
![]() |
1. | Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro, Well-posedness theory for nonlinear scalar conservation laws on networks, 2022, 17, 1556-1801, 101, 10.3934/nhm.2021025 | |
2. | Francesca R. Guarguaglini, Roberto Natalini, Vanishing viscosity approximation for linear transport equations on finite star-shaped networks, 2021, 21, 1424-3199, 2413, 10.1007/s00028-021-00688-0 | |
3. | John D. Towers, An explicit finite volume algorithm for vanishing viscosity solutions on a network, 2022, 17, 1556-1801, 1, 10.3934/nhm.2021021 | |
4. | Ulrik S. Fjordholm, Markus Musch, Nils H. Risebro, Well-Posedness and Convergence of a Finite Volume Method for Conservation Laws on Networks, 2022, 60, 0036-1429, 606, 10.1137/21M145001X | |
5. | Jon Asier Bárcena-Petisco, Márcio Cavalcante, Giuseppe Maria Coclite, Nicola De Nitti, Enrique Zuazua, Control of hyperbolic and parabolic equations on networks and singular limits, 2024, 0, 2156-8472, 0, 10.3934/mcrf.2024015 | |
6. | Dilip Sarkar, Shridhar Kumar, Pratibhamoy Das, Higinio Ramos, Higher-order convergence analysis for interior and boundary layers in a semi-linear reaction-diffusion system networked by a k-star graph with non-smooth source terms, 2024, 19, 1556-1801, 1085, 10.3934/nhm.2024048 |