Citation: Jade Sternberg, Miriam Wankell, V. Nathan Subramaniam, Lionel W. Hebbard. The functional roles of T-cadherin in mammalian biology[J]. AIMS Molecular Science, 2017, 4(1): 62-81. doi: 10.3934/molsci.2017.1.62
[1] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
[2] | Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089 |
[3] | Haoliang Fu, Muhammad Shoaib Saleem, Waqas Nazeer, Mamoona Ghafoor, Peigen Li . On Hermite-Hadamard type inequalities for n-polynomial convex stochastic processes. AIMS Mathematics, 2021, 6(6): 6322-6339. doi: 10.3934/math.2021371 |
[4] | Muhammad Samraiz, Kanwal Saeed, Saima Naheed, Gauhar Rahman, Kamsing Nonlaopon . On inequalities of Hermite-Hadamard type via n-polynomial exponential type s-convex functions. AIMS Mathematics, 2022, 7(8): 14282-14298. doi: 10.3934/math.2022787 |
[5] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[6] | Hong Yang, Shahid Qaisar, Arslan Munir, Muhammad Naeem . New inequalities via Caputo-Fabrizio integral operator with applications. AIMS Mathematics, 2023, 8(8): 19391-19412. doi: 10.3934/math.2023989 |
[7] | Saad Ihsan Butt, Ahmet Ocak Akdemir, Muhammad Nadeem, Nabil Mlaiki, İşcan İmdat, Thabet Abdeljawad . (m,n)-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates. AIMS Mathematics, 2021, 6(5): 4677-4690. doi: 10.3934/math.2021275 |
[8] | Ahmet Ocak Akdemir, Saad Ihsan Butt, Muhammad Nadeem, Maria Alessandra Ragusa . Some new integral inequalities for a general variant of polynomial convex functions. AIMS Mathematics, 2022, 7(12): 20461-20489. doi: 10.3934/math.20221121 |
[9] | Gültekin Tınaztepe, Sevda Sezer, Zeynep Eken, Sinem Sezer Evcan . The Ostrowski inequality for s-convex functions in the third sense. AIMS Mathematics, 2022, 7(4): 5605-5615. doi: 10.3934/math.2022310 |
[10] | Moquddsa Zahra, Dina Abuzaid, Ghulam Farid, Kamsing Nonlaopon . On Hadamard inequalities for refined convex functions via strictly monotone functions. AIMS Mathematics, 2022, 7(11): 20043-20057. doi: 10.3934/math.20221096 |
In recent years, convexity theory has gained special attention by many researchers because of it engrossing properties and expedient characterizations. It has many applications in fields like biology, numerical analysis and statistics (see [1,2,3,4]). Mathematical inequalities are extensively studied with all type of convex functions (see[1,3,11,13,14,16]). One of the fundamental inequality is Hermite-Hadamard inequality. It has been discussed via different types of convexities and became the center of attention for many researchers. Recently, in 2016, Khan et al. have discussed generalizations of Hermite-Hadamard type for MT-convex functions [26]. In 2017, Khan et al. studied some new inequalities of Hermite-Hadamard types [27]. In 2019, Khurshid et al. have utilized conformable fractional integrals via preinvex functions [28]. In 2020, Khan et al. have discussed Hermite-Hadamard type inequalities via quantum calculus involving green function [29], Mohammed et al. have established a new version of Hermite-Hadamard inequality for Riemann-Liouville fractional integrals [30], Han et al. used fractional integral to generalize Hermite-Hadamard inequality for convex functions [31], Zhao et al. utilized harmonically convex functions to generalized fractional integral inequalities of Hermite-Hdamrd type [32], Awan et al. presented new inequalities of Hermite-Hdamard type for n-polynomial harmonically convex functions [33]. In 2022, Khan et al. introduced some new versions of Hermite-Hadamard integral inequalities in fuzzy fractional calculus for generalized pre-invex functions via fuzzy-interval-valued settings [34]. This reflects the importance of Hermite Hadamard type inequalities among current research.
In [9], s-convex function is given as,
Definition 1.1. A real valued function χ is called s-convex function on R, if
χ(ςρ+(1−ς)γ)≤ςsχ(ρ)+(1−ς)sχ(γ), |
for each ρ,γ∈R and ς∈(0,1) where s∈(0,1].
In [10], m-convexity is discussed as,
Definition 1.2. A real valued function χ defined on [0,b] is said to be a m-convex function for m∈[0,1], if
χ(ςρ+m(1−ς)γ)≤ςχ(ρ)+m(1−ς)χ(γ), |
holds for all ρ,γ∈[0,b] and ς∈[0,1].
(s,m)-convexity in [17] is discussed as,
Definition 1.3. A function χ:[0,b]⟶R, b>0 is said to be a (s,m)-convex function in the second sense where s,m∈(0,1]2, if
χ(ςρ+m(1−ς)γ)≤ςsχ(ρ)+m(1−ς)sχ(γ), |
holds provided that all ρ,γ∈[0,b] and ς∈[0,1].
Equivalent definition for (s,m)–convex functions:
Let ρ,α,γ∈[0,b], ρ<α<γ
χ(α)≤(γ−αγ−ρ)sχ(ρ)+m(α−ργ−ρ)sχ(γ). | (1.1) |
Hölder-İşcan Inequality [5]:
Let p>1, χ and ψ be real valued functions defined on [ρ,γ] and |χ|p,|ψ|q are integrable functions on interval [ρ,γ]
∫γρ|χ(ω)ψ(ω)|dω≤1γ−ρ(∫γρ(γ−ω)|χ(ω)|pdω)1p(∫γρ(γ−ω)|ψ(ω)|qdω)1q+1γ−ρ(∫γρ(ω−ρ)|χ(ω)|pdω)1p(∫γρ(ω−ρ)|ψ(ω)|qdω)1q, | (1.2) |
where 1p+1q=1.
Following lemma is useful to obtain our main results.
Lemma 1.4. [8] For n∈N, let χ:U⊆R⟶R be n-times differentiable mapping on U∘, where ρ,γ∈U∘, ρ<γ and χn∈L[ρ,γ], we have following identity
n−1∑ν=0(−1)ν(χ(ν)(γ)γν+1−χ(ν)(ρ)ρν+1(ν+1)!)−γ∫ρχ(ω)dω=(−1)n+1n!γ∫ρωnχ(n)(ω)dω, | (1.3) |
where an empty set is understood to be nil.
In this paper, Hölder-İşcan inequality is used to modify inequalities involving functions having s-convex or s-concave derivatives at certain powers. The purpose of this paper is to establish some generalized inequalities for n-times differentiable (s,m)-convex functions. Applications of these inequalities to means are also discussed. Means are defined as,
Let 0<ρ<γ,
A(ρ,γ)=ρ+γ2, |
G(ρ,γ)=√ργ, |
Lp(ρ,γ)=(γp+1−ρp+1(p+1)(γ−ρ))1p, |
where p≠0,−1 and ρ≠γ.
Theorem 2.1. For any positive integer n, let χ:U⊆(0,∞)→R be n-times differentiable mapping on U∘, where ρ,γ∈U∘ with ρ<γ. If χ(n)∈L[ρ,γ] and |χ(n)|q for q>1 is (s,m)-convex on interval [ρ,γ] then
|n−1∑ν=0(−1)ν(χ(ν)(γ)γν+1−χ(ν)(ρ)ρν+1(ν+1)!)−μ∫ρχ(ω)dω|≤1n!(γ−ρ)1q([γLnpnp(ρ,γ)−Lnp+1np+1(ρ,γ)]1p[|χn(γ)|q(s+2)(s+1)+m|χn(ρ)|q(s+2)]1q+[Lnp+1np+1(ρ,γ)−ρLnpnp(ρ,γ)]1p[|χn(γ)|q(s+2)+m|χn(ρ)|q(s+1)(s+2)]1q), | (2.1) |
where 1p+1q=1.
Proof. Since |χn|q is (s,m)-convex by using inequality (1.1) for ρ<ω<γ, using Lemma 1.4 and Hölder-Işcan inequality (1.2),
|χn(ω)|q≤|χn(ω−ργ−ργ+mγ−ωγ−ρρ)|q≤(ω−ργ−ρ)s|χn(γ)|q+m(γ−ωγ−ρ)s|χn(ρ)|q,|n−1∑ν=0(−1)ν(χ(ν)(γ)γν+1−χ(ν)(ρ)ρν+1(ν+1)!)−γ∫ρχ(ω)dω|≤1n!γ∫ρωn|χ(n)(ω)|dω,≤1n!1γ−ρ{(γ∫ρ(γ−ω)ωnpdω)1p(γ∫ρ(γ−ω)|χ(n)(ω)|qdω)1q+(γ∫ρ(ω−ρ)ωnpdω)1p(γ∫ρ(ω−ρ)|χ(n)(ω)|qdω)1q},≤1n!1γ−ρ(γ∫ρ(γ−ω)ωnpdω)1p(γ∫ρ(γ−ω)[(ω−ργ−ρ)s|χn(γ)|q+m(γ−ωγ−ρ)s|χn(ρ)|q]dω)1q+1n!1γ−ρ(γ∫ρ(ω−ρ)ωnpdω)1p(γ∫ρ(ω−ρ)[(ω−ργ−ρ)s|χn(γ)|q+m(γ−ωγ−ρ)s|χn(ρ)|q]dω)1q, | (2.2) |
Let
I1=[γ∫ρ(γ−ω)ωnpdω]1p=[γ∫ρ(γωnp−ωnp+1)dω]1p=(γ−ρ)1p[γ(γnp+1−ρnp+1(γ−ρ)(np+1))−(γnp+2−ρnp+2(γ−ρ)(np+2))]1p=(γ−ρ)1p[γLnpnp(ρ,γ)−Lnp+1np+1(ρ,γ)]1p, |
I2=[γ∫ρ(ω−ρ)ωnpdt]1p=[γ∫ρ(ωnp+1−ρωnp)dω]1p=(γ−ρ)1p[(γnp+2−ρnp+2(γ−ρ)(np+2))−ρ(γnp+1−ρnp+1(γ−ρ)(np+1))]1p=(γ−ρ)1p[Lnp+1np+1(ρ,γ)−ρLnpnp(ρ,γ)]1p, |
I3=γ∫ρ(γ−ω)(ω−ρ)sdω=(γ−ω)(ω−ρ)s+1s+1|γρ+γ∫ρ(ω−ρ)s+1s+1dω=(γ−ρ)s+2(s+1)(s+2), |
I4=γ∫ρ(γ−ω)s+1dω=(γ−ρ)s+2s+2,I5=γ∫ρ(ω−ρ)s+1dω=(γ−ρ)s+2s+2,I6=γ∫ρ(ω−ρ)(γ−ω)sdω=(ω−ρ)(γ−ω)s+1(s+1)|γρ+γ∫ρ(γ−ω)s+1(s+1)dω=(γ−ρ)s+2(s+1)(s+2). |
Substituting integrals I1,I2,I3,I4,I5,I6 in inequality (2.2) we have,
|n−1∑ν=0(−1)ν(χ(ν)(γ)γν+1−χ(ν)(ρ)ρν+1(ν+1)!)−γ∫ρχ(ω)dω|≤1n!(γ−ρ)((γ−ρ)1p[γLnpnp(ρ,γ)−Lnp+1np+1(ρ,γ)]1p[(γ−ρ)2(|χn(γ)|q(s+2)(s+1)+m|χn(ρ)|q(s+2))]1q+(γ−ρ)1p[Lnp+1np+1(ρ,γ)−ρLnpnp(ρ,γ)]1p[(γ−ρ)2(|χn(γ)|q(s+2)+m|χn(ρ)|q(s+1)(s+2))]1q) |
=(γ−ρ)1p−1+2qn!([γLnpnp(ρ,γ)−Lnp+1np+1(ρ,γ)]1p[|χn(γ)|q(s+2)(s+1)+m|χn(ρ)|q(s+2)]1q+[Lnp+1np+1(ρ,γ)−ρLnpnp(ρ,γ)]1p[|χn(γ)|q(s+2)+m|χn(ρ)|q(s+1)(s+2)]1q) |
=1n!(γ−ρ)1q([γLnpnp(ρ,γ)−Lnp+1np+1(ρ,γ)]1p[|χn(γ)|q(s+2)(s+1)+m|χn(ρ)|q(s+2)]1q+[Lnp+1np+1(ρ,γ)−ρLnpnp(ρ,γ)]1p[|χn(γ)|q(s+2)+m|χn(ρ)|q(s+1)(s+2)]1q). |
which is required inequality (2.1).
For n=1 inequality (2.1) becomes,
|(χ(γ)γ−χ(ρ)ργ−ρ)−1γ−ργ∫ρχ(ω)dω|≤(γ−ρ)1q−1([γLpp(ρ,γ)−Lp+1p+1(ρ,γ)]1p[|χ′(γ)|q(s+1)(s+2)+m|χ′(ρ)|(s+2)q]1q+[Lp+1p+1(ρ,γ)−ρLpp(ρ,γ)]1p[m|χ′(ρ)|q(s+1)(s+2)+|χ′(γ)|(s+2)q]1q). | (2.3) |
Remark 2.2. For s=1 and m=1 our resulting inequality (2.1) becomes the inequality (2) of [5].
Theorem 2.3. For n∈N, let χ:U⊆(0,∞)→R be n-times differentiable mapping on U∘, where, ρ,γ∈U∘, ρ<γ, χ(n)∈L[ρ,γ] and |χ(n)|q for q>1, is (s,m)-convex on interval [ρ,γ] then following inequality holds
|n−1∑ν=0(−1)ν(χ(ν)(γ)γν+1−χ(ν)(ρ)ρν+1(ν+1)!)−γ∫ρχ(ω)dω|≤1s1qn!(12)1p(γ−ρ)2p−1((|χ(n)(γ)|q(γ−ρ)s−1[−Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)−ργLnqnq(ρ,γ)]+m|χ(n)(ρ)|q(γ−ρ)s−1[Lnq+2nq+2(ρ,γ)−2γLnq+1nq+1(ρ,γ)+γ2Lnqnq(ρ,γ)])1q+(|χ(n)(γ)|q(γ−ρ)s−1[Lnq+2nq+2(ρ,γ)−2ρLnq+1nq+1(ρ,γ)+ρ2Lnqnq(ρ,γ)]+m|χ(n)(ρ)|q(γ−ρ)s−1[−Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)−ργLnqnq(ρ,γ)])1q). | (2.4) |
Proof. Since |χ(n)|q for q>1 is (s,m)-convex on [ρ,γ], by using Lemma 1.4 and Hölder-İşcan inequality (1.2), since s∈(0,1], this fact can be used for ω,ρ,γ∈U⊆(0,∞),
(ω−ρ)s<(ω−ρ)s,(γ−ω)s<(γ−ω)s|n−1∑ν=0(−1)ν(χ(ν)(γ)γν+1−χ(ν)(ρ)ρν+1(ν+1)!)−γ∫ρχ(ω)dω|≤1n!γ∫ρ1.ωn|χ(n)(ω)|dω,≤1n!1(γ−ρ)([(γ∫ρ(γ−ω)dω)1p(γ∫ρ(γ−ω)ωnq|χ(n)(ω)|qdω)1q]+[(γ∫ρ(ω−ρ)dω)1p(γ∫ρ(ω−ρ)ωnq|χ(n)(ω)|qdω)1q]),≤1n!1(γ−ρ)(γ∫ρ(γ−ω)dω)1p(γ∫ρ(γ−ω)ωnq[(ω−ργ−ρ)s|χn(γ)|q+m(γ−ωγ−ρ)s|χn(ρ)|q]dt)1q+1n!1(γ−ρ)(γ∫ρ(ω−ρ)dt)1p(γ∫ρ(ω−ρ)ωnq[(ω−ργ−ρ)s|χn(γ)|q+m(γ−ωγ−ρ)s|χn(ρ)|q]dx)1q,≤1s1qn!1(γ−ρ)(γ∫ρ(γ−ω)dω)1p(γ∫ρ(γ−ω)ωnq[(ω−ρ)(γ−ρ)s|χn(γ)|q+m(γ−ω)(γ−ρ)s|χn(ρ)|q]dω)1q+1s1qn!1(γ−ρ)(γ∫ρ(ω−ρ)dω)1p(γ∫ρ(ω−ρ)ωnq[(ω−ρ)(γ−ρ)s|χn(γ)|q+m(γ−ω)(γ−ρ)s|χn(ρ)|q]dω)1q, I1=γ∫ρ(γ−ω)dω=(γ−ρ)22 I2=γ∫ρ(γ−ω)(ω−ρ)ωnqdω=γωnq+1nq+1−ργωnq+1nq+1−ωnq+3nq+3+ρωnq+2nq+2|γρ =−(γnq+3−ρnq+3nq+3)+ρ(γnq+2−ρnq+2nq+2)+γ(γnq+2−ρnq+2nq+2)−ργ(γnq+1−ρnq+1nq+1) =(γ−ρ)[−Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)−ργLnqnq(ρ,γ)], I3=γ∫ρ(γ−ω)2ωnqdω=γ2ωnq+1nq+1+ωnq+3nq+3−2γωnq+2nq+2|γρ =(γnq+3−ρnq+3nq+3)−2γ(γnq+2−ρnq+2nq+2)+γ2(γnq+1−ρnq+1nq+1) =(γ−ρ)[Lnq+2nq+2(ρ,γ)−2γLnq+1nq+1(ρ,γ)+γ2Lnqnq(ρ,γ)], I4=γ∫ρ(ω−ρ)2ωnqdω=ωnq+3nq+3+ρ2ωnq+1nq+1−2ρωnq+2nq+2|γρ =(γnq+3−ρnq+3nq+3)+ρ2(γnq+1−ρnq+1nq+1)−2ρ(γnq+2−ρnq+2nq+2) =(γ−ρ)[Lnq+2nq+2(ρ,γ)+ρ2Lnqnq(ρ,γ)−2ρLnq+1nq+1(ρ,γ)]. | (2.5) |
Substituting integrals I1,I2,I3,I4,I5,I6 in inequality (2.5) we have,
|n−1∑ν=0(−1)ν(χ(ν)(γ)γν+1−χ(ν)(ρ)ρν+1(ν+1)!)−γ∫ρχ(ω)dω|≤1s1qn!(12)1p(γ−ρ)2p−1×((|χ(n)(γ)|q(γ−ρ)s[(γ−ρ)(−Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)−ργLnqnq(ρ,γ))]+m|χ(n)(ρ)|q(γ−ρ)s[(γ−ρ)(Lnq+2nq+2(ρ,γ)−2γLnq+1nq+1(ρ,γ)+γ2Lnqnq(ρ,γ))])1q+(|χ(n)(γ)|q(γ−ρ)s[(γ−ρ)(Lnq+2nq+2(ρ,γ)−2ρLnq+1nq+1(ρ,γ)+ρ2Lnqnq(ρ,γ))]+m|χ(n)(ρ)|q(γ−ρ)s[(γ−ρ)(−Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)−ργLnqnq(ρ,γ))])1q), |
=1s1qn!(12)1p(γ−ρ)2p−1×((|χ(n)(γ)|q(γ−ρ)s−1[−Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)−ργLnqnq(ρ,γ)]+m|χ(n)(ρ)|q(γ−ρ)s−1[Lnq+2nq+2(ρ,γ)−2γLnq+1nq+1(ρ,γ)+γ2Lnqnq(ρ,γ)])1q+(|χ(n)(γ)|q(γ−ρ)s−1[Lnq+2nq+2(ρ,γ)−2ρLnq+1nq+1(ρ,γ)+ρ2Lnqnq(ρ,γ)]+m|χ(n)(ρ)|q(γ−ρ)s−1[−Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)−ργLnqnq(ρ,γ)])1q). |
For n=1, Theorem2.3 reduced to the inequality
|γχ(γ)−ρχ(ρ)(γ−ρ)−1(γ−ρ)γ∫ρχ(ω)dω|≤1s1q(12)1p(γ−ρ)2p−2((|χ(1)(γ)|q(γ−ρ)s−1[−Lq+2q+2(ρ,γ)+(ρ+γ)Lq+1q+1(ρ,γ)−ργLqq(ρ,γ)]+m|χ(1)(ρ)|(γ−ρ)s−1q[Lq+2q+2(ρ,γ)−2γLq+1q+1(ρ,γ)+γ2Lqq(ρ,γ)])1q+(|χ(1)(γ)|(γ−ρ)s−1q[Lq+2q+2(ρ,γ)−2ρLq+1q+1(ρ,γ)+ρ2Lqq(ρ,γ)]+m|χ(1)(ρ)|(γ−ρ)s−1q[−Lq+2q+2(ρ,γ)+(ρ+γ)Lq+1q+1(ρ,γ)−ργLqq(ρ,γ)])1q). | (2.6) |
Remark 2.4. For s=1 and m=1 our resulting inequality (2.4) becomes the inequality (6) of [5].
Theorem 2.5. If function χ:[0,b]⟶R, b>0 is a (s, m)-convex function in the second sense where (s,m)∈(0,1]2, holds provided that all ρ,γ∈[0,b] and ς∈[0,1], then
2sχ(ρ+mγ2)≤[1mγ−ρmγ∫ρχ(ω)dω+m2mγ−ργ∫ρmχ(l)dl]≤χ(ρ)+mχ(γ)s+1+χ(γ)+mχ(ρm2)s+1. | (2.7) |
Proof. A function χ:[0,b]⟶R, b>0 is said to be a (s,m)-convex function in the second sense where s,m∈(0,1]2, if
χ(ςρ+m(1−ς)γ)≤ςsχ(ρ)+m(1−ς)sχ(γ), |
holds provided that all ρ,γ∈[0,b] and ς∈[0,1].
Integrating w.r.t ς on [0,1],
1∫0χ(ςρ+m(1−ς)γ)dς≤1∫0ςsχ(ρ)dς+1∫0m(1−ς)sχ(γ)dς,=ςs+1s+1|10χ(ρ)−mχ(γ)(1−ς)s+1s+1|10=χ(ρ)+mχ(γ)s+1. 1∫0χ(ςρ+m(1−ς)γ)dς≤χ(ρ)+mχ(γ)s+1. | (2.8) |
and
χ(ςγ+m(1−ς)ρm2)≤ςsχ(γ)+m(1−ς)sχ(ρm2),1∫0χ(ςγ+m(1−ς)ρm2)dς≤χ(γ)+mχ(ρm2)s+1. | (2.9) |
As χ is (s,m)-convex,
χ(ρ+mγ2)=χ(ςρ+(1−ς)mγ2+m.(1−ς)ρm+ςγ2)≤(12)sχ(ςρ+(1−ς)γm)+m(12)sχ(ςγ+(1−ς)ρm), |
Integrating w.r.t ς over [0,1] and by using (2.8) and (2.9) we get,
2sχ(ρ+mγ2)≤1∫0(χ(ςρ+(1−ς)γm)dς+m1∫0χ(ςγ+(1−ς)ρm)dς≤χ(ρ)+mχ(γ)s+1+χ(γ)+mχ(ρm2)s+1. | (2.10) |
Substituting in first integral,
ςρ+(1−ς)γm=ω,
1∫0χ(ςρ+(1−ς)mγ)dς=1γm−ργm∫ρχ(ω)dω. | (2.11) |
Substituting in the second integral,
ςγ+(1−ς)ρm=l,
1∫0χ(ςγ+(1−ς)ρm)dς=mγm−ργ∫ρmχ(l)dl, | (2.12) |
Using (2.11) and (2.12) in (2.10) required inequality (2.7) obtained.
Remark 2.6. For s,m=1 inequality (2.7) becomes classical Hadamard inequality for convex functions.
Theorem 2.7. For n∈N, let χ:U⊆(0,∞)→R be n-times differentiable mapping on U∘, where, ρ,γ∈U∘, ρ<γ and χ(n)∈L[ρ,γ] and |χ(n)|q for q>1 is (s, m)-concave on interval [ρ,mγ], then
|n−1∑ν=0(−1)ν(χ(ν)(γ)γν+1−χ(ν)(ρ)ρν+1(ν+1)!)−mγ∫ρχ(ω)dω|≤2sq(mγ−ρ)1q|χ(n)(ρ+mγ2)|n!((γLnpnp(ρ,mγ)−Lnp+1np+1(ρ,mγ))1p+(Lnp+1np+1(ρ,mγ)−ρLnpnp(ρ,mγ))1p). | (2.13) |
Proof. |χ(n)|q for q>1 is (s,m)-concave then by using Theorem 2.5 we have,
|χ(n)(ρ)|q+m|χ(n)(γ)|qs+1+|χ(n)(γ)|q+m|χ(n)(ρm2)|qs+1−m2(mγ−ρ)γ∫ρm|χ(n)(l)|qdl≤1(mγ−ρ)mγ∫ρ|χ(n)(ω)|qdω≤2s|χ(n)(ρ+mγ2)|q, |
mγ∫ρ|χ(n)(ω)|qdω≤2s(mγ−ρ)|χ(n)(ρ+mγ2)|q, |
1(mγ−ρ)γm∫ρ(γ−ω)|χ(n)(ω)|qdω≤γm∫ρ|χ(n)(ω)|qdω≤2s(mγ−ρ)|χ(n)(ρ+mγ2)|q, |
1(mγ−ρ)γm∫ρ(γ−ω)|χ(n)(ω)|qdω≤γm∫ρ|χ(n)(ω)|qdω≤2s(mγ−ρ)|χ(n)(ρ+mγ2)|q. |
Using Lemma 1.4 and Hölder-Îşcan inequality (1.2),
|n−1∑ν=0(−1)ν(χ(ν)(γ)γν+1−χ(ν)(ρ)ρν+1(ν+1)!)−γm∫ρχ(ω)dω|≤1n!γm∫ρωn|χ(n)(ω)|dω, ≤1n!1γ−ρ{(γm∫ρ(γ−ω)ωnpdω)1p(mγ∫ρ(γ−ω)|χn(ω)|qdω)1q+(γm∫ρ(ω−ρ)ωnpdω)1p(mγ∫ρ(ω−ρ)|χn(ω)|qdω)1q}, ≤1n!1γ−ρ((γm∫ρ(γ−ω)ωnpdω)1p(2s(mγ−ρ)2|χ(n)(ρ+mγ2)|q)1q+(γm∫ρ(ω−ρ)ωnpdω)1p(2s(mγ−ρ)2|χ(n)(ρ+mγ2)|q)1q), I1=(γm∫ρ(γ−ω)ωnpdω)1p=(γωnp+1np+1|γmρ−ωnp+2np+2|γmρ)1p =(mγ−ρ)1p(γLnpnp(ρ,mγ)−Lnp+1np+1(ρ,mγ))1p, I2=(γm∫ρ(ω−ρ)ωnpdω)1p=(ωnp+2np+2|γmρ−ρωnp+1np+1|γmρ)1p =(mγ−ρ)1p(Lnp+1np+1(ρ,mγ)−ρLnpnp(ρ,mγ))1p. | (2.14) |
Substituting integrals I1,I2 in inequality (2.14) required inequality (2.13) is obtained.
For n=1 inequality (2.13) becomes,
|χ(γ)γ−ρχ(ρ)(γ−ρ)−1(γ−ρ)γm∫ρχ(ω)dω|≤2sq(mγ−ρ)1q|χ(1)(ρ+γ2)|1!((γLpp(ρ,mγ)−Lp+1p+1(ρ,mγ))1p+(Lp+1p+1(ρ,mγ)−ρLpp(ρ,mγ))1p). | (2.15) |
Remark 2.8. For s=1 and m=1 our resulting inequality becomes the inequality obtained in Theorem 4 of [5].
Proposition 2.9. Let ρ,γ∈(0,∞), where ρ<γ, q>1, n,i∈N with i≥n,
|Lii(ρ,γ)[(i+1)∑n−1ν=0(−1)νP(i,ν)(ν+1)!−1]|≤1n!(γ−ρ)1q−1×([γLnpnp(ρ,γ)−Lnp+1np+1(ρ,γ)]1p(γ(i−n)q(s+1)(s+2)+mρ(i−n)q(s+2))1q+[Lnp+1np+1(ρ,γ)−ρLnpnp(ρ,γ)]1p(mρ(i−n)q(s+1)(s+2)+γ(i−n)q(s+2))1q), | (2.16) |
where
P(i,n)={i(i−1)...(i−n+1),i>nn!,i=n1,n=0}. |
Proof. Let
χ(ω)=ωi,|χ(n)(ω)|q=|P(i,n)ωi−n|q |
Let
g(ς)=|P(i,n)(ςρ+m(1−ς)γ|(i−n)q−|P(i,n)ςsρ|(i−n)q−|mP(i,n)(1−ς)sγ|(i−n)q, |
g″(ς)=P(i,n)((i−n)q)((i−n)q−1)(ςρ+m(1−ς)γ)(i−n)q−2(ρ−mγ)2−s(s−1)ςs−2P(i,n)ρ(i−n)q−ms(s−1)(1−ς)s−2P(i,n)γ(i−n)q, |
g″(ς)≥0 means g is convex and g(1)=g(0)=0, which omplies g≤0, hence
|P(i,n)(ςρ+m(1−ς)γ)|(i−n)q≤|P(i,n)ςsρ|(i−n)q+|mP(i,n)(1−ς)sγ)|(i−n)q. |
By using Theorem 2.1 for |χn(ω)|q which is (s,m)–convex for s,m∈(0,1]2 inequality (2.16) obtained.
Remark 2.10. For s,m=1 inequality (2.16) becomes inequality (3) of [5].
Example 2.11. Taking i=2, n=1, p=q=2 in Proposition 2.9, the following is valid:
2A(ρ2,γ2)+G2(ρ,γ)≤(32√6)([A(3ρ2,γ2)+G2(ρ,γ)]12(γ2(s+1)(s+2)+mρ2(s+2))12+[A(ρ2,3γ2)+G2(ρ,γ)]12(mρ2(s+1)(s+2)+γ2(s+2))12), |
where A and G are classical arithmetic and geometric means, respectively.
Proposition 2.12. Let ρ,γ∈(0,∞), with, ρ<γ, q>1 and n∈N,
1≤(γ−ρ)1q−1([γLpp(ρ,γ)−Lp+1p+1(ρ,γ)]1p[(γ−q(s+1)(s+2)+mρ−q(s+2))]1q+[Lp+1p+1(ρ,γ)−ρLpp(ρ,γ)]1p[(mρ−q(s+1)(s+2)+γ−q(s+2))]1q), | (2.17) |
where L is classical logarithmic mean.
Proof.
χ(ω)=lnω,|χ(1)(ω)|q=|ω−1|q |
Let
g(ς)=|(ςρ+m(1−ς)γ|−q−|ςsρ|−q−|m(1−ς)sγ|−q |
g″(ς)=(−q)(−q−1)(ςρ+m(1−ς)γ)−q−2(ρ−mγ)2−s(s−1)ςs−2ρ−q−ms(s−1)(1−ς)s−2γ−q, |
g″(ς)≥0 means g is convex and g(1)=g(0)=0 which implies g≤0 as
|(ςρ+m(1−ς)γ|−q≤|ςsρ|−q+|m(1−ς)sγ|−q. |
So |χ(1)(ω)|q is (s,m)-convex. Then by using inequality (2.3) required inequality (2.17) obtained.
Remark 2.13. For s,m=1 inequality (2.17) becomes (4) of [5].
Example 2.14. For n=1 and p=q=2, Proposition 2.12 gives:
1≤1√6([A(3ρ2,γ2)+G2(ρ,γ)]1p[(γ−2(s+1)(s+2)+mρ−2(s+2))]12+[A(ρ2,3γ2)+G2(ρ,γ)]1p[(mρ−2(s+1)(s+2)+γ−2(s+2))]12). |
Proposition 2.15. Let ρ,γ∈(0,∞), ρ<γ, q>1, i∈(−∞,0]∪[1,∞)∖{−2q,−q}
then
Liq+1iq+1(ρ,γ)≤(γ−ρ)1q−1([γLpp(ρ,γ)−Lp+1p+1(ρ,γ)]1p[(γi(s+1)(s+2)+mρi(s+2))]1q+[Lp+1p+1(ρ,γ)−ρLpp(ρ,γ)]1p[(mρi(s+1)(s+2)+γi(s+2))]1q). | (2.18) |
Proof.
χ(t)=qi+qωiq+1,|χ′(ω)|q=ωi |
Let
g(ς)=|(ςρ+m(1−ς)γ|i−|ςsρ|i−|m(1−ς)sγ|i, |
g″(ς)=(i)(i−1)(ςρ+m(1−ς)γ)i−2(ρ−mγ)2−s(s−1)ςs−2ρi−ms(s−1)(1−ς)s−2γi, |
g″(ς)≥0 and g(1)=g(0) so g≤0 and |χ′(ω)|q is (s,m)-convex, by using inequality (2.3) we have (2.18).
Remark 2.16. For s,m=1 inequality (2.18) becomes (5) of [5].
Example 2.17. For i=2 and p=q=2 Proposition 2.15 reduced to
2A(ρ2,γ2)+G2(ρ,γ)≤(3√6)([A(3ρ2,γ2)+G2(ρ,γ)]12[(γ2(s+1)(s+2)+mρ2(s+2))]12+[A(ρ2,3γ2)+G2(ρ,γ)]12[(mρ2(s+1)(s+2)+γ2(s+2))]12). | (2.19) |
Proposition 2.18. Let ρ,γ∈(0,∞) with ρ<γ, q>1 and n∈N then we have
×|Lii(ρ,γ)[n−1∑ν=0(−1)νP(i,ν)(ν+1)!−1]|≤P(i,n)s1qn!(12)1p(γ−ρ)2p−1(γ(i−n)q(γ−ρ)s−1[−Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)−ργLnqnq(ρ,γ)]+mρ(i−n)q(γ−ρ)s−1[Lnq+2nq+2(ρ,γ)−2γLnq+1nq+1(κ,μ)+μ2Lnqnq(ρ,γ)])1q+P(i,n)s1qn!(12)1p(γ−ρ)2p−1(γ(i−n)q(γ−ρ)s−1[Lnq+2nq+2(ρ,γ)−2ρLnq+1nq+1(ρ,γ)+ρ2Lnqnq(ρ,γ)]+mρ(i−n)q(γ−ρ)s−1[−Lnq+2nq+2(ρ,γ)+(ρ+γ)Lnq+1nq+1(ρ,γ)−ργLnqnq(ρ,γ)])1q. | (2.20) |
Proof. Let,
χ(ω)=ωi,|χ(n)(ω)|q=[P(i,n)ωi−n]q |
As |χn(ω)|q is (s,m)-convex on (0,∞), therefore by using Theorem 2.3 required inequality (2.20) is obtained.
Remark 2.19. For s,m=1 inequality (2.20) becomes inequality obtained in Proposition 4 of [5].
Proposition 2.20. Let ρ,γ∈(0,∞) with ρ<γ q>1 and n∈N then we have,
1≤(γ−ρ)2p−2s1q.21p((γ−q(γ−ρ)s−1[−Lq+2q+2(ρ,γ)+(ρ+γ)Lq+1q+1(ρ,γ)−ργLqq(ρ,γ)]+mρ−q(γ−ρ)s−1[Lq+2q+2(ρ,γ)−2γLq+1q+1(ρ,γ)+γ2Lqq(ρ,γ)])1q+(γ−q(γ−ρ)s−1[Lq+2q+2(ρ,γ)−2ρLq+1q+1(ρ,γ)+ρ2Lqq(ρ,γ)]+mρ−q(γ−ρ)s−1[−Lq+2q+2(ρ,γ)+(ρ+γ)Lq+1q+1(ρ,γ)−ργLqq(ρ,γ)])1q), | (2.21) |
Proof.
χ(ω)=lnω,|χ(1)(ω)|q=[ω−1]q |
As |χ(1)(ω)|q is (s,m)–convex, therefore by using inequality (2.6) required (2.21) obtained.
Remark 2.21. For s,m=1 inequality (2.21) becomes inequality obtained in Proposition 5 of [5].
Proposition 2.22. Let ρ,γ∈(0,∞) with ρ<γ q>1 and i∈(−∞,0]∖{−2q,q}, then
Liq+1iq+1(ρ,γ)≤(γ−ρ)2p−2s1q.21p((γi(γ−ρ)s−1[−Lnq+2q+2(ρ,γ)+(ρ+γ)Lq+1q+1(ρ,γ)−ργLqq(ρ,γ)]+mρi(γ−ρ)s−1[Lq+2q+2(ρ,γ)−2γLq+1q+1(ρ,γ)+γ2Lqq(ρ,γ)])1q+(γi(γ−ρ)s−1[Lq+2q+2(ρ,γ)−2ρLq+1q+1(ρ,γ)+ρ2Lqq(ρ,γ)]+mρm(γ−ρ)s−1[−Lq+2q+2(ρ,γ)+(ρ+γ)Lq+1q+1(ρ,γ)−ργLqq(ρ,γ)])1q). | (2.22) |
Proof.
χ(ω)=qi+qωiq+1|χ′(ω)|q=ωi |
|χ′(w)|q is (s,m)-convex by using inequality (2.6) required (2.22) obtained.
For i=1 inequality (2.22) becomes,
L1q+11q+1(ρ,γ)≤(γ−ρ)2p−2s1q.21p((γ1(γ−ρ)s−1[−Lq+2q+2(ρ,γ)+(ρ+γ)Lq+1q+1(ρ,γ)−ργLqq(ρ,γ)]+mρ1(γ−ρ)s−1[Lq+2q+2(ρ,γ)−2γLq+1q+1(ρ,γ)+γ2Lqq(ρ,γ)])1q+(γ1(γ−ρ)s−1[Lq+2q+2(ρ,γ)−2ρLq+1q+1(ρ,γ)+ρ2Lqq(ρ,γ)]+mρ1(γ−ρ)s−1[−Lq+2q+2(ρ,γ)+(ρ+γ)Lq+1q+1(ρ,γ)−ργLqq(ρ,γ)])1q). | (2.23) |
Remark 2.23. For s,m=1 inequality (2.22) becomes inequality obtained in Proposition 6 of [5].
Proposition 2.24. Let ρ,γ∈(0,∞) with ρ<γ, q>1 and i∈[0,1] we have,
Liq+1iq+1(ρ,γ)≤2sq(mγ−ρ)1q1!Aiq(ρ,γ)((γLpp(ρ,mγ)−Lp+1p+1(ρ,mγ))1p+(Lp+1p+1(ρ,mγ)−ρLpp(ρ,mγ))1p). | (2.24) |
Proof.
χ(ω)=qi+qωiq+1,|χ′(ω)|q=ωi. |
As |χ′(ω)|q is (s,m)-concave by using inequality (2.15) we obtain required inequality (2.24).
Remark 2.25. For s,m=1 inequality (2.24) becomes the inequality obtained in Proposition 9 of [5].
In this paper, Hölder-Isçan inequality is utilized to prove Hermite-Hadamard type inequalities for n-times differentiable (s,m)-convex functions. The method is adequate and provide many generalizations of existing results as shown in remarks. Moreover, many other inequalities can be generalized for other types of convex functions.
This research received funding support from the NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, (grant number B05F650018)
The authors declare no conflict of interest.
[1] | Berx G, van Roy F (2009) Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol 1: a003129. |
[2] |
Ranscht B, Dours-Zimmermann MT (1991) T-cadherin, a novel cadherin cell adhesion molecule in the nervous system lacks the conserved cytoplasmic region. Neuron 7: 391-402. doi: 10.1016/0896-6273(91)90291-7
![]() |
[3] |
Pfaff D, Philippova M, Kyriakakis E, et al. (2011) Paradoxical effects of T-cadherin on squamous cell carcinoma: up- and down-regulation increase xenograft growth by distinct mechanisms. J Pathol 225: 512-524. doi: 10.1002/path.2900
![]() |
[4] | Fredette BJ, Ranscht B (1994) T-cadherin expression delineates specific regions of the developing motor axon-hindlimb projection pathway. J Neurosci 14: 7331-7346. |
[5] |
Philippova M, Joshi MB, Kyriakakis E, et al. (2009) A guide and guard: the many faces of T-cadherin. Cell Signal 21: 1035-1044. doi: 10.1016/j.cellsig.2009.01.035
![]() |
[6] |
Rubina KA, Surkova EI, Semina EV, et al. (2015) T-Cadherin Expression in Melanoma Cells Stimulates Stromal Cell Recruitment and Invasion by Regulating the Expression of Chemokines, Integrins and Adhesion Molecules. Cancers (Basel) 7: 1349-1370. doi: 10.3390/cancers7030840
![]() |
[7] | Wyder L, Vitaliti A, Schneider H, et al. (2000) Increased expression of H/T-cadherin in tumor-penetrating blood vessels. Cancer Res 60: 4682-4688. |
[8] |
Dames SA, Bang E, Haussinger D, et al. (2008) Insights into the low adhesive capacity of human T-cadherin from the NMR structure of Its N-terminal extracellular domain. J Biol Chem 283: 23485-23495. doi: 10.1074/jbc.M708335200
![]() |
[9] |
Teng MS, Hsu LA, Wu S, et al. (2015) Association of CDH13 genotypes/haplotypes with circulating adiponectin levels, metabolic syndrome, and related metabolic phenotypes: the role of the suppression effect. PLoS One 10: e0122664. doi: 10.1371/journal.pone.0122664
![]() |
[10] |
Org E, Eyheramendy S, Juhanson P, et al. (2009) Genome-wide scan identifies CDH13 as a novel susceptibility locus contributing to blood pressure determination in two European populations. Hum Mol Genet 18: 2288-2296. doi: 10.1093/hmg/ddp135
![]() |
[11] | Angst BD, Marcozzi C, Magee AI (2001) The cadherin superfamily: diversity in form and function. J Cell Sci 114: 629-641. |
[12] |
Sato M, Mori Y, Sakurada A, et al. (1998) The H-cadherin (CDH13) gene is inactivated in human lung cancer. Hum Genet 103: 96-101. doi: 10.1007/s004390050790
![]() |
[13] | Behrens J, Lowrick O, Klein-Hitpass L, et al. (1991) The E-cadherin promoter: functional analysis of a G.C-rich region and an epithelial cell-specific palindromic regulatory element. Proc Natl Acad Sci U S A 88: 11495-11499. |
[14] | Jarrard DF, Paul R, van Bokhoven A, et al. (1997) P-Cadherin is a basal cell-specific epithelial marker that is not expressed in prostate cancer. Clin Cancer Res 3: 2121-2128. |
[15] |
Bromhead C, Miller JH, McDonald FJ (2006) Regulation of T-cadherin by hormones, glucocorticoid and EGF. Gene 374: 58-67. doi: 10.1016/j.gene.2006.01.013
![]() |
[16] |
Niermann T, Schmutz S, Erne P, et al. (2003) Aryl hydrocarbon receptor ligands repress T-cadherin expression in vascular smooth muscle cells. Biochem Biophys Res Commun 300: 943-949. doi: 10.1016/S0006-291X(02)02970-4
![]() |
[17] |
Ellmann L, Joshi MB, Resink TJ, et al. (2012) BRN2 is a transcriptional repressor of CDH13 (T-cadherin) in melanoma cells. Lab Invest 92: 1788-1800. doi: 10.1038/labinvest.2012.140
![]() |
[18] |
Kuzmenko YS, Stambolsky D, Kern F, et al. (1998) Characteristics of smooth muscle cell lipoprotein binding proteins (p105/p130) as T-cadherin and regulation by positive and negative growth regulators. Biochem Biophys Res Commun 246: 489-494. doi: 10.1006/bbrc.1998.8645
![]() |
[19] |
Ciatto C, Bahna F, Zampieri N, et al. (2010) T-cadherin structures reveal a novel adhesive binding mechanism. Nat Struct Mol Biol 17: 339-347. doi: 10.1038/nsmb.1781
![]() |
[20] |
Vestal DJ, Ranscht B (1992) Glycosyl phosphatidylinositol--anchored T-cadherin mediates calcium-dependent, homophilic cell adhesion. J Cell Biol 119: 451-461. doi: 10.1083/jcb.119.2.451
![]() |
[21] |
Sacristan MP, Vestal DJ, Dours-Zimmermann MT, et al. (1993) T-cadherin 2: molecular characterization, function in cell adhesion, and coexpression with T-cadherin and N-cadherin. J Neurosci Res 34: 664-680. doi: 10.1002/jnr.490340610
![]() |
[22] |
Harrison OJ, Bahna F, Katsamba PS, et al. (2010) Two-step adhesive binding by classical cadherins. Nat Struct Mol Biol 17: 348-357. doi: 10.1038/nsmb.1784
![]() |
[23] |
Winterhalter PR, Lommel M, Ruppert T, et al. (2013) O-glycosylation of the non-canonical T-cadherin from rabbit skeletal muscle by single mannose residues. FEBS Lett 587: 3715-3721. doi: 10.1016/j.febslet.2013.09.041
![]() |
[24] |
Stambolsky DV, Kuzmenko YS, Philippova MP, et al. (1999) Identification of 130 kDa cell surface LDL-binding protein from smooth muscle cells as a partially processed T-cadherin precursor. Biochim Biophys Acta 1416: 155-160. doi: 10.1016/S0005-2736(98)00218-1
![]() |
[25] |
Mavroconstanti T, Johansson S, Winge I, et al. (2013) Functional properties of rare missense variants of human CDH13 found in adult attention deficit/hyperactivity disorder (ADHD) patients. PLoS One 8: e71445. doi: 10.1371/journal.pone.0071445
![]() |
[26] |
Wang Y, Lam KS, Yau MH, et al. (2008) Post-translational modifications of adiponectin: mechanisms and functional implications. Biochem J 409: 623-633. doi: 10.1042/BJ20071492
![]() |
[27] |
Fruebis J, Tsao TS, Javorschi S, et al. (2001) Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci U S A 98: 2005-2010. doi: 10.1073/pnas.98.4.2005
![]() |
[28] |
Pajvani UB, Hawkins M, Combs TP, et al. (2004) Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J Biol Chem 279: 12152-12162. doi: 10.1074/jbc.M311113200
![]() |
[29] |
Scherer PE, Williams S, Fogliano M, et al. (1995) A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 270: 26746-26749. doi: 10.1074/jbc.270.45.26746
![]() |
[30] |
Yamauchi T, Kamon J, Ito Y, et al. (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423: 762-769. doi: 10.1038/nature01705
![]() |
[31] |
Yamauchi T, Kadowaki T (2013) Adiponectin receptor as a key player in healthy longevity and obesity-related diseases. Cell Metab 17: 185-196. doi: 10.1016/j.cmet.2013.01.001
![]() |
[32] |
Hebbard L, Ranscht B (2014) Multifaceted roles of adiponectin in cancer. Best Pract Res Clin Endocrinol Metab 28: 59-69. doi: 10.1016/j.beem.2013.11.005
![]() |
[33] |
Hug C, Wang J, Ahmad NS, et al. (2004) T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc Natl Acad Sci U S A 101: 10308-10313. doi: 10.1073/pnas.0403382101
![]() |
[34] |
Hebbard LW, Garlatti M, Young LJ, et al. (2008) T-cadherin supports angiogenesis and adiponectin association with the vasculature in a mouse mammary tumor model. Cancer Res 68: 1407-1416. doi: 10.1158/0008-5472.CAN-07-2953
![]() |
[35] |
Denzel MS, Scimia MC, Zumstein PM, et al. (2010) T-cadherin is critical for adiponectin-mediated cardioprotection in mice. J Clin Invest 120: 4342-4352. doi: 10.1172/JCI43464
![]() |
[36] |
Parker-Duffen JL, Nakamura K, Silver M, et al. (2013) T-cadherin is essential for adiponectin-mediated revascularization. J Biol Chem 288: 24886-24897. doi: 10.1074/jbc.M113.454835
![]() |
[37] |
Rivero O, Sich S, Popp S, et al. (2013) Impact of the ADHD-susceptibility gene CDH13 on development and function of brain networks. Eur Neuropsychopharmacol 23: 492-507. doi: 10.1016/j.euroneuro.2012.06.009
![]() |
[38] | Fredette BJ, Miller J, Ranscht B (1996) Inhibition of motor axon growth by T-cadherin substrata. Development 122: 3163-3171. |
[39] |
Hayano Y, Zhao H, Kobayashi H, et al. (2014) The role of T-cadherin in axonal pathway formation in neocortical circuits. Development 141: 4784-4793. doi: 10.1242/dev.108290
![]() |
[40] |
Treutlein J, Cichon S, Ridinger M, et al. (2009) Genome-wide association study of alcohol dependence. Arch Gen Psychiatry 66: 773-784. doi: 10.1001/archgenpsychiatry.2009.83
![]() |
[41] |
Johnson C, Drgon T, Liu QR, et al. (2006) Pooled association genome scanning for alcohol dependence using 104,268 SNPs: validation and use to identify alcoholism vulnerability loci in unrelated individuals from the collaborative study on the genetics of alcoholism. Am J Med Genet B Neuropsychiatr Genet 141B: 844-853. doi: 10.1002/ajmg.b.30346
![]() |
[42] |
Arias-Vasquez A, Altink ME, Rommelse NN, et al. (2011) CDH13 is associated with working memory performance in attention deficit/hyperactivity disorder. Genes Brain Behav 10: 844-851. doi: 10.1111/j.1601-183X.2011.00724.x
![]() |
[43] |
Rivero O, Selten MM, Sich S, et al. (2015) Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition. Transl Psychiatry 5: e655. doi: 10.1038/tp.2015.152
![]() |
[44] | Drgonova J, Walther D, Hartstein GL, et al. (2016) Cadherin 13: human cis-regulation and selectively-altered addiction phenotypes and cerebral cortical dopamine in knockout mice. Mol Med 22. |
[45] | Shen LH, Liao MH, Tseng YC (2012) Recent advances in imaging of dopaminergic neurons for evaluation of neuropsychiatric disorders. J Biomed Biotechnol 2012: 259349. |
[46] |
Poliak S, Norovich AL, Yamagata M, et al. (2016) Muscle-type Identity of Proprioceptors Specified by Spatially Restricted Signals from Limb Mesenchyme. Cell 164: 512-525. doi: 10.1016/j.cell.2015.12.049
![]() |
[47] |
Huang ZY, Wu Y, Hedrick N, et al. (2003) T-cadherin-mediated cell growth regulation involves G2 phase arrest and requires p21(CIP1/WAF1) expression. Mol Cell Biol 23: 566-578. doi: 10.1128/MCB.23.2.566-578.2003
![]() |
[48] |
Matsuda K, Fujishima Y, Maeda N, et al. (2015) Positive feedback regulation between adiponectin and T-cadherin impacts adiponectin levels in tissue and plasma of male mice. Endocrinology 156: 934-946. doi: 10.1210/en.2014-1618
![]() |
[49] |
Niermann T, Kern F, Erne P, et al. (2000) The glycosyl phosphatidylinositol anchor of human T-cadherin binds lipoproteins. Biochem Biophys Res Commun 276: 1240-1247. doi: 10.1006/bbrc.2000.3465
![]() |
[50] | Joshi MB, Philippova M, Ivanov D, et al. (2005) T-cadherin protects endothelial cells from oxidative stress-induced apoptosis. FASEB J 19: 1737-1739. |
[51] |
Joshi MB, Ivanov D, Philippova M, et al. (2007) Integrin-linked kinase is an essential mediator for T-cadherin-dependent signaling via Akt and GSK3beta in endothelial cells. FASEB J 21: 3083-3095. doi: 10.1096/fj.06-7723com
![]() |
[52] |
Philippova M, Ivanov D, Joshi MB, et al. (2008) Identification of proteins associating with glycosylphosphatidylinositol- anchored T-cadherin on the surface of vascular endothelial cells: role for Grp78/BiP in T-cadherin-dependent cell survival. Mol Cell Biol 28: 4004-4017. doi: 10.1128/MCB.00157-08
![]() |
[53] |
Kyriakakis E, Philippova M, Joshi MB, et al. (2010) T-cadherin attenuates the PERK branch of the unfolded protein response and protects vascular endothelial cells from endoplasmic reticulum stress-induced apoptosis. Cell Signal 22: 1308-1316. doi: 10.1016/j.cellsig.2010.04.008
![]() |
[54] |
Resink TJ, Kuzmenko YS, Kern F, et al. (1999) LDL binds to surface-expressed human T-cadherin in transfected HEK293 cells and influences homophilic adhesive interactions. FEBS Lett 463: 29-34. doi: 10.1016/S0014-5793(99)01594-X
![]() |
[55] |
Rubina K, Talovskaya E, Cherenkov V, et al. (2005) LDL induces intracellular signalling and cell migration via atypical LDL-binding protein T-cadherin. Mol Cell Biochem 273: 33-41. doi: 10.1007/s11010-005-0250-5
![]() |
[56] |
Kipmen-Korgun D, Osibow K, Zoratti C, et al. (2005) T-cadherin mediates low-density lipoprotein-initiated cell proliferation via the Ca(2+)-tyrosine kinase-Erk1/2 pathway. J Cardiovasc Pharmacol 45: 418-430. doi: 10.1097/01.fjc.0000157458.91433.86
![]() |
[57] |
Ivanov D, Philippova M, Tkachuk V, et al. (2004) Cell adhesion molecule T-cadherin regulates vascular cell adhesion, phenotype and motility. Exp Cell Res 293: 207-218. doi: 10.1016/j.yexcr.2003.09.030
![]() |
[58] |
Ivanov D, Philippova M, Allenspach R, et al. (2004) T-cadherin upregulation correlates with cell-cycle progression and promotes proliferation of vascular cells. Cardiovasc Res 64: 132-143. doi: 10.1016/j.cardiores.2004.06.010
![]() |
[59] |
Philippova M, Banfi A, Ivanov D, et al. (2006) Atypical GPI-anchored T-cadherin stimulates angiogenesis in vitro and in vivo. Arterioscler Thromb Vasc Biol 26: 2222-2230. doi: 10.1161/01.ATV.0000238356.20565.92
![]() |
[60] |
Frismantiene A, Pfaff D, Frachet A, et al. (2014) Regulation of contractile signaling and matrix remodeling by T-cadherin in vascular smooth muscle cells: constitutive and insulin-dependent effects. Cell Signal 26: 1897-1908. doi: 10.1016/j.cellsig.2014.05.001
![]() |
[61] |
Kostopoulos CG, Spiroglou SG, Varakis JN, et al. (2014) Adiponectin/T-cadherin and apelin/APJ expression in human arteries and periadventitial fat: implication of local adipokine signaling in atherosclerosis? Cardiovasc Pathol 23: 131-138. doi: 10.1016/j.carpath.2014.02.003
![]() |
[62] | Fujishima Y, Maeda N, Matsuda K, et al. (2017) Adiponectin association with T-cadherin protects against neointima proliferation and atherosclerosis. FASEB J. |
[63] |
Philippova M, Suter Y, Toggweiler S, et al. (2011) T-cadherin is present on endothelial microparticles and is elevated in plasma in early atherosclerosis. Eur Heart J 32: 760-771. doi: 10.1093/eurheartj/ehq206
![]() |
[64] |
Tyrberg B, Miles P, Azizian KT, et al. (2011) T-cadherin (Cdh13) in association with pancreatic beta-cell granules contributes to second phase insulin secretion. Islets 3: 327-337. doi: 10.4161/isl.3.6.17705
![]() |
[65] | Andreeva AV, Kutuzov MA (2010) Cadherin 13 in cancer. Genes Chromosomes Cancer 49: 775-790. |
[66] |
Kong DD, Yang J, Li L, et al. (2015) T-cadherin association with clinicopathological features and prognosis in axillary lymph node-positive breast cancer. Breast Cancer Res Treat 150: 119-126. doi: 10.1007/s10549-015-3302-x
![]() |
[67] |
Lee SW (1996) H-cadherin, a novel cadherin with growth inhibitory functions and diminished expression in human breast cancer. Nat Med 2: 776-782. doi: 10.1038/nm0796-776
![]() |
[68] | Toyooka KO, Toyooka S, Virmani AK, et al. (2001) Loss of expression and aberrant methylation of the CDH13 (H-cadherin) gene in breast and lung carcinomas. Cancer Res 61: 4556-4560. |
[69] |
Miki Y, Katagiri T, Nakamura Y (1997) Infrequent mutation of the H-cadherin gene on chromosome 16q24 in human breast cancers. Jpn J Cancer Res 88: 701-704. doi: 10.1111/j.1349-7006.1997.tb00439.x
![]() |
[70] |
Celebiler Cavusoglu A, Kilic Y, Saydam S, et al. (2009) Predicting invasive phenotype with CDH1, CDH13, CD44, and TIMP3 gene expression in primary breast cancer. Cancer Sci 100: 2341-2345. doi: 10.1111/j.1349-7006.2009.01333.x
![]() |
[71] | Toyooka S, Toyooka KO, Harada K, et al. (2002) Aberrant methylation of the CDH13 (H-cadherin) promoter region in colorectal cancers and adenomas. Cancer Res 62: 3382-3386. |
[72] | Wei B, Shi H, Lu X, et al. (2015) Association between the expression of T-cadherin and vascular endothelial growth factor and the prognosis of patients with gastric cancer. Mol Med Rep 12: 2075-2081. |
[73] | Hibi K, Kodera Y, Ito K, et al. (2004) Methylation pattern of CDH13 gene in digestive tract cancers. Br J Cancer 91: 1139-1142. |
[74] |
Hibi K, Nakayama H, Kodera Y, et al. (2004) CDH13 promoter region is specifically methylated in poorly differentiated colorectal cancer. Br J Cancer 90: 1030-1033. doi: 10.1038/sj.bjc.6601647
![]() |
[75] | Scarpa M, Scarpa M, Castagliuolo I, et al. (2016) Aberrant gene methylation in non-neoplastic mucosa as a predictive marker of ulcerative colitis-associated CRC. Oncotarget 7: 10322-10331. |
[76] |
Ren JZ, Huo JR (2012) Correlation between T-cadherin gene expression and aberrant methylation of T-cadherin promoter in human colon carcinoma cells. Med Oncol 29: 915-918. doi: 10.1007/s12032-011-9836-9
![]() |
[77] | Zhong Y, Delgado Y, Gomez J, et al. (2001) Loss of H-cadherin protein expression in human non-small cell lung cancer is associated with tumorigenicity. Clin Cancer Res 7: 1683-1687. |
[78] |
Brock MV, Hooker CM, Ota-Machida E, et al. (2008) DNA methylation markers and early recurrence in stage I lung cancer. N Engl J Med 358: 1118-1128. doi: 10.1056/NEJMoa0706550
![]() |
[79] |
Zhou S, Matsuyoshi N, Liang SB, et al. (2002) Expression of T-cadherin in Basal keratinocytes of skin. J Invest Dermatol 118: 1080-1084. doi: 10.1046/j.1523-1747.2002.01795.x
![]() |
[80] |
Takeuchi T, Liang SB, Matsuyoshi N, et al. (2002) Loss of T-cadherin (CDH13, H-cadherin) expression in cutaneous squamous cell carcinoma. Lab Invest 82: 1023-1029. doi: 10.1097/01.LAB.0000025391.35798.F1
![]() |
[81] |
Mukoyama Y, Zhou S, Miyachi Y, et al. (2005) T-cadherin negatively regulates the proliferation of cutaneous squamous carcinoma cells. J Invest Dermatol 124: 833-838. doi: 10.1111/j.0022-202X.2005.23660.x
![]() |
[82] | Mukoyama Y, Utani A, Matsui S, et al. (2007) T-cadherin enhances cell-matrix adhesiveness by regulating beta1 integrin trafficking in cutaneous squamous carcinoma cells. Genes Cells 12: 787-796. |
[83] |
Pfaff D, Philippova M, Buechner SA, et al. (2010) T-cadherin loss induces an invasive phenotype in human keratinocytes and squamous cell carcinoma (SCC) cells in vitro and is associated with malignant transformation of cutaneous SCC in vivo. Br J Dermatol 163: 353-363. doi: 10.1111/j.1365-2133.2010.09801.x
![]() |
[84] |
Kyriakakis E, Maslova K, Philippova M, et al. (2012) T-Cadherin is an auxiliary negative regulator of EGFR pathway activity in cutaneous squamous cell carcinoma: impact on cell motility. J Invest Dermatol 132: 2275-2285. doi: 10.1038/jid.2012.131
![]() |
[85] |
Philippova M, Pfaff D, Kyriakakis E, et al. (2013) T-cadherin loss promotes experimental metastasis of squamous cell carcinoma. Eur J Cancer 49: 2048-2058. doi: 10.1016/j.ejca.2012.12.026
![]() |
[86] |
Wang XD, Wang BE, Soriano R, et al. (2007) Expression profiling of the mouse prostate after castration and hormone replacement: implication of H-cadherin in prostate tumorigenesis. Differentiation 75: 219-234. doi: 10.1111/j.1432-0436.2006.00135.x
![]() |
[87] | Dasen B, Vlajnic T, Mengus C, et al. (2016) T-cadherin in prostate cancer: relationship with cancer progression, differentiation and drug resistance. J Pathol Clin Res 3: 44-57. |
[88] |
Thomas G, Jacobs KB, Yeager M, et al. (2008) Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet 40: 310-315. doi: 10.1038/ng.91
![]() |
[89] |
Maslova K, Kyriakakis E, Pfaff D, et al. (2015) EGFR and IGF-1R in regulation of prostate cancer cell phenotype and polarity: opposing functions and modulation by T-cadherin. FASEB J 29: 494-507. doi: 10.1096/fj.14-249367
![]() |
[90] |
Lin Y, Sun G, Liu X, et al. (2011) Clinical significance of T-cadherin tissue expression in patients with bladder transitional cell carcinoma. Urol Int 86: 340-345. doi: 10.1159/000322962
![]() |
[91] |
Lin YL, Liu XQ, Li WP, et al. (2012) Promoter methylation of H-cadherin is a potential biomarker in patients with bladder transitional cell carcinoma. Int Urol Nephrol 44: 111-117. doi: 10.1007/s11255-011-9961-6
![]() |
[92] |
Lin YL, Sun G, Liu XQ, et al. (2011) Clinical significance of CDH13 promoter methylation in serum samples from patients with bladder transitional cell carcinoma. J Int Med Res 39: 179-186. doi: 10.1177/147323001103900119
![]() |
[93] |
Lin YL, Xie PG, Ma JG (2014) Aberrant methylation of CDH13 is a potential biomarker for predicting the recurrence and progression of non muscle invasive bladder cancer. Med Sci Monit 20: 1572-1577. doi: 10.12659/MSM.892130
![]() |
[94] |
Lin YL, He ZK, Li ZG, et al. (2013) Downregulation of CDH13 expression promotes invasiveness of bladder transitional cell carcinoma. Urol Int 90: 225-232. doi: 10.1159/000345054
![]() |
[95] |
Roman-Gomez J, Castillejo JA, Jimenez A, et al. (2003) Cadherin-13, a mediator of calcium-dependent cell-cell adhesion, is silenced by methylation in chronic myeloid leukemia and correlates with pretreatment risk profile and cytogenetic response to interferon alfa. J Clin Oncol 21: 1472-1479. doi: 10.1200/JCO.2003.08.166
![]() |
[96] |
Sakai M, Hibi K, Koshikawa K, et al. (2004) Frequent promoter methylation and gene silencing of CDH13 in pancreatic cancer. Cancer Sci 95: 588-591. doi: 10.1111/j.1349-7006.2004.tb02491.x
![]() |
[97] |
Jee SH, Sull JW, Lee JE, et al. (2010) Adiponectin concentrations: a genome-wide association study. Am J Hum Genet 87: 545-552. doi: 10.1016/j.ajhg.2010.09.004
![]() |
[98] |
Choi JR, Jang Y, Kim Yoon S, et al. (2015) The Impact of CDH13 Polymorphism and Statin Administration on TG/HDL Ratio in Cardiovascular Patients. Yonsei Med J 56: 1604-1612. doi: 10.3349/ymj.2015.56.6.1604
![]() |
[99] |
Wu Y, Li Y, Lange EM, et al. (2010) Genome-wide association study for adiponectin levels in Filipino women identifies CDH13 and a novel uncommon haplotype at KNG1-ADIPOQ. Hum Mol Genet 19: 4955-4964. doi: 10.1093/hmg/ddq423
![]() |
[100] | Nicolas A, Aubert R, Bellili-Munoz N, et al. (2016) T-cadherin gene variants are associated with type 2 diabetes and the Fatty Liver Index in the French population. Diabetes Metab. |
[101] |
Chung CM, Lin TH, Chen JW, et al. (2011) A genome-wide association study reveals a quantitative trait locus of adiponectin on CDH13 that predicts cardiometabolic outcomes. Diabetes 60: 2417-2423. doi: 10.2337/db10-1321
![]() |
[102] |
Fava C, Danese E, Montagnana M, et al. (2011) A variant upstream of the CDH13 adiponectin receptor gene and metabolic syndrome in Swedes. Am J Cardiol 108: 1432-1437. doi: 10.1016/j.amjcard.2011.06.068
![]() |
[103] |
Park J, Kim I, Jung KJ, et al. (2015) Gene-gene interaction analysis identifies a new genetic risk factor for colorectal cancer. J Biomed Sci 22: 73. doi: 10.1186/s12929-015-0180-9
![]() |
[104] | Kudrjashova E, Bashtrikov P, Bochkov V, et al. (2002) Expression of adhesion molecule T-cadherin is increased during neointima formation in experimental restenosis. Histochem Cell Biol 118: 281-290. |
1. | Ammara Nosheen, Maria Tariq, Khuram Ali Khan, Nehad Ali Shah, Jae Dong Chung, On Caputo Fractional Derivatives and Caputo–Fabrizio Integral Operators via (s, m)-Convex Functions, 2023, 7, 2504-3110, 187, 10.3390/fractalfract7020187 | |
2. | Jie Li, Yong Lin, Serap Özcan, Muhammad Shoaib Saleem, Ahsan Fareed Shah, A study of Hermite-Hadamard inequalities via Caputo-Fabrizio fractional integral operators using strongly (s,m)-convex functions in the second sense, 2025, 2025, 1029-242X, 10.1186/s13660-025-03266-x |