Loading [MathJax]/jax/output/SVG/jax.js
Research article

A note on the Liouville type theorem for the smooth solutions of the stationary Hall-MHD system

  • Received: 25 May 2016 Accepted: 26 August 2016 Published: 13 October 2016
  • The main result of this work is to study the Liouville type theorem for the stationary Hall-MHD system on R.3. Specificaly,we show that if (u,B) is a smooth solutions to Hall-MHD equations satisfying (u,B)L.,then we have u=B=0. This improves a recent result of Chae et al. [2] and Zujin et al. [14].

    Citation: Sadek Gala. A note on the Liouville type theorem for the smooth solutions of the stationary Hall-MHD system[J]. AIMS Mathematics, 2016, 1(3): 282-287. doi: 10.3934/Math.2016.3.282

    Related Papers:

    [1] Yanping Zhou, Xuemei Deng, Qunyi Bie, Lingping Kang . Energy conservation for the compressible ideal Hall-MHD equations. AIMS Mathematics, 2022, 7(9): 17150-17165. doi: 10.3934/math.2022944
    [2] A. M. Alghamdi, S. Gala, M. A. Ragusa . A regularity criterion of smooth solution for the 3D viscous Hall-MHD equations. AIMS Mathematics, 2018, 3(4): 565-574. doi: 10.3934/Math.2018.4.565
    [3] Md. Asaduzzaman, Md. Zulfikar Ali . Existence of positive solution to the boundary value problems for coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2019, 4(3): 880-895. doi: 10.3934/math.2019.3.880
    [4] Xinjing Wang . Liouville type theorem for weak solutions of nonlinear system for Grushin operator. AIMS Mathematics, 2023, 8(8): 19039-19048. doi: 10.3934/math.2023971
    [5] Zhongqian Wang, Xuejun Zhang, Mingliang Song . Three nonnegative solutions for Sturm-Liouville BVP and application to the complete Sturm-Liouville equations. AIMS Mathematics, 2023, 8(3): 6543-6558. doi: 10.3934/math.2023330
    [6] Iman Ben Othmane, Lamine Nisse, Thabet Abdeljawad . On Cauchy-type problems with weighted R-L fractional derivatives of a function with respect to another function and comparison theorems. AIMS Mathematics, 2024, 9(6): 14106-14129. doi: 10.3934/math.2024686
    [7] Zaid Laadjal, Fahd Jarad . Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions. AIMS Mathematics, 2023, 8(1): 1172-1194. doi: 10.3934/math.2023059
    [8] Wei Zhang . A priori estimates for the free boundary problem of incompressible inviscid Boussinesq and MHD-Boussinesq equations without heat diffusion. AIMS Mathematics, 2023, 8(3): 6074-6094. doi: 10.3934/math.2023307
    [9] Mingyu Zhang . On the Cauchy problem of compressible Micropolar fluids subjected to Hall current. AIMS Mathematics, 2024, 9(12): 34147-34183. doi: 10.3934/math.20241627
    [10] Sinan Serkan Bilgici, Müfit ŞAN . Existence and uniqueness results for a nonlinear singular fractional differential equation of order $ \sigma\in(1, 2) $. AIMS Mathematics, 2021, 6(12): 13041-13056. doi: 10.3934/math.2021754
  • The main result of this work is to study the Liouville type theorem for the stationary Hall-MHD system on R.3. Specificaly,we show that if (u,B) is a smooth solutions to Hall-MHD equations satisfying (u,B)L.,then we have u=B=0. This improves a recent result of Chae et al. [2] and Zujin et al. [14].


    1 Introduction and main result

    We consider the following stationary Hall-MHD system on R3 :

    {(u.)u(×B)×BΔu+π=0,×(u×B)+×[(×B)×B]ΔB=0,.u=.B=0,(u,B)(x,0)=(u0(x),B0(x)), (1.1)

    where xR3. Here u=u(x,t)R3, B=B(x,t)R3 and π=π(x,t) are non-dimensional quantities corresponding to the flow velocity, the magnetic field and the pressure at the point (x,t), while u0(x) and B0(x) are the given initial velocity and initial magnetic field with .u0=0 and .B0=0, respectively. An explanation of the mathematical and physical background of equations (1.1) is given for example in [1] (see also [4,5,6,7,9,10,11,12,13] and the references therein).

    In their famous paper [2], Chae-Degond-Liu proved (Theorem 2.5, p. 558) (see also [14]) the following Liouville-type theorem for the smooth solutions of (1.1) :

    Theorem 1.1. Let (u,B)C2(R3) be a smooth solution of the stationary Hall-MHD system (1.1) such that

    (i) (u,B)L92(R3),

    (ii) (u,B)L(R3),

    (iii) the (weak and then by classical) solution (u,B):R3R3 is of finite energy in the sense that

    R3|u|2dx+R3|B|2dx.

    Then,

    u=B=0.

    The purpose of this note is to get rid of hypothesis (ii) and (iii) in theorem 1.1. More precisely, we shall prove the following result.

    Theorem 1.2. Let (u,B)C2(R3) be a smooth solution of the Hall-MHD equations (1.1}) such that

    (u,B)L92(R3) and R3|B|2dx.

    Then,

    u=B=0 in R3.

    Remark 1.1. As mentioned in [3], if we set B=0 in the Hall-MHD system, the above theorem reduces to the well-known Galdi result [8] for the Navier--Stokes equations (see Theorem X.9.5, pp.729-730).


    2 Proof of Theorem 1.2

    In order to prove our main result, we introduce some basic identifies in the fluid dynamic.

    Lemma 2.1.

    Δu=divu×(×u),u×(×u)=12|u|2(u.)u,×(u×B)=(B.)u(u.)B+udivBBdivu.

    Remark 2.1. Based on .B=0 and Lemma 2.1, we get

    (×B)×B=div(BB12|B|2I)=|B|2(B.)B, (2.1)

    where I is the identical matrix.

    We are now in a position to the proof of our main result.

    Proof: Let (u,B)C2(R3) be a smooth solution of the Hall-MHD equations (1.1) satisfies

    (u,B)L92(R3) and R3|B|2dx.

    We shall first estimate the pressure in (1.1)1. Taking the divergence of (1.1)1 and using the identity (1.1), we have

    Δ(π+|B|22)=3j,k=1jk(ujukBjBk),

    from which we have the representation formula of the pressure, using the Riesz transforms in R3:

    π=3j,k=1RjRk(ujukBjBk) (2.2)

    Using (2.2) and Calderón--Zygmund estimate, one has that

    πLqC(u2L2q+B2L2q), 1q. (2.3)

    For τ>0, let φτ be a real nonincreasing smooth function defined in R3 such that

    φτ(x)={1 for  |x|τ,0 for  |x|2τ,

    and satisfying

    kφτLCτk for k=0,1,2,3,

    for some positive constant C independent of xR3.

    Multiplying (1.1)1 by uφτ and (1.1)2 by Bφτ, respectively, integrating by parts over R3 and taking into acount (1.1)3, add the result together, we obtain

    R3|u|2φτdx+R3|B|2φτdx=12R3|u|2(u.)φτdx+R3π(u.)φτdxR3(u×B).(φτ×B)dx+R3[(×B)×B].(φτ×B)dx+12R3|u|2Δφτdx+12R3|B|2Δφτdx=6k=1Ak, (2.4)

    where we have used the fact

    R3(Δw)wφτdx=R3|w|2φτdx+R3(ww).φτdx=R3|w|2φτdx+12R3w2.φτdx=R3|w|2φτdx12R3w2Δφτdx.

    In the following, we will estimate all the terms on the right-hand side of (% 2.4). For the first integral A1, Hólder's inequality yields

    |A1|Cτ|x|2τ|u|3|φτ|dx12τφL(τ|x|2τ|u|92dx)23(τ|x|2τdx)13Cu3L92(τ|x|2τ)0 as τ+.

    As for A2, using the Hólder inequality, it follows according to (2.3) that

    |A2|τ|x|2τ|π||u||φτ|dx1τφL(R3|π|94dx)49(τ|x|2τ|u|92dx)29(τ|x|2τdx)13C(u2L92+B2L92)uL92(τ|x|2τ)0 as τ+.

    Analogously to A1, an application of the Hólder inequality shows that

    |A3|τ|x|2τ|u||B|2|φτ|dx1τφL(τ|x|2τ|B|92dx)49(τ|x|2τ|u|92dx)29(τ|x|2τdx)13CB2L92(τ|x|2τ)uL92(τ|x|2τ)0 as τ+.

    Similar to the treatment of A3, A4 can be estimated as

    |A4|τ|x|2τ|B||B|2|φτ|dx1τφL(τ|x|2τ|B|2dx)12(τ|x|2τ|B|6dx)13(τ|x|2τdx)16CτφLBL2B2L6CτφLB3L20 as τ+.

    Finally, calculating A5+A6 we obtain

    |A5|+|A6|Cτ|x|2τ(|u|2+|B|2)|Δφτ|dxC1τ2ΔφL(τ|x|2τ(|u|2+|B|2)94dx)49(τ|x|2τdx)59C1τ13ΔφL(τ|x|2τ(|u|92+|B|92)dx)49C1τ13ΔφL(u2L92+B2L92)0 as τ+.

    Here we have used the Cauchy inequality. Consequently, letting τ+ in (2.4), we obtain

    limτ+(R3|u|2φτdx+R3|B|2φτdx)=0

    On the other hand, by means of the monotone convergence theorem, we deduce

    R3|u|2dx+R3|B|2dx=limτ+(R3|u|2φτdx+R3|B|2φτdx)=0,

    and thus u=const and B=const. Since (u,B)L92(R3), this latter condition delivers

    u=B=0.

    This completes the proof of Theorem 1.2.


    Acknowledgments

    The author would like to express gratitude to Professor G.P. Galdi for valuable discussions on the results and suggestions to the improvement of this work.


    Conflict of Interest

    We declare no conflicts of interest in this paper.


    [1] M. Acheritogaray, P. Degond, A. Frouvelle and J.G. Liu, Kinetic fomulation and global existence for the Hall-magnetohydrodynamics system, Kinet. Relat. Models, 4 (2011), 901-918.
    [2] D. Chae, P. Degond and J.G. Liu, Well-posedness for Hall-magnetohydrodynamics, Ann. Inst. H. Poincar´e Anal. Non Lin´eaire, 31 (2014), 555-565
    [3] D. Chae and J. Lee, On the blow-up criterion and small data global existence for the Hallmagnetohydrodynamics, J. Di er. Equ., 256 (2014), 3835-3858.
    [4] J. Fan, A. Alsaedi, T. Hayat, G. Nakamura and Y. Zhou, On strong solutions to the compressible Hall-magnetohydrodynamic system, Nonlinear Anal. Real World Appl., 22 (2015), 423-434.
    [5] J. Fan, X. Jia, G. Nakamura and Y. Zhou, On well-posedness and blowup criteria for the magnetohydrodynamics with the Hall and ion-slip effects, Z. Angew. Math. Phys., 66 (2015), no. 4, 1695-1706.
    [6] J. Fan, B. Ahmad, T. Hayat and Y. Zhou, On blow-up criteria for a new Hall-MHD system, Appl. Math. Comput., 274 (2016), 20-24.
    [7] J. Fan, B. Ahmad, T. Hayat and Y. Zhou, On well-posedness and blow-up for the full compressible Hall-MHD system, Nonlinear Anal. Real World Appl., 31 (2016), 569-579.
    [8] G.P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations, Steady State Problems. 2nd Edition, Springer Monographs in Mathematics, Springer, NewYork, 2011.
    [9] F. He, B. Ahmad, T. Hayat and Y. Zhou, On regularity criteria for the 3D Hall-MHD equations in terms of the velocity, Nonlinear Anal. Real World Appl., 32 (2016), 35-51.
    [10] Y. Zhuan, Regulatity criterion for the 3D Hall-magnetohydrodynamic equations involing the vorticity, Nonlinear Anal. 144 (2016), 182-193.
    [11] Y. Zhuan, Regulatity criteria and small data global existence to the generalized viscous Hallmagnetohydrodynamics, Comput. Math. Appl., 70 (2015), 2137-2154.
    [12] R. Wan and Y. Zhou, On global existence, energy decay and blow-up criteria for the Hall-MHD system, J. Di erential Equations, 259 (2015), no. 11, 5982-6008.
    [13] R. Wan and Y. Zhou, Yong Low regularity well-posedness for the 3D generalized Hall-MHD system, To appear in Acta Appl. Math., DOI: 10.1007/s10440-016-0070-5.
    [14] Z. Zujin, X. Xian and Q. Shulin, Remarks on Liouville Type Result for the 3D Hall-MHD System, J. Part. Di . Eq., 28 (2015), 286-290.
  • This article has been cited by:

    1. Huiying Fan, Meng Wang, The Liouville type theorem for the stationary magnetohydrodynamic equations, 2021, 62, 0022-2488, 031503, 10.1063/5.0036229
    2. Qianqian Ding, Xiaonian Long, Shipeng Mao, A Mixed Finite Element Method for Stationary Magneto-Heat Coupling System with Variable Coefficients, 2022, 24, 1099-4300, 912, 10.3390/e24070912
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4671) PDF downloads(1005) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog