
Citation: Mayuko Ichimura, Akari Minami, Noriko Nakano, Yasuko Kitagishi, Toshiyuki Murai, Satoru Matsuda. Cigarette smoke may be an exacerbation factor in nonalcoholic fatty liver disease via modulation of the PI3K/AKT pathway[J]. AIMS Molecular Science, 2015, 2(4): 427-439. doi: 10.3934/molsci.2015.4.427
[1] | Paola Goatin, Chiara Daini, Maria Laura Delle Monache, Antonella Ferrara . Interacting moving bottlenecks in traffic flow. Networks and Heterogeneous Media, 2023, 18(2): 930-945. doi: 10.3934/nhm.2023040 |
[2] | Felisia Angela Chiarello, Paola Goatin . Non-local multi-class traffic flow models. Networks and Heterogeneous Media, 2019, 14(2): 371-387. doi: 10.3934/nhm.2019015 |
[3] | Jan Friedrich, Oliver Kolb, Simone Göttlich . A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Networks and Heterogeneous Media, 2018, 13(4): 531-547. doi: 10.3934/nhm.2018024 |
[4] | Abraham Sylla . Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks and Heterogeneous Media, 2021, 16(2): 221-256. doi: 10.3934/nhm.2021005 |
[5] | Christophe Chalons, Paola Goatin, Nicolas Seguin . General constrained conservation laws. Application to pedestrian flow modeling. Networks and Heterogeneous Media, 2013, 8(2): 433-463. doi: 10.3934/nhm.2013.8.433 |
[6] | Caterina Balzotti, Simone Göttlich . A two-dimensional multi-class traffic flow model. Networks and Heterogeneous Media, 2021, 16(1): 69-90. doi: 10.3934/nhm.2020034 |
[7] | Dong Li, Tong Li . Shock formation in a traffic flow model with Arrhenius look-ahead dynamics. Networks and Heterogeneous Media, 2011, 6(4): 681-694. doi: 10.3934/nhm.2011.6.681 |
[8] | Raimund Bürger, Kenneth H. Karlsen, John D. Towers . On some difference schemes and entropy conditions for a class of multi-species kinematic flow models with discontinuous flux. Networks and Heterogeneous Media, 2010, 5(3): 461-485. doi: 10.3934/nhm.2010.5.461 |
[9] | Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada . A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks and Heterogeneous Media, 2021, 16(2): 187-219. doi: 10.3934/nhm.2021004 |
[10] | Alexander Kurganov, Anthony Polizzi . Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics. Networks and Heterogeneous Media, 2009, 4(3): 431-451. doi: 10.3934/nhm.2009.4.431 |
Macroscopic traffic flow models based on fluid-dynamics equations have been introduced in the transport engineering literature since the mid-fifties of last century, with the celebrated Lighthill, Whitham [11] and Richards [13] (LWR) model. Since then, the engineering and applied mathematical literature on the subject has considerably grown, addressing the need for more sophisticated models better capturing traffic flow characteristics. Indeed, the LWR model is based on the assumption that the mean traffic speed is a function of the traffic density, which is not experimentally verified in congested regimes. To overcome this issue, the so-called "second order" models (e.g. Payne-Whitham [12,15] and Aw-Rascle-Zhang [3,16]) consist of a mass conservation equation for the density and an acceleration balance law for the speed, thus considering the two quantities as independent.
More recently, "non-local" versions of the LWR model have been proposed in [5,14], where the speed function depends on a weighted mean of the downstream vehicle density to better represent the reaction of drivers to downstream traffic conditions.
Another limitation of the standard LWR model is the first-in first-out rule, not allowing faster vehicles to overtake slower ones. To address this and other traffic heterogeneities, "multi-class" models consist of a system of conservation equations, one for each vehicle class, coupled in the speed terms, see [4] and references therein for more details.
In this paper, we consider the following class of non-local systems of
$ ∂tρi(t,x)+∂x(ρi(t,x)vi((r∗ωi)(t,x)))=0,i=1,...,M, $ | (1) |
where
$ r(t,x):=M∑i=1ρi(t,x), $ | (2) |
$ vi(ξ):=vmaxiψ(ξ), $ | (3) |
$ (r∗ωi)(t,x):=∫x+ηixr(t,y)ωi(y−x)dy, $ | (4) |
and we assume:
We couple (1) with an initial datum
$ ρi(0,x)=ρ0i(x),i=1,…,M. $ | (5) |
Model (1) is obtained generalizing the
Due to the possible presence of jump discontinuities, solutions to (1), (5) are intended in the following weak sense.
Definition 1.1. A function
$ \int_0^T\!\!\int_{-\infty}^\infty \left(\rho_i \partial_t \varphi +\rho_i v_i(r\ast\omega_i) \partial_x \varphi \right)(t, x) \mathinner{{\rm{d}}{x}} \mathinner{{\rm{d}}{t}} +\int_{-\infty}^\infty \rho_i^0 (x)\varphi(0, x) \mathinner{{\rm{d}}{x}} = 0 $ |
for all
The main result of this paper is the proof of existence of weak solutions to (1), (5), locally in time. We remark that, since the convolution kernels
Theorem 1.2. Let
In this work, we do not address the question of uniqueness of the solutions to (1). Indeed, even if discrete entropy inequalities can be derived as in [5,Proposition 3], in the case of systems this is in general not sufficient to single out a unique solution.
The paper is organized as follows. Section 2 is devoted to prove uniform
First of all, we extend
To this end, we approximate the initial datum
$ ρ0i,j=1Δx∫xj+1/2xj−1/2ρ0i(x)dx,j∈Z. $ |
Similarly, for the kernel, we set
$ ωki:=1Δx∫(k+1)ΔxkΔxω0i(x)dx,k∈N, $ |
so that
$ Vni,j:=vmaxiψ(Δx+∞∑k=0ωkirnj+k),i=1,…,M,j∈Z. $ | (6) |
We consider the following Godunov-type scheme adapted to (1), which was introduced in [8] in the scalar case:
$ ρn+1i,j=ρni,j−λ(ρni,jVni,j+1−ρni,j−1Vni,j) $ | (7) |
where we have set
We provide here the necessary estimates to prove the convergence of the sequence of approximate solutions constructed via the Godunov scheme (7).
Lemma 2.1. (Positivity) For any
$ λ≤1vmaxM‖ψ‖∞, $ | (8) |
the scheme (7) is positivity preserving on
Proof. Let us assume that
$ ρn+1i,j=ρni,j(1−λVni,j+1)+λρni,j−1Vni,j≥0 $ | (9) |
under assumption (8).
Corollary 1. (
$ ‖ρni‖1=‖ρ0i‖1,i=1,…,M, $ | (10) |
where
Proof. Thanks to Lemma 2.1, for all
$ ‖ρn+1i‖1=Δx∑jρn+1i,j=Δx∑j(ρni,j−λρni,jVni,j+1+λρni,j−1Vni,j)=Δx∑jρni,j, $ |
proving (10).
Lemma 2.2. (
$ T < \left( M {\left\|{{ \boldsymbol{\rho}}^0}\right\|}_\infty v_M^{\max} {\left\|{\psi'}\right\|}_\infty W_0\right)^{-1}. $ |
Proof. Let
$ ρn+1i,j=ρni,j(1−λVni,j+1)+λρni,j−1Vni,j≤ˉρ(1+λ(Vni,j−Vni,j+1)) $ | (11) |
and
$ |Vni,j−Vni,j+1|=vmaxi|ψ(Δx+∞∑k=0ωkirnj+k)−ψ(Δx+∞∑k=0ωkirnj+k+1)|≤vmaxi‖ψ′‖∞Δx|+∞∑k=0ωki(rnj+k+1−rnj+k)|=vmaxi‖ψ′‖∞Δx|−ω0irnj++∞∑k=1(ωk−1i−ωki)rnj+k|≤vmaxi‖ψ′‖∞ΔxM‖ρn‖∞ωi(0) $ | (12) |
where
$ {\left\|{{{ \boldsymbol{\rho}}}^{n+1}}\right\|}_\infty \leq {\left\|{{{ \boldsymbol{\rho}}}^{n}}\right\|}_\infty \left( 1+ M K v_M^{\max} {\left\|{\psi'}\right\|}_\infty W_0 \Delta t \right), $ |
which implies
$ ‖ρn‖∞≤‖ρ0‖∞eCnΔt, $ |
with
$ t\leq \frac{1}{ M K v_M^{\max} {\left\|{\psi'}\right\|}_\infty W_0}\ln \left(\frac{K}{{\left\|{{ \boldsymbol{\rho}}^0}\right\|}_\infty}\right) \leq \frac{1}{ M e {\left\|{{ \boldsymbol{\rho}}^0}\right\|}_\infty v_M^{\max} {\left\|{\psi'}\right\|}_\infty W_0}\, , $ |
where the maximum is attained for
Iterating the procedure, at time
$ t^{m+1}\leq t^m + \frac{m}{ M e^m {\left\|{{ \boldsymbol{\rho}}^0}\right\|}_\infty v_M^{\max} {\left\|{\psi'}\right\|}_\infty W_0}. $ |
Therefore, the approximate solution remains bounded, uniformly in
$ T\leq \frac{1}{ M {\left\|{{ \boldsymbol{\rho}}^0}\right\|}_\infty v_M^{\max} {\left\|{\psi'}\right\|}_\infty W_0} \sum\limits_{m = 1}^{+\infty} \frac{m}{e^m} \leq \frac{1}{ M {\left\|{{ \boldsymbol{\rho}}^0}\right\|}_\infty v_M^{\max} {\left\|{\psi'}\right\|}_\infty W_0 }\, . $ |
Remark 1. Figure 1 shows that the simplex
$ \mathcal{S}: = \left\{ \boldsymbol{\rho}\in \mathbb{R}^M \colon \sum\limits_{i = 1}^M \rho_i \leq 1, \; \rho_i \geq 0\; \mbox{for}\; i = 1, \ldots, M\right\} $ |
is not an invariant domain for (1), unlike the classical multi-population model [4]. Indeed, let us consider the system
$ ∂tρi(t,x)+∂x(ρi(t,x)vi(r(t,x)))=0,i=1,...,M, $ | (13) |
where
Lemma 2.3. Under the CFL condition
$ λ≤1vmaxM(‖ψ‖∞+‖ψ′‖∞), $ |
for any initial datum
$ ρn+1j=ρnj−λ[F(ρnj,ρnj+1)−F(ρnj−1,ρnj)], $ | (14) |
with
$ ρnj∈S∀j∈Z,n∈N. $ | (15) |
Proof. Assuming that
$ ρn+1i,j=ρni,j−λ[vmaxiρni,jψ(rnj+1)−vmaxiρni,j−1ψ(rnj)]. $ |
Summing on the index
$ rn+1j=M∑i=1ρn+1i,j=M∑i=1ρni,j−λM∑i=1[vmaxiρni,jψ(rnj+1)−vmaxiρni,j−1ψ(rnj)]=rnj+λψ(rnj)M∑i=1vmaxiρni,j−1−λψ(rnj+1)M∑i=1vmaxiρni,j. $ |
Defining the following function of
$ \Phi(\rho^n_{1, j}, \ldots, \rho^n_{M, j}) = r^n_j+\lambda {\psi(r^n_j)\sum\limits_{i = 1}^{M}} v_i^{\max}\rho^n_{i, j-1}-\lambda {\psi(r^n_{j+1})\sum\limits_{i = 1}^{M}} v_i^{\max}\rho^n_{i, j}, $ |
we observe that
$ \Phi(0, \ldots, 0) = \lambda \psi(0)\sum\limits_{i}^M v_i^{\max}\rho^n_{i, j-1}\leq \lambda {\left\|{\psi}\right\|}_\infty v_{M}^{\max} \leq 1 $ |
if
$ \Phi(\rho^n_{1, j}, ..., \rho^n_{M, j}) = 1-\lambda \psi(r^n_{j+1})\sum\limits_{i = 1}^{M}v_i^{\max}\rho^n_{i, j}\leq 1 $ |
for
$ \frac{ \partial\Phi}{ \partial\rho^n_{i, j}} ( \boldsymbol{\rho}_j^n) = 1 + \lambda \psi'(r^n_j) \sum\limits_{i = 1}^M v_i^{\max} \rho^n_{i, j-1} - \lambda\psi(r^n_{j+1}) v_i^{\max} \geq 0 $ |
if
$ ρn+1i,j=ρni,j(1−λvmaxiψ(rnj+1))+λvmaxiρni,j−1ψ(rnj)≥0 $ |
if
Lemma 2.4. (Spatial
$ T≤mini=1,…,M 1H(TV(ρ0i)+1), $ | (16) |
where
Proof. Subtracting the identities
$ ρn+1i,j+1=ρni,j+1−λ(ρni,j+1Vni,j+2−ρni,jVni,j+1), $ | (17) |
$ ρn+1i,j=ρni,j−λ(ρni,jVni,j+1−ρni,j−1Vni,j), $ | (18) |
and setting
$ Δn+1i,j+1/2=Δni,j+1/2−λ(ρni,j+1Vni,j+2−2ρni,jVni,j+1+ρni,j−1Vni,j). $ |
Now, we can write
$ Δn+1i,j+1/2=(1−λVni,j+2)Δni,j+1 $ | (19) |
$ +λVni,jΔni,j−1/2−λρni,j(Vni,j+2−2Vni,j+1+Vni,j). $ | (20) |
Observe that assumption (8) guarantees the positivity of (19). The term (20) can be estimated as
$ Vni,j+2−2Vni,j+1+Vni,j==vmaxi(ψ(Δx+∞∑k=0ωkirnj+k+2)−2ψ(Δx+∞∑k=0ωkirnj+k+1)+ψ(Δx+∞∑k=0ωkirnj+k))=vmaxiψ′(ξj+1)Δx(+∞∑k=0ωkirnj+k+2−+∞∑k=0ωkirnj+k+1)+vmaxiψ′(ξj)Δx(+∞∑k=0ωkirnj+k−+∞∑k=0ωkirnj+k+1)=vmaxiψ′(ξj+1)Δx(+∞∑k=1(ωk−1i−ωki)rnj+k+1−ω0irnj+1)+vmaxiψ′(ξj)Δx(+∞∑k=1(ωki−ωk−1i)rnj+k+ω0irnj)=vmaxi(ψ′(ξj+1)−ψ′(ξj))Δx(+∞∑k=1(ωk−1i−ωki)rnj+k+1−ω0irnj+1)+vmaxiψ′(ξj)Δx(+∞∑k=1(ωk−1i−ωki)(rnj+k+1−rnj+k)+ω0i(rnj−rnj+1))=vmaxiψ″(˜ξj+1/2)(ξj+1−ξj)Δx(+∞∑k=1M∑β=1ωkiΔnβ,j+k+3/2)+vmaxiψ′(ξj)Δx(M∑β=1N−1∑k=1(ωk−1i−ωki)Δnβ,j+k+1/2−ω0iΔnβ,j+1/2), $ |
with
$ ξj+1−ξj=ϑΔx+∞∑k=0ωkiM∑β=1ρnβ,j+k+2+(1−ϑ)Δx+∞∑k=0ωkiM∑β=1ρnβ,j+k+1−μΔx+∞∑k=0ωkiM∑β=1ρnβ,j+k+1−(1−μ)Δx+∞∑k=0ωkiM∑β=1ρnβ,j+k=ϑΔx+∞∑k=1ωk−1iM∑β=1ρnβ,j+k+1+(1−ϑ)Δx+∞∑k=0ωkiM∑β=1ρnβ,j+k+1−μΔx+∞∑k=0ωkiM∑β=1ρnβ,j+k+1−(1−μ)Δx+∞∑k=−1ωk+1iM∑β=1ρnβ,j+k+1=Δx+∞∑k=1[ϑωk−1i+(1−ϑ)ωki−μωki−(1−μ)ωk+1i]M∑β=1ρnβ,j+k+1+(1−ϑ)Δxω0iM∑β=1ρnβ,j+1−μΔxω0iM∑β=1ρnβ,j+1−(1−μ)Δx(ω0iM∑β=1ρnβ,j+ω1iM∑β=1ρnβ,j+1). $ |
By monotonicity of
$ \vartheta \omega_i^{k-1} + (1- \vartheta)\omega_i^{k} -\mu \omega_i^{k} -(1-\mu)\omega_i^{k+1} \geq 0\, . $ |
Taking the absolute values we get
$ |ξj+1−ξj|≤Δx{+∞∑k=2[ϑωk−1i+(1−ϑ)ωki−μωki−(1−μ)ωk+1i]+4ω0i}M‖ρn‖∞≤Δx{+∞∑k=2[ωk−1i−ωk+1i]+4ω0i}M‖ρn‖∞≤Δx6W0M‖ρn‖∞. $ |
Let now
$ ∑j|Δn+1i,j+1/2|≤∑j|Δni,j+1/2|(1−λ(Vni,j+2−Vni,j+1))+ΔtHK1, $ |
where
$ ∑j|Δn+1i,j+1/2|≤∑j|Δni,j+1/2|(1+ΔtG)+ΔtHK1, $ |
with
$ ∑j|Δni,j+1/2|≤eGnΔt∑j|Δ0i,j+1/2|+eHK1nΔt−1, $ |
that we can rewrite as
$ TV(ρΔxi)(nΔt,⋅)≤eGnΔtTV(ρ0i)+eHK1nΔt−1≤eHK1nΔt(TV(ρ0i)+1)−1, $ |
since
$ t≤1HK1ln(K1+1TV(ρ0i)+1), $ |
where the maximum is attained for some
$ \ln\left(\frac{K_1+1}{ \mathinner{{\rm{TV}}}(\rho^0_i)+1}\right) = \frac{K_1}{K_1+1}\, . $ |
Therefore the total variation is uniformly bounded for
$ t≤1He(TV(ρ0i)+1). $ |
Iterating the procedure, at time
$ tm+1≤tm+mHem(TV(ρ0i)+1). $ | (21) |
Therefore, the approximate solution has bounded total variation for
$ T≤1H(TV(ρ0i)+1). $ |
Corollary 2. Let
Proof. If
$ TV(ρΔxi;[0,T]×R)=nT−1∑n=0∑j∈ZΔt|ρni,j+1−ρni,j|+(T−nTΔt)∑j∈Z|ρnTi,j+1−ρnTi,j|⏟≤Tsupt∈[0,T]TV(ρΔxi)(t,⋅)+nT−1∑n=0∑j∈ZΔx|ρn+1i,j−ρni,j|. $ |
We then need to bound the term
$ \sum\limits_{n = 0}^{n_T-1}\sum\limits_{j\in \mathbb{Z}}\Delta x {\left|{\rho_{i, j}^{n+1}-\rho_{i, j}^n}\right|}. $ |
From the definition of the numerical scheme (7), we obtain
$ ρn+1i,j−ρni,j=λ(ρni,j−1Vni,j−ρni,jVni,j+1)=λ(ρni,j−1(Vni,j−Vni,j+1)+Vni,j+1(ρni,j−1−ρni,j)). $ |
Taking the absolute values and using (12) we obtain
$ |ρn+1i,j−ρni,j|≤λ(vmaxi‖ψ′‖∞M‖ρn‖∞ωi(0)Δx|ρni,j−1|+vmaxi‖ψ‖∞|ρni,j−1−ρni,j|). $ |
Summing on
$ ∑j∈ZΔx|ρn+1i,j−ρni,j|=vmaxi‖ψ′‖∞M‖ρn‖∞ωi(0)Δt∑j∈ZΔx|ρni,j−1|+vmaxi‖ψ‖∞Δt∑j∈Z|ρni,j−1−ρni,j|, $ |
which yields
$ nT−1∑n=0∑j∈ZΔx|ρn+1i,j−ρni,j|≤vmaxM‖ψ‖∞Tsupt∈[0,T]TV(ρΔxi)(t,⋅)+vmaxM‖ψ′‖∞MW0Tsupt∈[0,T]‖ρΔxi(t,⋅)‖1‖ρΔxi(t,⋅)‖∞ $ |
that is bounded by Corollary 1, Lemma 2.2 and Lemma 2.4.
To complete the proof of the existence of solutions to the problem (1), (5), we follow a Lax-Wendroff type argument as in [5], see also [10], to show that the approximate solutions constructed by scheme (7) converge to a weak solution of (1). By Lemma 2.2, Lemma 2.4 and Corollary 2, we can apply Helly's theorem, stating that for
$ nT−1∑n=0∑jφ(tn,xj)(ρn+1i,j−ρni,j)=−λnT−1∑n=0∑jφ(tn,xj)(ρni,jVni,j+1−ρni,j−1Vni,j). $ |
Summing by parts we obtain
$ −∑jφ((nT−1)Δt,xj)ρnTi,j+∑jφ(0,xj)ρ0i,j+nT−1∑n=1∑j(φ(tn,xj)−φ(tn−1,xj))ρni,j+λnT−1∑n=0∑j(φ(tn,xj+1)−φ(tn,xj))Vni,j+1ρni,j=0. $ | (22) |
Multiplying by
$ −Δx∑jφ((nT−1)Δt,xj)ρnTi,j+Δx∑jφ(0,xj)ρ0i,j $ | (23) |
$ +ΔxΔtnT−1∑n=1∑j(φ(tn,xj)−φ(tn−1,xj))Δtρni,j $ | (24) |
$ +ΔxΔtnT−1∑n=0∑j(φ(tn,xj+1)−φ(tn,xj))ΔxVni,j+1ρni,j=0. $ | (25) |
By
$ ∫R(ρ0i(x)φ(0,x)−ρi(T,x)φ(T,x))dx+∫T0∫Rρi(t,x)∂tφ(t,x)dxdt, $ | (26) |
as
$ ΔxΔtnT−1∑n=0∑jφ(tn,xj+1)−φ(tn,xj)ΔxVni,j+1ρni,j=ΔxΔtnT−1∑n=0∑jφ(tn,xj+1)−φ(tn,xj)Δx(ρni,jVni,j+1−ρni,jVni,j)+ΔxΔtnT−1∑n=0∑jφ(tn,xj+1)−φ(tn,xj)Δxρni,jVni,j. $ | (27) |
By (12) we get the estimate
$ ρni,jVni,j+1−ρni,jVni,j≤vmaxi‖ψ′‖∞ΔxM‖ρ‖2∞ωi(0). $ |
Set
$ ΔxΔtnT∑n=0∑jφ(tn,xj+1)−φ(tn,xj)Δx(ρni,jVni,j+1−ρni,jVni,j)≤ΔxΔt‖∂xφ‖∞nT∑n=0j1∑j=j0vmaxi‖ψ′‖∞M‖ρ‖2∞ωi(0)Δx≤‖∂xφ‖∞vmaxi‖ψ′‖∞M‖ρ‖2∞ωi(0)Δx2RT, $ |
which goes to zero as
Finally, again by the
$ ΔxΔtnT−1∑n=0∑j(φ(tn,xj+1)−φ(tn,xj))Δxρni,jVni,j−12→∫T0∫R∂xφ(t,x)ρi(t,x)vi(r∗ωi)dxdt. $ |
In this section we perform some numerical simulations to illustrate the behaviour of solutions to (1) for
In this example, we consider a stretch of road populated by cars and trucks. The space domain is given by the interval
$ {∂tρ1(t,x)+∂x(ρ1(t,x)vmax1ψ((r∗ω1)(t,x)))=0,∂tρ2(t,x)+∂x(ρ2(t,x)vmax2ψ((r∗ω2)(t,x)))=0, $ | (28) |
with
$ ω1(x)=2η1(1−xη1),η1=0.3,ω2(x)=2η2(1−xη2),η2=0.1,ψ(ξ)=max{1−ξ,0},ξ≥0,vmax1=0.8,vmax2=1.3. $ |
In this setting,
$ {ρ1(0,x)=0.5χ[−1.1,−1.6],ρ2(0,x)=0.5χ[−1.6,−1.9], $ |
in which a platoon of trucks precedes a group of cars. Due to their higher speed, cars overtake trucks, in accordance with what observed in the local case [4].
The aim of this test is to study the possible impact of the presence of Connected Autonomous Vehicles (CAVs) on road traffic performances. Let us consider a circular road modeled by the space interval
$ {∂tρ1(t,x)+∂x(ρ1(t,x)vmax1ψ((r∗ω1)(t,x)))=0,∂tρ2(t,x)+∂x(ρ2(t,x)vmax2ψ((r∗ω2)(t,x)))=0,ρ1(0,x)=β(0.5+0.3sin(5πx)),ρ2(0,x)=(1−β)(0.5+0.3sin(5πx)), $ | (29) |
with
$ ω1(x)=1η1,η1=1,ω2(x)=2η2(1−xη2),η2=0.01,ψ(ξ)=max{1−ξ,0},ξ≥0,vmax1=vmax2=1. $ |
Above
As a metric of traffic congestion, given a time horizon
$ J(β)=∫T0d|∂xr|dt, $ | (30) |
$ Ψ(β)=∫T0[ρ1(t,ˉx)vmax1ψ((r∗ω1)(t,ˉx))+ρ2(t,ˉx)vmax2ψ((r∗ω2)(t,ˉx))]dt, $ | (31) |
where
The authors are grateful to Luis M. Villada for suggesting the non-local multi-class traffic model studied in this paper.
We provide here alternative estimates for (1), based on approximate solutions constructed via the following adapted Lax-Friedrichs scheme:
$ ρn+1i,j=ρni,j−λ(Fni,j+1/2−Fni,j−1/2), $ | (32) |
with
$ Fni,j+1/2:=12ρni,jVni,j+12ρni,j+1Vni,j+1+α2(ρni,j−ρni,j+1), $ | (33) |
where
Lemma A.1. For any
$ λα<1, $ | (34) |
$ α≥vmaxM‖ψ‖∞, $ | (35) |
the scheme (33)-(32) is positivity preserving on
Lemma A.2. (
$ T<(M‖ρ0‖∞vmaxM‖ψ′‖∞W0)−1. $ | (36) |
Lemma A.3. (
$ Δt≤22α+Δx‖ψ′‖∞W0vmaxM‖ρ‖∞Δx, $ | (37) |
then the solution constructed by the algorithm (33)-(32) has uniformly bounded total variation for any
$ T≤mini=1,...,M1D(TV(ρ0i)+1), $ | (38) |
where
[1] |
Fargion S, Porzio M, Fracanzani AL (2014) Nonalcoholic fatty liver disease and vascular disease: state-of-the-art. World J Gastroenterol 20: 13306-13324. doi: 10.3748/wjg.v20.i37.13306
![]() |
[2] | Hjelkrem MC, Torres DM, Harrison SA (2008) Nonalcoholic fatty liver disease. Minerva Med 99: 583-593. |
[3] | Brandão DF, Ramalho LN, Ramalho FS, et al. (2006) Liver cirrhosis and hepatic stellate cells. Acta Cir Bras 21 Suppl 1: 54-57. |
[4] |
Nseir W, Shalata A, Marmor A, et al. (2011) Mechanisms linking nonalcoholic fatty liver disease with coronary artery disease. Dig Dis Sci 56: 3439-3449. doi: 10.1007/s10620-011-1767-y
![]() |
[5] |
Strange RC, Shipman KE, Ramachandran S (2015) Metabolic syndrome: A review of the role of vitamin D in mediating susceptibility and outcome. World J Diabetes 6: 896-911. doi: 10.4239/wjd.v6.i7.896
![]() |
[6] | Ganji SH, Kashyap ML, Kamanna VS (2015) Niacin inhibits fat accumulation, oxidative stress, and inflammatory cytokine IL-8 in cultured hepatocytes: Impact on non-alcoholic fatty liver disease. Metabolism pii: S0026-0495(15)00134-1. |
[7] |
Mallat A, Lotersztajn S (2009) Cigarette smoke exposure: a novel cofactor of NAFLD progression? J Hepatol 51: 430-432. doi: 10.1016/j.jhep.2009.05.021
![]() |
[8] |
Friis-Liby I, Aldenborg F, Jerlstad P, et al. (2004) High prevalence of metabolic complications in patients with non-alcoholic fatty liver disease. Scand J Gastroenterol 39: 864-869. doi: 10.1080/00365520410006431
![]() |
[9] |
Karim ZA, Alshbool FZ, Vemana HP, et al. (2015) Third-hand Smoke: Impact on Hemostasis and Thrombogenesis. J Cardiovasc Pharmacol 66: 177-182. doi: 10.1097/FJC.0000000000000260
![]() |
[10] | Chavez-Tapia NC, Barrientos-Gutierrez T, Tellez-Avila FI, et al. (2006) Insulin sensitizers in treatment of nonalcoholic fatty liver disease: Systematic review. World J Gastroenterol 12: 7826-7831. |
[11] |
Athyros VG, Tziomalos K, Katsiki N, et al. (2013) The impact of smoking on cardiovascular outcomes and comorbidities in statin-treated patients with coronary artery disease: a post hoc analysis of the GREACE study. Curr Vasc Pharmacol 11: 779-784. doi: 10.2174/1570161111311050016
![]() |
[12] |
Liu Y, Dai M, Bi Y, et al. (2013) Active smoking, passive smoking, and risk of nonalcoholic fatty liver disease (NAFLD): a population-based study in China. J Epidemiol 23: 115-121. doi: 10.2188/jea.JE20120067
![]() |
[13] | Oniki K, Hori M, Saruwatari J, et al. (2013) Interactive effects of smoking and glutathione S-transferase polymorphisms on the development of non-alcoholic fatty liver disease. Toxicol Lett 220: 143-149. |
[14] |
Stein LL, Dong MH, Loomba R (2009) Insulin sensitizers in nonalcoholic fatty liver disease and steatohepatitis: Current status. Adv Ther 26: 893-907. doi: 10.1007/s12325-009-0072-z
![]() |
[15] | Tokuhira N, Kitagishi Y, Suzuki M, et al. (2015) PI3K/AKT/PTEN pathway as a target for Crohn's disease therapy (Review). Int J Mol Med 35: 10-16. |
[16] | Duan J, Yu Y, Yu Y, et al. (2014) Silica nanoparticles induce autophagy and endothelial dysfunction via the PI3K/Akt/mTOR signaling pathway. Int J Nanomedicine 9: 5131-5141. |
[17] |
Song BQ, Chi Y, Li X, et al. (2015) Inhibition of Notch Signaling Promotes the Adipogenic Differentiation of Mesenchymal Stem Cells Through Autophagy Activation and PTEN-PI3K/AKT/mTOR Pathway. Cell Physiol Biochem 36: 1991-2002. doi: 10.1159/000430167
![]() |
[18] |
Wang Z, Li N, Wang B, et al. (2015) Nonalcoholic fatty liver disease progression in rats is accelerated by splenic regulation of liver PTEN/AKT. Saudi J Gastroenterol 21: 232-238. doi: 10.4103/1319-3767.161641
![]() |
[19] |
Ziamajidi N, Khaghani S, Hassanzadeh G, et al. (2013) Amelioration by chicory seed extract of diabetes- and oleic acid-induced non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) via modulation of PPARα and SREBP-1. Food Chem Toxicol 58: 198-209. doi: 10.1016/j.fct.2013.04.018
![]() |
[20] |
Serviddio G, Sastre J, Bellanti F, et al. (2008) Mitochondrial involvement in non-alcoholic steatohepatitis. Mol Aspects Med 29: 22-35. doi: 10.1016/j.mam.2007.09.014
![]() |
[21] |
Roy D, Cai Q, Felty Q, et al. (2007) Estrogen-induced generation of reactive oxygen and nitrogen species, gene damage, and estrogen-dependent cancers. J Toxicol Environ Health B Crit Rev 10: 235-257. doi: 10.1080/15287390600974924
![]() |
[22] |
Futosi K, Fodor S, Mócsai A (2013) Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol 17: 638-650. doi: 10.1016/j.intimp.2013.06.034
![]() |
[23] |
Masamune A, Shimosegawa T (2009) Signal transduction in pancreatic stellate cells. J Gastroenterol 44: 249-260. doi: 10.1007/s00535-009-0013-2
![]() |
[24] |
Yao H, Han X, Han X (2014) The cardioprotection of the insulin-mediated PI3K/Akt/mTOR signaling pathway. Am J Cardiovasc Drugs 14: 433-442. doi: 10.1007/s40256-014-0089-9
![]() |
[25] | Chen Z, Wang D, Liu X, et al. (2015) Oxidative DNA damage is involved in cigarette smoke-induced lung injury in rats. Environ Health Prev Med [Epub ahead of print] |
[26] |
Azzalini L, Ferrer E, Ramalho LN, et al. (2010) Cigarette smoking exacerbates nonalcoholic fatty liver disease in obese rats. Hepatology 51: 1567-1576. doi: 10.1002/hep.23516
![]() |
[27] |
Balti EV, Echouffo-Tcheugui JB, Yako YY, et al. (2014) Air pollution and risk of type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Res Clin Pract 106: 161-172. doi: 10.1016/j.diabres.2014.08.010
![]() |
[28] |
Wei X, E M, Yu S (2015) A meta-analysis of passive smoking and risk of developing Type 2 Diabetes Mellitus. Diabetes Res Clin Pract 107: 9-14. doi: 10.1016/j.diabres.2014.09.019
![]() |
[29] | Bhatt HB, Smith RJ (2015) Fatty liver disease in diabetes mellitus. Hepatobiliary Surg Nutr 4: 101-108. |
[30] |
Collin A, Hardonnière K, Chevanne M, et al. (2014) Cooperative interaction of benzo[a]pyrene and ethanol on plasma membrane remodeling is responsible for enhanced oxidative stress and cell death in primary rat hepatocytes. Free Radic Biol Med 72: 11-22. doi: 10.1016/j.freeradbiomed.2014.03.029
![]() |
[31] |
Chen H, Hansen MJ, Jones JE, et al. (2007) Detrimental metabolic effects of combining long-term cigarette smoke exposure and high-fat diet in mice. Am J Physiol Endocrinol Metab 293: E1564-E1571. doi: 10.1152/ajpendo.00442.2007
![]() |
[32] |
Drehmer JE, Ossip DJ, Rigotti NA, et al. (2012) Pediatrician interventions and thirdhand smoke beliefs of parents. Am J Prev Med 43: 533-536. doi: 10.1016/j.amepre.2012.07.020
![]() |
[33] |
Sleiman M, Gundel LA, Pankow JF, et al. (2010) Formation of carcinogens indoors by surface-mediated reactions of nicotine with nitrous acid, leading to potential thirdhand smoke hazards. Proc Natl Acad Sci U S A 107: 6576-6581. doi: 10.1073/pnas.0912820107
![]() |
[34] |
Mizoue T, Ueda R, Hino Y, et al. (1999) Workplace exposure to environmental tobacco smoke and high density lipoprotein cholesterol among nonsmokers. Am J Epidemiol 150: 1068-1072. doi: 10.1093/oxfordjournals.aje.a009930
![]() |
[35] |
Tannapfel A, Denk H, Dienes HP, et al. (2011) Histopathological diagnosis of non-alcoholic and alcoholic fatty liver disease. Virchows Arch 458: 511-523. doi: 10.1007/s00428-011-1066-1
![]() |
[36] |
Brait M, Munari E, LeBron C, et al. (2013) Genome-wide methylation profiling and the PI3K-AKT pathway analysis associated with smoking in urothelial cell carcinoma. Cell Cycle 12: 1058-1070. doi: 10.4161/cc.24050
![]() |
[37] |
Ibuki Y, Toyooka T, Zhao X, et al. (2014) Cigarette sidestream smoke induces histone H3 phosphorylation via JNK and PI3K/Akt pathways, leading to the expression of proto-oncogenes. Carcinogenesis 35: 1228-1237. doi: 10.1093/carcin/bgt492
![]() |
[38] |
Park CH, Lee IS, Grippo P, et al. (2013) Akt kinase mediates the prosurvival effect of smoking compounds in pancreatic ductal cells. Pancreas 42: 655-662. doi: 10.1097/MPA.0b013e3182762928
![]() |
[39] |
Hosgood HD 3rd, Menashe I, He X, et al. (2009) PTEN identified as important risk factor of chronic obstructive pulmonary disease. Respir Med 103: 1866-1870. doi: 10.1016/j.rmed.2009.06.016
![]() |
[40] |
Hoffmann RF, Zarrintan S, Brandenburg SM, et al. (2013) Prolonged cigarette smoke exposure alters mitochondrial structure and function in airway epithelial cells. Respir Res 14: 97. doi: 10.1186/1465-9921-14-97
![]() |
[41] |
Zhou X, Zhao L, Mao J, et al. (2015) Antioxidant effects of hydrogen sulfide on left ventricular remodeling in smoking rats are mediated via PI3K/Akt-dependent activation of Nrf2. Toxicol Sci 144: 197-203. doi: 10.1093/toxsci/kfu272
![]() |
[42] |
Aravamudan B, Kiel A, Freeman M, et al. (2014) Cigarette smoke-induced mitochondrial fragmentation and dysfunction in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 306: L840-L854. doi: 10.1152/ajplung.00155.2013
![]() |
[43] |
Rutherford C, Childs S, Ohotski J, et al. (2013) Regulation of cell survival by sphingosine-1-phosphate receptor S1P1 via reciprocal ERK-dependent suppression of Bim and PI-3-kinase/protein kinase C-mediated upregulation of Mcl-1. Cell Death Dis 4: e927. doi: 10.1038/cddis.2013.455
![]() |
[44] |
Hawkins PT, Anderson KE, Davidson K, et al. (2006) Signalling through Class I PI3Ks in mammalian cells. Biochem Soc Trans 34: 647-662. doi: 10.1042/BST0340647
![]() |
[45] |
Murugan AK, Munirajan AK, Tsuchida N (2013) Genetic deregulation of the PIK3CA oncogene in oral cancer. Cancer Lett 338: 193-203. doi: 10.1016/j.canlet.2013.04.005
![]() |
[46] |
Dong H, Zhang X, Dai X, et al. (2014) Lithium ameliorates lipopolysaccharide-induced microglial activation via inhibition of toll-like receptor 4 expression by activating the PI3K/Akt/FoxO1 pathway. J Neuroinflammation 11: 140. doi: 10.1186/s12974-014-0140-4
![]() |
[47] |
Peres AG, Stegen C, Li J, et al. (2015) Uncoupling of pro- and anti-inflammatory properties of Staphylococcus aureus. Infect Immun 83: 1587-1597. doi: 10.1128/IAI.02832-14
![]() |
[48] |
Edirisinghe I, Rahman I (2010) Cigarette smoke-mediated oxidative stress, shear stress, and endothelial dysfunction: role of VEGFR2. Ann N Y Acad Sci 1203: 66-72. doi: 10.1111/j.1749-6632.2010.05601.x
![]() |
[49] | Ahluwalia A, Tarnawski AS (2012) Critical role of hypoxia sensor--HIF-1α in VEGF gene activation. Implications for angiogenesis and tissue injury healing. Curr Med Chem 19: 90-97. |
[50] | Tarantino G, Lobello R, Scopacasa F, et al. (2007) The contribution of omental adipose tissue to adipokine concentrations in patients with the metabolic syndrome. Clin Invest Med 30: E192-E199. |
[51] |
Tarantino G, Conca P, Pasanisi F, et al. (2009) Could inflammatory markers help diagnose nonalcoholic steatohepatitis? Eur J Gastroenterol Hepatol 21: 504-511. doi: 10.1097/MEG.0b013e3283229b40
![]() |
[52] |
Tarantino G, Capone D (2013) Inhibition of the mTOR pathway: a possible protective role in coronary artery disease. Ann Med 45: 348-356. doi: 10.3109/07853890.2013.770333
![]() |
[53] |
Cozzone D, Fröjdö S, Disse E, et al. (2008) Isoform-specific defects of insulin stimulation of Akt/protein kinase B (PKB) in skeletal muscle cells from type 2 diabetic patients. Diabetologia 51: 512-521. doi: 10.1007/s00125-007-0913-8
![]() |
[54] |
Rane MJ, Coxon PY, Powell DW, et al. (2001) p38 Kinase-dependent MAPKAPK-2 activation functions as 3-phosphoinositide-dependent kinase-2 for Akt in human neutrophils. J Biol Chem 276: 3517-3523. doi: 10.1074/jbc.M005953200
![]() |
[55] |
Knobbe CB, Merlo A, Reifenberger G (2002) Pten signaling in gliomas. Neuro Oncol 4: 196-211. doi: 10.1215/15228517-4-3-196
![]() |
[56] | Georgescu MM, Kirsch KH, Kaloudis P, et al. (2000) Stabilization and productive positioning roles of the C2 domain of PTEN tumor suppressor. Cancer Res 60: 7033-7038. |
[57] | Yoshida H, Okumura N, Kitagishi Y, et al. (2011) Ethanol extract of Rosemary repressed PTEN expression in K562 culture cells. Int J appl Biol pharm Technol 2: 316-322. |
[58] |
Tamguney T, Stokoe D (2007) New insights into PTEN. J Cell Sci 120: 4071-4079. doi: 10.1242/jcs.015230
![]() |
[59] |
Sato W, Horie Y, Kataoka E, et al. (2006) Hepatic gene expression in hepatocyte-specific Pten deficient mice showing steatohepatitis without ethanol challenge. Hepatol Res 34: 256-265. doi: 10.1016/j.hepres.2006.01.003
![]() |
[60] | Piguet AC, Stroka D, Zimmermann A, et al. (2009) Hypoxia aggravates non-alcoholic steatohepatitis in mice lacking hepatocellular PTEN. Clin Sci (Lond) 118: 401-410. |
[61] |
Li Y, Hai J, Li L, et al. (2013) Administration of ghrelin improves inflammation, oxidative stress, and apoptosis during and after non-alcoholic fatty liver disease development. Endocrine 43: 376-386. doi: 10.1007/s12020-012-9761-5
![]() |
[62] |
Ikejima K, Okumura K, Lang T, et al. (2005) The role of leptin in progression of non-alcoholic fatty liver disease. Hepatol Res 33: 151-154. doi: 10.1016/j.hepres.2005.09.024
![]() |
[63] |
Suman S, Kallakury BV, Fornace AJ Jr, et al. (2015) Protracted upregulation of leptin and IGF1 is associated with activation of PI3K/Akt and JAK2 pathway in mouse intestine after ionizing radiation exposure. Int J Biol Sci 11: 274-283. doi: 10.7150/ijbs.10684
![]() |
[64] | Imajo K, Fujita K, Yoneda M, et al. (2012) Hyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling. Cell Metab16:44-54. |
[65] |
Waseem T, Duxbury M, Ashley SW, et al. (2014) Ghrelin promotes intestinal epithelial cell proliferation through PI3K/Akt pathway and EGFR trans-activation both converging to ERK 1/2 phosphorylation. Peptides 52: 113-121. doi: 10.1016/j.peptides.2013.11.021
![]() |
[66] |
Tomoda K, Kubo K, Nishii Y, et al. (2012) Changes of ghrelin and leptin levels in plasma by cigarette smoke in rats. J Toxicol Sci 37: 131-138. doi: 10.2131/jts.37.131
![]() |
[67] |
Zhang F, Zhang Z, Kong D, et al. (2014) Tetramethylpyrazine reduces glucose and insulin-induced activation of hepatic stellate cells by inhibiting insulin receptor-mediated PI3K/AKT and ERK pathways. Mol Cell Endocrinol 382: 197-204. doi: 10.1016/j.mce.2013.09.020
![]() |
[68] |
Dal-Cim T, Molz S, Egea J, et al. (2012) Guanosine protects human neuroblastoma SH-SY5Y cells against mitochondrial oxidative stress by inducing heme oxigenase-1 via PI3K/Akt/GSK-3β pathway. Neurochem Int 61: 397-404. doi: 10.1016/j.neuint.2012.05.021
![]() |
[69] |
Kudo Y, Tanaka Y, Tateishi K, et al. (2011) Altered composition of fatty acids exacerbates hepatotumorigenesis during activation of the phosphatidylinositol 3-kinase pathway. J Hepatol 55: 1400-1408. doi: 10.1016/j.jhep.2011.03.025
![]() |
[70] |
Santos PP, Oliveira F, Ferreira VC, et al. (2014) The role of lipotoxicity in smoke cardiomyopathy. PLoS One 9: e113739. doi: 10.1371/journal.pone.0113739
![]() |
[71] | Zhang Y, Hai J, Cao M, et al. (2013) Silibinin ameliorates steatosis and insulin resistance during non-alcoholic fatty liver disease development partly through targeting IRS-1/PI3K/Akt pathway. Int Immunopharmacol 17: 714-720. |
1. | Rinaldo M. Colombo, Magali Lecureux-Mercier, Mauro Garavello, 2020, Chapter 5, 978-3-030-50449-6, 83, 10.1007/978-3-030-50450-2_5 | |
2. | Felisia Angela Chiarello, Paola Goatin, Luis Miguel Villada, Lagrangian-antidiffusive remap schemes for non-local multi-class traffic flow models, 2020, 39, 2238-3603, 10.1007/s40314-020-1097-9 | |
3. | Alexandre Bayen, Jan Friedrich, Alexander Keimer, Lukas Pflug, Tanya Veeravalli, Modeling Multilane Traffic with Moving Obstacles by Nonlocal Balance Laws, 2022, 21, 1536-0040, 1495, 10.1137/20M1366654 | |
4. | Felisia Angela Chiarello, 2021, Chapter 5, 978-3-030-66559-3, 79, 10.1007/978-3-030-66560-9_5 | |
5. | Jan Friedrich, Simone Göttlich, Maximilian Osztfalk, Network models for nonlocal traffic flow, 2022, 56, 2822-7840, 213, 10.1051/m2an/2022002 | |
6. | Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485 | |
7. | Giuseppe Maria Coclite, Lorenzo di Ruvo, On the initial-boundary value problem for a non-local elliptic-hyperbolic system related to the short pulse equation, 2022, 3, 2662-2963, 10.1007/s42985-022-00208-w | |
8. | Kuang Huang, Qiang Du, Stability of a Nonlocal Traffic Flow Model for Connected Vehicles, 2022, 82, 0036-1399, 221, 10.1137/20M1355732 | |
9. | Yanbing Wang, Daniel B. Work, Estimation for heterogeneous traffic using enhanced particle filters, 2022, 18, 2324-9935, 568, 10.1080/23249935.2021.1881186 | |
10. | Felisia Angela Chiarello, Harold Deivi Contreras, Luis Miguel Villada, Nonlocal reaction traffic flow model with on-off ramps, 2022, 17, 1556-1801, 203, 10.3934/nhm.2022003 | |
11. | Ioana Ciotir, Rim Fayad, Nicolas Forcadel, Antoine Tonnoir, A non-local macroscopic model for traffic flow, 2021, 55, 0764-583X, 689, 10.1051/m2an/2021006 | |
12. | Maria Colombo, Gianluca Crippa, Marie Graff, Laura V. Spinolo, On the role of numerical viscosity in the study of the local limit of nonlocal conservation laws, 2021, 55, 0764-583X, 2705, 10.1051/m2an/2021073 | |
13. | Alexander Keimer, Lukas Pflug, 2023, 15708659, 10.1016/bs.hna.2022.11.001 | |
14. | Alexandre Bayen, Jean-Michel Coron, Nicola De Nitti, Alexander Keimer, Lukas Pflug, Boundary Controllability and Asymptotic Stabilization of a Nonlocal Traffic Flow Model, 2021, 49, 2305-221X, 957, 10.1007/s10013-021-00506-7 | |
15. | F. A. CHIARELLO, J. FRIEDRICH, P. GOATIN, S. GÖTTLICH, O. KOLB, A non-local traffic flow model for 1-to-1 junctions, 2020, 31, 0956-7925, 1029, 10.1017/S095679251900038X | |
16. | Jan Friedrich, Simone Göttlich, Alexander Keimer, Lukas Pflug, 2024, Chapter 30, 978-3-031-55263-2, 347, 10.1007/978-3-031-55264-9_30 | |
17. | Veerappa Gowda G. D., Sudarshan Kumar Kenettinkara, Nikhil Manoj, Convergence of a second-order scheme for non-local conservation laws, 2023, 57, 2822-7840, 3439, 10.1051/m2an/2023080 | |
18. | Jan Friedrich, Sanjibanee Sudha, Samala Rathan, Numerical schemes for a class of nonlocal conservation laws: a general approach, 2023, 18, 1556-1801, 1335, 10.3934/nhm.2023058 | |
19. | Jan Friedrich, Simone Göttlich, Michael Herty, Lyapunov Stabilization for Nonlocal Traffic Flow Models, 2023, 61, 0363-0129, 2849, 10.1137/22M152181X | |
20. | Felisia A. Chiarello, Harold D. Contreras, 2024, Chapter 26, 978-3-031-55263-2, 303, 10.1007/978-3-031-55264-9_26 | |
21. | Jan Friedrich, Lyapunov stabilization of a nonlocal LWR traffic flow model, 2023, 23, 1617-7061, 10.1002/pamm.202200084 | |
22. | Agatha Joumaa, Paola Goatin, Giovanni De Nunzio, 2023, A Macroscopic Model for Multi-Modal Traffic Flow in Urban Networks, 979-8-3503-9946-2, 411, 10.1109/ITSC57777.2023.10422168 | |
23. | Saeed Mohammadian, Zuduo Zheng, Md. Mazharul Haque, Ashish Bhaskar, Continuum modeling of freeway traffic flows: State-of-the-art, challenges and future directions in the era of connected and automated vehicles, 2023, 3, 27724247, 100107, 10.1016/j.commtr.2023.100107 | |
24. | Harold Deivi Contreras, Paola Goatin, Luis-Miguel Villada, A two-lane bidirectional nonlocal traffic model, 2025, 543, 0022247X, 129027, 10.1016/j.jmaa.2024.129027 | |
25. | Felisia Angela Chiarello, Paola Goatin, 2023, Chapter 3, 978-3-031-29874-5, 49, 10.1007/978-3-031-29875-2_3 | |
26. | Alexander Keimer, Lukas Pflug, Discontinuous nonlocal conservation laws and related discontinuous ODEs – Existence, Uniqueness, Stability and Regularity, 2023, 361, 1778-3569, 1723, 10.5802/crmath.490 | |
27. | Archie J. Huang, Animesh Biswas, Shaurya Agarwal, Incorporating Nonlocal Traffic Flow Model in Physics-Informed Neural Networks, 2024, 25, 1524-9050, 16249, 10.1109/TITS.2024.3429029 | |
28. | Rinaldo M. Colombo, Mauro Garavello, Claudia Nocita, General stability estimates in nonlocal traffic models for several populations, 2025, 32, 1021-9722, 10.1007/s00030-025-01034-w |