Citation: James L. Gole. Nanostructured metal oxide modification of a porous silicon interface for sensor applications: the question of water interaction, stability, platform diversity and sensitivity, and selectivity[J]. AIMS Electronics and Electrical Engineering, 2020, 4(1): 87-113. doi: 10.3934/ElectrEng.2020.1.87
[1] | Korotcenkov G, Rusu E (2019) How to Improve the Performance of Porous Silicon-Based Gas and Vapour Sensors? Approaches and Achievements. Physica Status Solidi (A) 216: 190348. |
[2] | Korotcenkov G (2010) Chemical Sensors: Fundamentals of Sensing Materials, Volumes 1-3. Momentum Press, New York. |
[3] | Korotcenkov G (2013) Handbook of Gas Sensor Materials, Volumes 1-2. Springer, New York. |
[4] | Canham L (1998) Properties of Porous Silicon. INSPEC, London. |
[5] | Canham L (2014) Handbook of Porous Silicon. Springer, Zug Heidelberg, Switzerland. |
[6] | Korotcenkov G (2015) Porous Silicon: From Formation to Application, Formation and Properties, Volume One. Taylor and Frances Group, CRC Press, Boca Raton. |
[7] | Korotcenkov G (2015) Porous Silicon: From Formation to Application: Biomedical and Sensor Applications, Volume Two. Taylor and Frances Group, CRC Press, Boca Raton. |
[8] | Feng ZC, Tsu R (1994) Porous Silicon. World Science, Singapore. |
[9] | Lehmann V (2002) Electrochemistry of Silicon: Instrumentation, Science, Materials, and Applications. Wiley-VCH Verlag Gmbh, Weinham. |
[10] | Sailor MJ (2012) Porous Silicon in Practice. Wiley-VCH Verlag Gmbh, Weinham. |
[11] | Mares JJ, Kristofik J, Hulcius E (1995) Influence of humidity on transport in porous silicon. Thin Solid Films 255: 272-275. doi: 10.1016/0040-6090(94)05670-9 |
[12] | Connolly EJ, Timmer B, Pham HTM, et al. (2005) A porous SiC ammonia sensor. Sensor Actuat B-Chem 109: 44-46. doi: 10.1016/j.snb.2005.03.067 |
[13] | Fuejes PJ, Kovacs A, Duecso Cs, et al. (2003) Porous silicon-based humidity sensor with interdigital electrodes and internal heaters. Sensor Actuat B-Chem 95: 140-144. doi: 10.1016/S0925-4005(03)00423-4 |
[14] | Korotcenkov G, Cho BK (2010) Porous semiconductors: advanced material for gas sensor applications. Crit Rev Solid State 35: 1-37. doi: 10.1080/10408430903245369 |
[15] | Wang Y, Park S, Yeow JTW, et al. (2010) A capacitive humidity sensor based on ordered macroporous silicon with thin film surface coating. Sensor Actuat B-Chem 149: 136-142. doi: 10.1016/j.snb.2010.06.010 |
[16] | Foell H, Christopherson M, Carstensen J, et al. (2002) Formation and application of porous silicon. Mater Sci Eng R 39: 93-141. doi: 10.1016/S0927-796X(02)00090-6 |
[17] | Gole JL, Laminack W (2010) General approach to design and modling of nanostructure modified semiconductor and nanowire interfaces for sensor and microreactor applications. In: Chemical Sensors: Simulation and Modeling, Solid State Sensors, Korotcenkov G. (Ed.) Momentum Press, New York, 87-136. |
[18] | Gole JL, Fedorov AG, Hesketh P, et al. (2004) Phys Status Solidi, C 1(S2): S188-197. Wiley by permission. Copyright © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
[19] | Lewis SE, DeBoer JR, Gole JL (2007) Pulsed system frequency analysis for device characterization and experimental design: Application to Porous Silicon Sensors and Extension. Sensor Actuat B-Chem 122: 20-29. doi: 10.1016/j.snb.2006.04.113 |
[20] | Laminack W, Hardy N, Baker C, et al. (2015) Approach to multi-gas sensing and modeling on nanostructure decorated porous silicon substrates. IEEE Sensors 15: 6491-6497. doi: 10.1109/JSEN.2015.2460675 |
[21] | Laminack W, Baker C, Gole JL (2015) Response simulation and extraction of gas concentrations for nanostructure directed nano/microporous silicon interfaces. ECS Trans 69: 141-152. |
[22] | Laminack W, Gole JL (2015) Multi-gas interaction modeling on decorated semiconductor interfaces: a Fermi distribution-based isotherm and the IHSAB principle. Appl Surf Sci 359: 774-781. doi: 10.1016/j.apsusc.2015.10.110 |
[23] | Laminack W, Gole JL (2016) Development of a Fermi energy distribution-based adsorption isotherm on nanostructure decorated porous substrates. ECS J Solid State Sc 5: 80-87. |
[24] | Baker C, Laminack W, Gole JL (2016) Selective detection of inorganics NOx, SO2, and H2S in the presence of volatile BTEX contaminants toluene, benzene, and xylene. Air Qual Atmos Health 9: 411-419. doi: 10.1007/s11869-015-0350-7 |
[25] | Baker C, Ozdemir S, Gole JL (2016) Nanostructure directed detection of acidic SO2 and its transformation to basic character. J Electrochem Soc 163: B76-B82. doi: 10.1149/2.0561603jes |
[26] | Gole JL, Goude EC, Laminack W (2012) Nanostructure driven analyte-interface electron transduction: a general approach to sensor and microreactor design. Chem Phys Chem 13: 549-561. doi: 10.1002/cphc.201100712 |
[27] | Ozdemir S, Osburn T, Gole JL (2011) A nanostructure modifiedporous silicon detection matrix for NO with demonstration of transient conversion of NO to NO2. J Electrochem Soc 158: J201-J207. doi: 10.1149/1.3583368 |
[28] | Laminack W, Pouse N, Gole JL (2012) The dynamic interaction of NO2 with a nanostructure modified porous silicon matrix: the competition for donor level electrons. ECS J Solid State Sc 1: Q25-Q34. |
[29] | Laminack W, Gole JL (2013) Nanostructure directed chemical sensing: the IHSAB principle and the effect of nitrogen and functionalization on metal oxide decorated interface response. Nanomaterials 3: 469-485. doi: 10.3390/nano3030469 |
[30] | Baker C, Laminack W, Gole JL (2015) Sensitive and selective detection of H2S and application in the presence of toluene, benzene, and xylene. Sensor Actuat B-Chem 212: 28-34. doi: 10.1016/j.snb.2015.01.123 |
[31] | Laminack W, Baker C, Gole JL (2016) Air quality and the selective detection of ammonia in the presence of toluene, benzene, and xylene. Air Qual Atmos Health 9: 231-239. doi: 10.1007/s11869-015-0329-4 |
[32] | Gole JL, Ozdemir SA (2010) Nanostructure directed physisorption vs. chemisorption at semiconductor interfaces: the inverse of the hard-soft acid-base concept. ChemPhysChem 11: 2573-2581. |
[33] | Laminack W, Baker C, Gole JL (2015) Sulphur-Hz(CHx)y(z=0,1) functionalized metal oxide nanostructure decorated interfaces: evidence of Lewis base and Bronsted acid sites- influence on chemical sensing. Mater Chem Phys 160: 20-31. doi: 10.1016/j.matchemphys.2015.03.070 |
[34] | Gole JL (2015) Increasing energy efficiency and sensitivity with simple sensor platforms. Talanta 132: 87-95. doi: 10.1016/j.talanta.2014.08.038 |
[35] | Barsan N, Schweizer-Berberich M, Göpel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius Journal of Analytical Chemistry 365: 287-304. doi: 10.1007/s002160051490 |
[36] | Comini E (2006) Metal oxide nano-crystal for gas sensing. Anal Chim Acta 568: 28-40. doi: 10.1016/j.aca.2005.10.069 |
[37] | LeGorea LJ, Lada RJ, Moulzolfa SC, et al. (2002) Defects and morphology of tungsten trioxide thin films. Thin Solid Films 406: 79-86. doi: 10.1016/S0040-6090(02)00047-0 |
[38] | Rani S, Roy SC, Bhatnagar M (2006) Effects of Fe doping on the gas sensing properties of nano-crystalline SnO2 thin films. Sensor Actuat B-Chem 122: 204-210. |
[39] | Jiménez I, Arbiol J, Dezanneau G, et al. (2003) Crystal structure, defects and gas sensor response to NO2 and H2S of tungsten trioxide nanopowders. Sensor Actuat B-Chem 93: 475-485. doi: 10.1016/S0925-4005(03)00198-9 |
[40] | Moulzolf SC, Ding S, Lad RJ (2001) Stoichiometric and microstructure effects on tungsten oxide chemirestive films. Sensor Actuat B-Chem 77: 375-382. doi: 10.1016/S0925-4005(01)00757-2 |
[41] | Ponce M, Aldao C, Castro M (2003) Influence of particle size on the conductance of SnO2 thick films. J Eur Ceram Soc 23: 2105-2111. |
[42] | Rothschild A, Komem Y (2004) The effect of grain size on the sensitivity of metal oxide gas sensors. J Appl Phys 95: 6374-6380. doi: 10.1063/1.1728314 |
[43] | Yoon DH, Choi GM (1997) Microstructure and CO gas sensing properties of porous ZnO produced by starch addition. Sensor Actuat B-Chem 45: 251-257. doi: 10.1016/S0925-4005(97)00316-X |
[44] | Morrison SR (1987) Selectivity in semiconductor gas sensors. Sensors and Actuators 12: 425-440. doi: 10.1016/0250-6874(87)80061-6 |
[45] | Watson J (1994) The stannic oxide gas sensor. Sensor Rev 14: 20-23. |
[46] | Yamazoe N, Shimiza K, Aswal DK, et al. (2007) Overview of Gas Sensor Technology. Nova Science Publishers Inc., New York. |
[47] | Ozdemir S, Gole JL (2007) The potential of porous silicon gas sensors. Curr Opin Solid St M 11: 92-100. doi: 10.1016/j.cossms.2008.06.003 |
[48] | Lewis SE, De Boer JR, Gole JL, et al. (2005) Sensitive, selective, and analytical improvements to a porous silicon gas sensor. Sensor Actuat B-Chem 110: 54-65. doi: 10.1016/j.snb.2005.01.014 |
[49] | Pearson RG (1990) Hard and soft acids and bases-the evolution of a chemical concept, Coordin Chem Rev 100: 403-425. |
[50] | Pearson RG (1997) Chemical Hardness. John Wiley VCH, Weinheim. |
[51] | Barillaro G, Diligenti A, Nannini A, et al. (2006) Low-concentration NO2 detection with an adsorption porous silicon FET. IEEE Sens J 6: 19-23. doi: 10.1109/JSEN.2005.859360 |
[52] | Salonen J, Makila E (2018) Thermally carbonized porous silicon and recent applications. Adv Mater 30: 1703819. doi: 10.1002/adma.201703819 |
[53] | Barotta C, Faglia G, Comini E, et al. (2001) A novel porous silicon sensor for detection of sub-ppm NO2 concentrations. Sensor Actuat B-Chem 77: 62-66. doi: 10.1016/S0925-4005(01)00673-6 |
[54] | Schechter L, Ben-Chorin M, Kux A (1995) Gas sensing properties of porous silicon. Anal Chem 67: 3727-3732. doi: 10.1021/ac00116a018 |
[55] | Raghavan D, Gu X, Nguyen T, et al. (2001) Mapping chemically heterogeneous polymer system using selective chemical reaction and tapping mode atomic force microscopy. Macromolecular Symposia 167: 297-305. doi: 10.1002/1521-3900(200103)167:1<297::AID-MASY297>3.0.CO;2-2 |
[56] | Okorn-Schmidt HF (1999) Characterization of silicon surface preparation processes for advanced gate dielectrics. IBM J Res Dev 43: 351-365. doi: 10.1147/rd.433.0351 |
[57] | Boinovich LB, Elelyanenko AM (2008) Hydrophobic materials and coatings: principles of design, properities, and applications. Russ Chem Rev 77: 583-600. doi: 10.1070/RC2008v077n07ABEH003775 |
[58] | Makaryan A, Sedov IV, Mozhaev PS (2016) Current state and prospects of development of technologies for the production of superhydrophobic materials and coatings. Nanotechnologies in Russia 11: 679-695. |
[59] | Ponec V, Knor Z, Cerny S (1974) Adsorption on solids. Butterworth and Co., London. |
[60] | Gole JL, Stout J, Burda C, et al. (2004) Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale. J Phys Chem 108: 1230-1238. doi: 10.1021/jp030843n |
[61] | Chen X, Lou Y, Samia ACS, et al. (2005) Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: comparison to a commercial nanopowder. Adv Funct Mater 15: 41-49. doi: 10.1002/adfm.200400184 |
[62] | Laminack W, Gole JL (2014) Direct in-situ nitridation of nanostructured metal oxide deposited semiconductor interfaces: tuning the response of reversibly interacting sensor sites. ChemPhysChem 15: 2473-2484. doi: 10.1002/cphc.201402108 |
[63] | Wang J, Mao B, Gole JL, et al. (2010) Visible-light-driven reversible and switchable hydrophilic to hydrophobic surfaces: correlation with photocatalysis. Nanoscale 2: 2257-2261. doi: 10.1039/c0nr00313a |
[64] | Shi Y, He L, Guang F, et al. (2019) A review: preparation, performance, and applications of silicon oxynitride film. Micromachines 10: 552. doi: 10.3390/mi10080552 |
[65] | Yount J, Lenahan P (1993) Bridging nitrogen dangling bond centers and electron trapping in amorphous NH3-nitrided and reoxidized nitride oxide films. J Non-Cryst Solids 164: 1069-1072. |
[66] | Hori T, Naito Y, Iwasaki H, et al. (1986) Interface states and fixed charges in nanometer-range thin nitride oxides prepared by rapid thermal annealing. IEEE Electr Device L 7: 669-671. doi: 10.1109/EDL.1986.26514 |
[67] | Itakura A, Shimoda M, Kitajima M (2003) Surface stress relaxation in SiO2 by plasma nitridation and nitrogen distribution in the film. Appl Surf Sci 216: 41-45. doi: 10.1016/S0169-4332(03)00494-X |
[68] | Herzberg G (1966) Molecular Spectra and Molecular Structure. Vol. III. Electronic Spectra and Electronic Structure of Polyatomic Molecules. By O. Herzberg, D. Van Nostrand and Company, Inc.: Princeton, NJ. |
[69] | Laminack W, Gole JL (2014) A varaiable response phosphine sensing matrix based on nanostructure treated p and n-type porous silicon interfaces. IEEE Sens J 14: 2731-2738. doi: 10.1109/JSEN.2014.2316117 |
[70] | Hamilton JD (1994) Time Series Analysis. Princeton University Press, Princeton. |
[71] | Neimark AV, Ravikovitch PI, Vishnyakov A (2000) Adsorption hysteresis in nanopores. Phys Rev E 62: R1493-1496. doi: 10.1103/PhysRevE.62.R1493 |
[72] | Barillaro G, Bruschi P, Pieri F, et al. (2007) CMOS-compatible fabrication of porous silicon gas sensors and their readout electronics on the same chip. Phys Status Solidi A 204: 1423-1428. doi: 10.1002/pssa.200674370 |
[73] | Barillaro G, Strambini LM (2008) An integrated CMOS sensing chip for NO2 detection. Sensor Actuat B-Chem 134: 585-590. doi: 10.1016/j.snb.2008.05.044 |
[74] | Baker C, Laminack W, Gole JL (2016) Modeling the absorption/desorption response of porous silicon sensors. J Appl Phys 119: 124506. doi: 10.1063/1.4944713 |