Citation: Karina Kwapiszewska, Kamil Żukowski, Radosław Kwapiszewski, Zbigniew Brzózka. Double casting prototyping with a thermal aging step for fabrication of 3D microstructures in poly(dimethylsiloxane)[J]. AIMS Biophysics, 2016, 3(4): 553-562. doi: 10.3934/biophy.2016.4.553
[1] | Chudy M, Grabowska I, Ciosek P, et al. (2009) Miniaturized tools and devices for bioanalytical applications: an overview. Anal Bioanal Chem 395: 647–668. doi: 10.1007/s00216-009-2979-2 |
[2] | Kwapiszewski R, Skolimowski M, Ziółkowska K, et al. (2011) A microfluidic device with fluorimetric detection for intracellular components analysis. Biomed Microdevices 13: 431–440. doi: 10.1007/s10544-011-9511-0 |
[3] | Ni M, Tong W, Choudhury D, et al. (2009) Cell culture on MEMS platforms: a review. Int J Mol Sci 10: 5411–5441. doi: 10.3390/ijms10125411 |
[4] | McDonald J, Whitesides G (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35: 491–499. doi: 10.1021/ar010110q |
[5] | Regehr K, Domenech M, Koepsel J, et al. (2009) Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 9: 2132–2139. doi: 10.1039/b903043c |
[6] | Quake S, Scherer A (2000) From micro-to nanofabrication with soft materials. Science 290: 1536–1540. |
[7] | Velve-Casquillas G, Le Berre M, Piel M, et al.(2010) Microfluidic tools for cell biological research. Nano Today 5: 28–47 |
[8] | Leclerc E, Sakai Y, Fujii T (2003) Cell Culture in 3-Dimensional Microfluidic Structure of PDMS (polydimethylsiloxane). Biomed Microdevices 5: 109–114. doi: 10.1023/A:1024583026925 |
[9] | Ziółkowska K, Jędrych E, Kwapiszewski R, et al. (2010) PDMS/glass microfluidic cell culture system for cytotoxicity tests and cells passage. Sensor Actuat B 145: 533–542 doi: 10.1016/j.snb.2009.11.010 |
[10] | Ziółkowska K, Kwapiszewski R, Brzózka Z (2011) Microfluidic devices as tools for mimicking the in vivo environment. New J Chem 35: 979–990. |
[11] | Ziółkowska K, Kwapiszewski R, Stelmachowska A, et al. (2012) Development of a three-dimensional microfluidic system for long-term tumor spheroid culture. Sensor Actuat B 173: 908–913. doi: 10.1016/j.snb.2012.07.045 |
[12] | Ziółkowska K, Stelmachowska A, Kwapiszewski R, et al. (2013) Long-term three-dimensional cell culture and anticancer drug activity evaluation in a microfluidic chip. Biosensor Bioelectron 40: 68–74. doi: 10.1016/j.bios.2012.06.017 |
[13] | Kwapiszewska K, Michalczuk A, Rybka M, et al. (2014) A microfluidic-based platform for tumour spheroid culture, monitoring and drug screening. Lab Chip 14: 2096–2104. doi: 10.1039/C4LC00291A |
[14] | McDonald J, Duffy D, Anderson J, et al. (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21: 27–40. |
[15] | Kim J, Heo J, Crooks R (2006) Hybridization of DNA to bead-immobilized probes confined within a microfluidic channel. Langmuir 22: 10130–10134. doi: 10.1021/la0616956 |
[16] | Adams M, Johnston M, Scherer A, et al. (2005) Polydimethylsiloxane based microfluidic diode. J Micromech Microeng 15: 1517–1521. doi: 10.1088/0960-1317/15/8/020 |
[17] | Lim C, Low H, Ng J, et al. (2009) Fabrication of three-dimensional hemispherical structures using photolithography. Microfluid Nanofluid 7: 721–726. |
[18] | Huikko K, Ostman P, Grigoras K, et al. (2003) Poly(dimethylsiloxane) electrospray devices fabricated with diamond-like carbon–poly(dimethylsiloxane) coated SU-8 masters. Lab Chip 3: 67–72. doi: 10.1039/B300345K |
[19] | Gitlin L, Schulze P, Belder D (2009) Rapid replication of master structures by double casting with PDMS. Lab Chip 9: 3000–3002. |
[20] | Zhuang G, Kutter J (2011) Anti-stiction coating of PDMS moulds for rapid microchannel fabrication by double replica moulding. J Micromech Microeng 21: 105020. doi: 10.1088/0960-1317/21/10/105020 |
[21] | Eddington D, Puccinelli J, Beebe D (2006) Thermal aging and reduced hydrophobic recovery of polydimethylsiloxane. Sensor Actuat B 114: 170–172. |
[22] | Briones M, Honda T, Yamaguchi Y, et al. (2006) A Practical Method for Rapid Microchannel Fabrication in Polydimethylsiloxane by Replica Molding without Using Silicon Photoresist. J Chem Eng Jpn 39: 1108–1114. doi: 10.1252/jcej.39.1108 |
[23] | Koerner T, Brown L, Xie R, et al. (2005) Epoxy resins as stamps for hot embossing of microstructures and microfluidic channels. Sensor Actuat B 107: 632–639. doi: 10.1016/j.snb.2004.11.035 |
[24] | Wong I, Ho C (2009) Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid Nanofluid 7: 291–306. doi: 10.1007/s10404-009-0443-4 |
[25] | Zhou J, Ellis A, Voelcker N (2010) Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 31: 2–16. doi: 10.1002/elps.200900475 |
[26] | Leite C, Soares R, Goncalves M, et al. (1994) Surface dynamics of polydimethylsiloxane rubber. Polymer 35: 3173–3177. doi: 10.1016/0032-3861(94)90118-X |
[27] | Jeong O, Konishi S (2011) Controlling the size of replicable polydimethylsiloxane (PDMS) molds/stamps using a stepwise thermal shrinkage process. Microelectron Eng 88: 2286–2289. doi: 10.1016/j.mee.2010.12.005 |
[28] | Jokinen V, Suvato P, Franssila S (2012) Oxygen and nitrogen plasma hydrophilization and hydrophobic recovery of polymers. Biomicrofluidics 6: 016501–016510. |
[29] | Liu M, Chen Q (2007) Characterization study of bonded and unbonded polydimethylsiloxane aimed for bio-microelectromechanical systems-related applications. J Micro/Nanolith MEMS MOEMS 6: 023008. doi: 10.1117/1.2731381 |
[30] | Liu M, Sun J, Chen Q (2009) Influences of heating temperature on mechanical properties of polydimethylsiloxane. Sensor Actuat A 151: 42–45. doi: 10.1016/j.sna.2009.02.016 |