

AIMS Mathematics, 1(3): 282-287 DOI:10.3934/Math.2016.3.282 Received: 25 May 2016 Accepted: 26 August 2016 Published: 13 October 2016

http://www.aimspress.com/journal/Math

Research article

A note on the Liouville type theorem for the smooth solutions of the stationary Hall-MHD system

Sadek Gala *

Department of Mathematics, University of Mostaganem, Box 227, Mostaganem 27000, Algeria

* Correspondence: Email: sadek.gala@gmail.com

Abstract: The main result of this work is to study the Liouville type theorem for the stationary Hall-MHD system on \mathbb{R}^3 . Specifically, we show that if (u, B) is a smooth solutions to Hall-MHD equations satisfying $(u, B) \in L^{\frac{9}{2}}(\mathbb{R}^3)$, then we have u = B = 0. This improves a recent result of Chae et al. [2] and Zujin et al. [14].

Keywords: Stationary Hall-MHD equations; Liouville type theorem

1. Introduction and main result

We consider the following stationary Hall-MHD system on \mathbb{R}^3 :

$$\begin{cases}
(u.\nabla)u - (\nabla \times B) \times B - \Delta u + \nabla \pi = 0, \\
-\nabla \times (u \times B) + \nabla \times [(\nabla \times B) \times B] - \Delta B = 0, \\
\nabla . u = \nabla . B = 0, \\
(u, B)(x, 0) = (u_0(x), B_0(x)),
\end{cases}$$
(1.1)

where $x \in \mathbb{R}^3$. Here $u = u(x, t) \in \mathbb{R}^3$, $B = B(x, t) \in \mathbb{R}^3$ and $\pi = \pi(x, t)$ are non-dimensional quantities corresponding to the flow velocity, the magnetic field and the pressure at the point (x, t), while $u_0(x)$ and $B_0(x)$ are the given initial velocity and initial magnetic field with $\nabla u_0 = 0$ and $\nabla B_0 = 0$, respectively. An explanation of the mathematical and physical background of equations (1.1) is given for example in [1] (see also [4, 5, 6, 7, 9, 10, 11, 12, 13] and the references therein).

In their famous paper [2], Chae-Degond-Liu proved (Theorem 2.5, p. 558) (see also [14]) the following Liouville-type theorem for the smooth solutions of (1.1):

Theorem 1.1. Let $(u, B) \in C^2(\mathbb{R}^3)$ be a smooth solution of the stationary Hall-MHD system (1.1) such that

(i) $(u, B) \in L^{\frac{9}{2}}(\mathbb{R}^3)$,

(ii) $(u, B) \in L^{\infty}(\mathbb{R}^3)$,

(iii) the (weak and then by classical) solution $(u, B) : \mathbb{R}^3 \to \mathbb{R}^3$ is of finite energy in the sense that

$$\int_{\mathbb{R}^3} |\nabla u|^2 \, dx + \int_{\mathbb{R}^3} |\nabla B|^2 \, dx < \infty.$$

 $\mu = B = 0$

Then,

The purpose of this note is to get rid of hypothesis (ii) and (iii) in theorem 1.1. More precisely, we shall prove the following result.

Theorem 1.2. Let $(u, B) \in C^2(\mathbb{R}^3)$ be a smooth solution of the Hall-MHD equations (1.1) such that

$$(u, B) \in L^{\frac{9}{2}}(\mathbb{R}^3)$$
 and $\int_{\mathbb{R}^3} |\nabla B|^2 dx < \infty$.

Then,

$$u = B = 0$$
 in \mathbb{R}^3 .

Remark 1.1. As mentioned in [3], if we set B = 0 in the Hall-MHD system, the above theorem reduces to the well-known Galdi result [8] for the Navier–Stokes equations (see Theorem X.9.5, pp.729-730).

2. Proof of Theorem 1.2

In order to prove our main result, we introduce some basic identifies in the fluid dynamic.

Lemma 2.1.

$$\Delta u = \nabla divu - \nabla \times (\nabla \times u),$$

$$u \times (\nabla \times u) = \frac{1}{2} \nabla |u|^2 - (u \cdot \nabla)u,$$

$$\nabla \times (u \times B) = (B \cdot \nabla)u - (u \cdot \nabla)B + u divB - B divu.$$

Remark 2.1. Based on ∇ .B = 0 and Lemma 2.1, we get

$$(\nabla \times B) \times B = div(B \otimes B - \frac{1}{2}|B|^2 I) = -\nabla |B|^2 - (B \cdot \nabla)B, \qquad (2.1)$$

where I is the identical matrix.

We are now in a position to the proof of our main result. **Proof:** Let $(u, B) \in C^2(\mathbb{R}^3)$ be a smooth solution of the Hall-MHD equations (1.1) satisfies

$$(u, B) \in L^{\frac{9}{2}}(\mathbb{R}^3)$$
 and $\int_{\mathbb{R}^3} |\nabla B|^2 dx < \infty.$

AIMS Mathematics

Volume 1, Issue 3, 282-287

We shall first estimate the pressure in $(1.1)_1$. Taking the divergence of $(1.1)_1$ and using the identity (2.1), we have

$$\Delta\left(\pi+\frac{|B|^2}{2}\right)=-\sum_{j,k=1}^3\partial_j\partial_k(u_ju_k-B_jB_k),$$

from which we have the representation formula of the pressure, using the Riesz transforms in \mathbb{R}^3 :

$$\pi = \sum_{j,k=1}^{3} \mathcal{R}_{j} \mathcal{R}_{k} (u_{j} u_{k} - B_{j} B_{k}) - \frac{|B|^{2}}{2}.$$
(2.2)

Using (2.2) and Calderòn-Zygmund estimate, one has that

$$\|\pi\|_{L^q} \le C(\|u\|_{L^{2q}}^2 + \|B\|_{L^{2q}}^2), \quad 1 < q < \infty.$$
(2.3)

For $\tau > 0$, let φ_{τ} be a real nonincreasing smooth function defined in \mathbb{R}^3 such that

$$\varphi_{\tau}(x) = \begin{cases} 1 \text{ for } |x| \le \tau, \\ 0 \text{ for } |x| \ge 2\tau, \end{cases}$$

and satisfying

$$\left\|\nabla^{k}\varphi_{\tau}\right\|_{L^{\infty}} \leq C\tau^{-k} \text{ for } k = 0, 1, 2, 3, k$$

for some positive constant *C* independent of $x \in \mathbb{R}^3$.

Multiplying $(1.1)_1$ by $u\varphi_{\tau}$ and $(1.1)_2$ by $B\varphi_{\tau}$, respectively, integrating by parts over \mathbb{R}^3 and taking into acount $(1.1)_3$, add the result together, we obtain

$$\int_{\mathbb{R}^{3}} |\nabla u|^{2} \varphi_{\tau} dx + \int_{\mathbb{R}^{3}} |\nabla B|^{2} \varphi_{\tau} dx$$

$$= \frac{1}{2} \int_{\mathbb{R}^{3}} |u|^{2} (u.\nabla) \varphi_{\tau} dx + \int_{\mathbb{R}^{3}} \pi (u.\nabla) \varphi_{\tau} dx - \int_{\mathbb{R}^{3}} (u \times B) . (\nabla \varphi_{\tau} \times B) dx$$

$$+ \int_{\mathbb{R}^{3}} [(\nabla \times B) \times B] . (\nabla \varphi_{\tau} \times B) dx + \frac{1}{2} \int_{\mathbb{R}^{3}} |u|^{2} \Delta \varphi_{\tau} dx + \frac{1}{2} \int_{\mathbb{R}^{3}} |B|^{2} \Delta \varphi_{\tau} dx$$

$$= \sum_{k=1}^{6} A_{k}, \qquad (2.4)$$

where we have used the fact

$$\begin{aligned} -\int_{\mathbb{R}^{3}} (\Delta w) w \varphi_{\tau} dx &= \int_{\mathbb{R}^{3}} |\nabla w|^{2} \varphi_{\tau} dx + \int_{\mathbb{R}^{3}} (w \nabla w) \cdot \nabla \varphi_{\tau} dx \\ &= \int_{\mathbb{R}^{3}} |\nabla w|^{2} \varphi_{\tau} dx + \frac{1}{2} \int_{\mathbb{R}^{3}} \nabla w^{2} \cdot \nabla \varphi_{\tau} dx \\ &= \int_{\mathbb{R}^{3}} |\nabla w|^{2} \varphi_{\tau} dx - \frac{1}{2} \int_{\mathbb{R}^{3}} w^{2} \Delta \varphi_{\tau} dx. \end{aligned}$$

In the following, we will estimate all the terms on the right-hand side of (2.4). For the first integral A_1 , Hölder's inequality yields

$$|A_1| \leq C \int_{\tau \leq |x| \leq 2\tau} |u|^3 |\nabla \varphi_{\tau}| \, dx$$

AIMS Mathematics

Volume 1, Issue 3, 282-287

$$\leq \frac{1}{2\tau} \|\nabla\varphi\|_{L^{\infty}} \left(\int_{\tau \le |x| \le 2\tau} |u|^{\frac{9}{2}} dx \right)^{\frac{2}{3}} \left(\int_{\tau \le |x| \le 2\tau} dx \right)^{\frac{1}{3}}$$

$$\leq C \|u\|_{L^{\frac{9}{2}}(\tau \le |x| \le 2\tau)}^{3} \to 0 \text{ as } \tau \to +\infty.$$

As for A_2 , using the Hölder inequality, it follows according to (2.3) that

$$\begin{aligned} |A_2| &\leq \int_{\tau \leq |x| \leq 2\tau} |\pi| \, |u| \, |\nabla \varphi_{\tau}| \, dx \\ &\leq \frac{1}{\tau} \, ||\nabla \varphi||_{L^{\infty}} \left(\int_{\mathbb{R}^3} |\pi|^{\frac{9}{4}} \, dx \right)^{\frac{4}{9}} \left(\int_{\tau \leq |x| \leq 2\tau} |u|^{\frac{9}{2}} \, dx \right)^{\frac{2}{9}} \left(\int_{\tau \leq |x| \leq 2\tau} \, dx \right)^{\frac{1}{3}} \\ &\leq C(||u||^2_{L^{\frac{9}{2}}} + ||B||^2_{L^{\frac{9}{2}}}) \, ||u||_{L^{\frac{9}{2}}(\tau \leq |x| \leq 2\tau)} \to 0 \text{ as } \tau \to +\infty. \end{aligned}$$

Analogously to A_1 , an application of the Hölder inequality shows that

$$\begin{aligned} |A_{3}| &\leq \int_{\tau \leq |x| \leq 2\tau} |u| |B|^{2} |\nabla \varphi_{\tau}| dx \\ &\leq \frac{1}{\tau} \|\nabla \varphi\|_{L^{\infty}} \left(\int_{\tau \leq |x| \leq 2\tau} |B|^{\frac{9}{2}} dx \right)^{\frac{4}{9}} \left(\int_{\tau \leq |x| \leq 2\tau} |u|^{\frac{9}{2}} dx \right)^{\frac{2}{9}} \left(\int_{\tau \leq |x| \leq 2\tau} dx \right)^{\frac{1}{3}} \\ &\leq C \|B\|_{L^{\frac{9}{2}}(\tau \leq |x| \leq 2\tau)}^{2} \|u\|_{L^{\frac{9}{2}}(\tau \leq |x| \leq 2\tau)} \to 0 \text{ as } \tau \to +\infty. \end{aligned}$$

Similar to the treatment of A_3 , A_4 can be estimated as

$$\begin{aligned} |A_4| &\leq \int_{\tau \leq |x| \leq 2\tau} |\nabla B| \, |B|^2 \, |\nabla \varphi_\tau| \, dx \\ &\leq \frac{1}{\tau} \, ||\nabla \varphi||_{L^{\infty}} \left(\int_{\tau \leq |x| \leq 2\tau} |\nabla B|^2 \, dx \right)^{\frac{1}{2}} \left(\int_{\tau \leq |x| \leq 2\tau} |B|^6 \, dx \right)^{\frac{1}{3}} \left(\int_{\tau \leq |x| \leq 2\tau} dx \right)^{\frac{1}{6}} \\ &\leq \frac{C}{\sqrt{\tau}} \, ||\nabla \varphi||_{L^{\infty}} \, ||\nabla B||_{L^2} \, ||B||_{L^6}^2 \\ &\leq \frac{C}{\sqrt{\tau}} \, ||\nabla \varphi||_{L^{\infty}} \, ||\nabla B||_{L^2}^3 \to 0 \text{ as } \tau \to +\infty. \end{aligned}$$

Finally, calculating $A_5 + A_6$ we obtain

$$\begin{aligned} |A_{5}| + |A_{6}| &\leq C \int_{\tau \leq |x| \leq 2\tau} (|u|^{2} + |B|^{2}) |\Delta \varphi_{\tau}| \, dx \\ &\leq C \frac{1}{\tau^{2}} \, ||\Delta \varphi||_{L^{\infty}} \left(\int_{\tau \leq |x| \leq 2\tau} (|u|^{2} + |B|^{2})^{\frac{9}{4}} dx \right)^{\frac{4}{9}} \left(\int_{\tau \leq |x| \leq 2\tau} dx \right)^{\frac{5}{9}} \\ &\leq C \frac{1}{\tau^{\frac{1}{3}}} \, ||\Delta \varphi||_{L^{\infty}} \left(\int_{\tau \leq |x| \leq 2\tau} (|u|^{\frac{9}{2}} + |B|^{\frac{9}{2}}) dx \right)^{\frac{4}{9}} \\ &\leq C \frac{1}{\tau^{\frac{1}{3}}} \, ||\Delta \varphi||_{L^{\infty}} \left(||u||^{2}_{L^{\frac{9}{2}}} + ||B||^{2}_{L^{\frac{9}{2}}} \right) \to 0 \text{ as } \tau \to +\infty. \end{aligned}$$

AIMS Mathematics

Volume 1, Issue 3, 282-287

Here we have used the Cauchy inequality. Consequently, letting $\tau \to +\infty$ in (2.4), we obtain

$$\lim_{\tau \to +\infty} \left(\int_{\mathbb{R}^3} |\nabla u|^2 \varphi_\tau dx + \int_{\mathbb{R}^3} |\nabla B|^2 \varphi_\tau dx \right) = 0$$

On the other hand, by means of the monotone convergence theorem, we deduce

$$\int_{\mathbb{R}^3} |\nabla u|^2 \, dx + \int_{\mathbb{R}^3} |\nabla B|^2 \, dx = \lim_{\tau \to +\infty} \left(\int_{\mathbb{R}^3} |\nabla u|^2 \, \varphi_\tau dx + \int_{\mathbb{R}^3} |\nabla B|^2 \, \varphi_\tau dx \right) = 0,$$

and thus u = const and B = const. Since $(u, B) \in L^{\frac{9}{2}}(\mathbb{R}^3)$, this latter condition delivers

$$u=B=0.$$

This completes the proof of Theorem 1.2.

Acknowledgments

The author would like to express gratitude to Professor G.P. Galdi for valuable discussions on the results and suggestions to the improvement of this work.

Conflict of Interest

We declare no conflicts of interest in this paper.

References

- 1. M. Acheritogaray, P. Degond, A. Frouvelle and J.G. Liu, *Kinetic fomulation and global existence for the Hall-magnetohydrodynamics system*, Kinet. Relat. Models, **4** (2011), 901-918.
- D. Chae, P. Degond and J.G. Liu, Well-posedness for Hall-magnetohydrodynamics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 555-565
- 3. D. Chae and J. Lee, On the blow-up criterion and small data global existence for the Hallmagnetohydrodynamics, J. Differ. Equ., 256 (2014), 3835-3858.
- 4. J. Fan, A. Alsaedi, T. Hayat, G. Nakamura and Y. Zhou, *On strong solutions to the compressible Hall-magnetohydrodynamic system*, Nonlinear Anal. Real World Appl., **22** (2015), 423-434.
- J. Fan, X. Jia, G. Nakamura and Y. Zhou, On well-posedness and blowup criteria for the magnetohydrodynamics with the Hall and ion-slip effects, Z. Angew. Math. Phys., 66 (2015), no. 4, 1695-1706.
- 6. J. Fan, B. Ahmad, T. Hayat and Y. Zhou, *On blow-up criteria for a new Hall-MHD system*, Appl. Math. Comput., **274** (2016), 20-24.
- 7. J. Fan, B. Ahmad, T. Hayat and Y. Zhou, *On well-posedness and blow-up for the full compressible Hall-MHD system*, Nonlinear Anal. Real World Appl., **31** (2016), 569-579.

AIMS Mathematics

- 8. G.P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations, Steady State Problems. 2nd Edition, Springer Monographs in Mathematics, Springer, NewYork, 2011.
- 9. F. He, B. Ahmad, T. Hayat and Y. Zhou, *On regularity criteria for the 3D Hall-MHD equations in terms of the velocity*, Nonlinear Anal. Real World Appl., **32** (2016), 35-51.
- 10. Y. Zhuan, *Regulatity criterion for the 3D Hall-magnetohydrodynamic equations involing the vorticity*, Nonlinear Anal. **144** (2016), 182-193.
- 11. Y. Zhuan, Regulatity criteria and small data global existence to the generalized viscous Hallmagnetohydrodynamics, Comput. Math. Appl., **70** (2015), 2137-2154.
- 12. R. Wan and Y. Zhou, *On global existence, energy decay and blow-up criteria for the Hall-MHD system*, J. Differential Equations, **259** (2015), no. 11, 5982-6008.
- 13. R. Wan and Y. Zhou, *Yong Low regularity well-posedness for the 3D generalized Hall-MHD system*, To appear in Acta Appl. Math., DOI: 10.1007/s10440-016-0070-5.
- 14. Z. Zujin, X. Xian and Q. Shulin, *Remarks on Liouville Type Result for the 3D Hall-MHD System*, J. Part. Diff. Eq., **28** (2015), 286-290.

© 2016, Sadek Gala, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)