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Abstract: Nonalcoholic fatty liver disease (NAFLD) characterizes a wide spectrum of pathological 

abnormalities ranging from simple hepatic steatosis to nonalcoholic steato-hepatitis (NASH). NAFLD 

may be associated with obesity and the metabolic syndrome. Metabolic syndrome is characterized by 

hyperglycemia and hyperinsulinemia and also contributes to NASH-associated liver fibrosis. In 

addition, the presence of reactive oxygen species (ROS), produced by metabolism in normal cells, is 

one of the most important events in both liver injury and fibrogenesis. Smoking is one of the most 

common reasons that ROS are produced in a cell. Accumulating evidence indicates that deregulation 

of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway in hepatocytes is a key molecular event 

associated with metabolic dysfunction, including NAFLD. Subsequent hepatic stellate cell (HSC) 

activation is the central event during the diseases. We review recent studies on the features of the 

PI3K/AKT pathway and discuss the functions in the signaling pathways involved in NAFLD. The 

molecular mechanisms contributing to the diseases are the subject of considerable investigation, as a 

better understanding of the pathogenesis will lead to novel therapies and effective preventions. 
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Abbreviations: 

ECM: extracellular matrix      FFA: free fatty acids  

GLUT4: glucose transporter 4      HDL: high-density lipoprotein  

HO-1: heme oxygenase-1       HSC: hepatic stellate cell  

LDL: low density lipoprotein      mTOR: mammalian target of rapamycin 

NF-κB: nuclear factor κB       NAFLD: Nonalcoholic fatty liver disease 

NASH: nonalcoholic steato-hepatitis    PDK1: phosphoinositide-dependent kinase 1  

PH: plekstrin homology        PIP2: phosphatidylinositol 4,5-bisphosphate  

PIP3: phosphatidylinositol 3,4,5-triphosphate  PI3K: phosphatidylinositol-3 kinase  

PTEN: phosphatase and tensin homologue deleted on chromosome 10 

ROS: reactive oxygen species  

TMP: heterocyclic nitrogen compound, 2,3,5,6-tetramethylpyrazine  

TNF-a: tumor necrosis factor- alpha    TSC1: tuberous sclerosis complex 1 

VEGF: vascular endothelial growth factor 

 

1. Introduction 

Nonalcoholic fatty liver diseases (NAFLD) signify a hepatic facet of metabolic syndrome, which 

is the collective broad-spectrum term for non-infectious chronic liver disease [1, 2]. To date, however, 

the precise molecular pathogenesis of NAFLD is still unclear. Disease progression in NAFLD may 

occur amidst a complex background of endocrine and metabolic derangements. These imbalances 

promote persistent subclinical activation of the innate immune system, and when coupled together 

with genetic and environmental factors, a worldwide health problem arises. Hepatocellular damage 

causes the activation of regenerative pathways as well as the proliferation of hepatic stellate cells 

(HSCs) [3]. NAFLD ranges from nonalcoholic fatty liver to nonalcoholic steato-hepatitis (NASH), 

which often precedes liver fibrosis, cirrhosis, and hepatocellular carcinoma. The hepatic inflammatory 

state of fatty liver is characterized by increased free fatty acids (FFA), which cause lipotoxicity and 

impair endothelium-dependent vasodilation, as well as lead to increased oxidative stress [4]. 

Inflammation and fibrogenesis are chief targets of NAFLD research. NAFLD is associated with obesity, 

type 2-diabetes, and metabolic syndrome [5]. In addition, reactive oxygen species (ROS), endotoxins, 

and inflammatory cytokines may result in disease development [6]. It is well known that several 

stressors, such as cigarette smoke, pollutants, and hypercholesterolemia are all risk factors for liver 

diseases [7, 8]. In particular, cigarette smoking remains a health threat for both smokers and 

nonsmokers. Secondhand smoke is more toxic than directly inhaled smoke. Recently, a new threat has 

been discovered, third hand smoke, which is the accumulation of smoke on surfaces that ages over 

time, becoming gradually much more toxic [9]. However, the clinical relevance of such findings are 

controversial. A study has shown no relationship between smoking and NAFLD [10]. In addition, it is 

also documented that NAFLD is not affected by smoking [11]. In contrast, it has been shown that 

passive smoking and heavy, active smoking are associated with prevalent NAFLD in middle-aged and 

elderly people [12]. There is also a report indicating that the combination of current smoking and 

harboring high-risk glutathione S-transferase polymorphisms is interactively associated with the risk 

of NAFLD [13]. 
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Inflammation is believed to be the dominant driver of NAFLD, and may cause the disease’s 

progression to fibrosis and subsequent cirrhosis [14]. Because phosphatidylinositol-3 kinase (PI3K) 

and serine/threonine protein kinase AKT (also known as protein kinase B) seem to activate various 

cells through regulation of the key inflammatory cytokines [15, 16], changes in the PI3K/AKT 

signaling pathway may contribute to therapeutic effects in NAFLD. In addition, the physiological 

function of PTEN (phosphatase and tensin homologue) is to dephosphorylate the second messengers 

generated by the activation of PI3K, thereby down-regulating the signaling downstream of PI3K [17]. 

Therefore, it has been suggested that PTEN is potentially involved in the development of the NAFLD 

and NASH [18]. Here, we provide an overview of research on the characterization of the regulation of 

PI3K/AKT/PTEN signaling (Figure 1) at the viewpoint of the pathogenesis of NAFLD and NASH. 

We will also interpret the current literature in an attempt to expand our understanding of the 

environmental and genetic causes of inflammation due to cigarette smoke and its effects on NAFLD 

and NASH. Intervention and therapy that alter or disrupt these mechanisms may serve to reduce the 

risk of the development of the disease, leading to better efficacy of new therapeutic approaches.  

 

Figure 1. Schematic representation of PI3K/AKT/PTEN signaling. Examples of 

molecules known to function on the regulatory pathway are shown. Note that some critical 

molecules have been omitted for clarity. 
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2. Oxidative stress is related to the pathogenesis of NAFLD and NASH 

Induction of ROS leads hepatocytes into a state of oxidative stress which, when coupled with 

cellular apoptosis, is believed to play an important role in pathogenesis of NAFLD and NASH [19, 20]. 

ROS are produced during mitochondrial oxidative metabolism, as well as during cellular response to 

inflammatory cytokines and/or infectious invasions [21]. Oxidative stress arises from the imbalance 

between excess ROS and the capability of the cell to support effective antioxidant responses. The ROS 

interact with critical molecules to initiate signaling in a variety of cellular processes, such as 

proliferation and survival via various signaling molecules including PI3K, MAP kinases, and protein 

tyrosine phosphatases [22, 23]. For example, oxidative stress can activate a series of stress pathways 

involving a family of serine/threonine kinases including AKT [24]. Therefore, oxidative stress may 

result in various disease states such as diabetes, atherosclerosis, aging, and cancer. NAFLD is 

thoroughly linked to atherosclerosis due to their common origin. Long-term exposure to cigarette 

smoke increases ROS levels and interferes with DNA repair capacity, eventually inducing oxidative 

DNA damage [25], which actually worsens the severity of NAFLD in obese rats [26]. Additionally, 

available evidence supports a prospective association between air pollutants and an increased risk for 

type 2 diabetes [27]. In particular, passive smoking is a risk factor of type 2 diabetes even in those who 

were not themselves active smokers [28]. NAFLD is highly prevalent with type 2 diabetes, likely 

reflecting the frequent occurrence of obesity and insulin resistance in type 2 diabetes [29]. 

Epidemiologic studies have shown the interactive effect of heavy cigarette smoking on the 

development of hepatocellular carcinoma. Chronic hepatocyte death can trigger excessive compensatory 

proliferation, which results in the future formation of tumors in the liver. Benzopyrene, an environmental 

agent found in cigarette smoke, causes oxidative stress and acts as an agent which triggers the death of 

liver cells [30]. Cigarette smoke also stimulates accumulation of fat in hepatocytes [31]. Smoking is 

linked to the high levels of chemical toxins, even long after vigorous smoking has occurred. Third-

hand smoke has been described as the residual smoke pollution that remains after a cigarette is 

extinguished [32]. This residual smoke reacts with nitrous acid to form specific nitrosamines, which 

are very carcinogenic [33]. In addition, the blood of the animals exposed to third-hand smoke shows 

evocatively elevated levels of triglycerides and low density lipoprotein (LDL), whereas high-density 

lipoprotein (HDL) is considerably decreased [34]. Lipid elevation of more than 5% above normal 

levels indicates that steatosis has progressed to NAFLD [35]. The hallmark of NAFLD is defined by 

the accumulation of triglycerides in more than 5% of hepatocytes. 

3. Smoking compounds modulates the PI3K/AKT/ PTEN pathway 

Exposure to the carcinogens in cigarette smoke is known to damage DNA by causing genetic 

mutations and epigenetic alterations [36]. The post-translational modifications of histones are also 

associated with carcinogenesis. Recent studies have suggested that continuous tobacco carcinogen 

exposure even enhances the selection of the epigenetically altered cells [36]. However, the relationship 

between carcinogenicity and histone modification has not yet been well clarified. Chemicals in 

cigarette smoke, such as aldehydes, may phosphorylate histone H3 via the PI3K/AKT pathway, which 

differs from the DNA damage response, resulting in tumor promotion [37]. In addition, long exposure 

of cells to smoke compounds inhibits apoptosis and autophagy, revealing a central role for the 

PI3K/AKT pathway in mediating the crucial carcinogenic effects of smoke compounds [38]. PTEN is 



431 
 

AIMS Molecular Science  Volume 2, Issue 4, 427-439. 

an important regulator of cell cycle progression and cellular survival via the PI3K/AKT signaling 

pathway [39]. In addition, prolonged cigarette smoke exposure alters mitochondrial structure and 

function [40]. There is growing evidence that mitochondrial oxidative stress plays a critical role in the 

pathogenesis of NAFLD. Hydrogen sulfide may exert antioxidant effects in rats exposed to smoke via 

PI3K/AKT/PTEN dependent activation [41]. Mitochondrial network morphology involves ROS and 

PI3K/AKT, as well as transcriptional regulation via several factors, such as nuclear factor κB (NF-κB) [42]. 

Altered mitochondrial proteins also have the potential to influence parameters such as ROS production, 

cell proliferation, and apoptosis, all of which are relevant to NAFLD. The prevalence of cigarette 

smoking is increased among obese subjects, who are susceptible to develop NAFLD. Importantly, 

cigarette smoking increases the histological severity of NAFLD in obese rats [26]. In addition, 

smoking also increases the degree of oxidative stress and hepatocellular apoptosis in obese rats by 

regulating AKT phosphorylation [26].  

4. Characterization of the PI3K/AKT/PTEN pathway 

The PI3K/AKT pathway plays an important role in regulating cellular metabolism, growth, and 

survival [43, 44]. As the active form of PI3K is an oncogene, mutations and amplifications of PI3K 

are frequently found in various kinds of human cancers [45]. The phospholipid messengers generated 

by PI3K provide a shared mechanism across multiple steps during intracellular signal transduction. 

Activation of PI3K may then result in the inhibition of pro-inflammatory events, such as expression 

of IL-12, type I interferon, and TNF-a (tumor necrosis factor- alpha) [46]. In addition, PI3K and 

downstream mTOR (mammalian target of rapamycin) seem to up-regulate anti-inflammatory 

cytokines [47]. For example, inhibition of VEGF (vascular endothelial growth factor) receptor activity 

augments cigarette smoke-induced oxidative stress and inflammatory responses [48]. PI3K/AKT 

signaling may control angiogenesis through several downstream targets, such as NOS (nitric oxide 

synthase) and GSK3β (glycogen synthase kinase 3 beta), which commonly up-regulate HIF-1α 

(hypoxia-inducible factor 1) expression, which in turn induces VEGF transcriptional activation. 

Inhibition of GSK3β can up-regulate HIF-1α expression and increases β-catenin activity. Hypoxia 

induces HIF-1α production through the increase of its presence and induces VEGF expression in a 

HIF-1α-dependent manner [49]. Furthermore, in the presence of abdominal obesity, VEGF 

concentration is increased [50]. Obesity and insulin resistance are also associated with systemic 

markers of inflammation in NASH [51]. Inhibition of the mTOR pathway effectively attenuates 

inflammation in animal models [52]. AKT functions as a major downstream target of PI3K. A product 

of PI3K, phosphatidylinositol 3,4,5-triphosphate (PIP3), binds to AKT and leads to membrane staffing 

of AKT, which also binds to phosphoinositide-dependent kinase 1 (PDK1) via its plekstrin homology 

(PH) domains, then PDK1 phosphorylates AKT (Thr 308 in AKT1; human AKT has three isoforms: 

AKT1, AKT2, and AKT3 [53].) in the AKT kinase domain. For full activation of AKT, 

phosphorylation within the carboxyl-terminal regulatory domain (Ser 473 in AKT1) of AKT by 

phosphoinositide-dependent kinase 2 (PDK2) is required [54]. Schematic structure of the predicted 

AKT1 protein is shown in Figure 2. Once activated, AKT is located in both the cytoplasm and nucleus, 

where it phosphorylates, activates, or inhibits many downstream targets, thereby regulating several 

cellular functions (Figure 1).  

PTEN functions as a dually-specific phosphatase that antagonizes PI3K activity through 

converting PIP3 into phosphatidylinositol 4,5-bisphosphate (PIP2), which has lipid phosphatase action, 
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as well as protein phosphatase action [55]. The schematic structure of the predicted PTEN protein has 

also been shown in Figure 2. PTEN protein contains N-terminal phosphatase, and C-terminal C2, and 

PDZ (PSD-95, DLG1, and ZO-1) binding domains. The PTEN CX5R(S/T) motif surrounds the 

catalytic site with three basic residues within the functional site, which are critical for PTEN lipid 

phosphatase activity. The structure provides PTEN with its preference for acidic phospholipid 

substrates including phosphatidylinositol phosphates, such as PIP3. In addition, the C-terminus of 

PTEN is comprised of two PEST (proline, glutamic acid, serine, and threonine) sequences involved in 

certain protein degradation [56]. Interestingly, rosemary extract represses PTEN expression in K562 

leukemic culture cells [57]. Usually, p53, peroxisome proliferator activated receptor-γ (PPAR-γ), and 

activating transcription factor 2 can transcriptionally upregulate PTEN expression, while Jun, 

transforming growth factor-β (TGF-β), and NF-κB negatively regulate PTEN expression. PTEN 

activity could also be regulated by post-translational modifications, including oxidation, 

phosphorylation, and acetylation [58]. The lack of expression of liver-specific PTEN may be 

associated with hepatic inflammation, steatosis, and fibrosis. Actually, PTEN-deficient mice have been 

shown to have histological and biochemical evidences of NASH [59]. In addition, hypoxia quickens 

the changes that have been observed in PTEN-deficient mice developing NASH [60]. 

 

Figure 2. Schematic illustrations of AKT1 and PTEN protein. The expected domain 

structures for each protein are shown. The functionally important sites, including the sites 

of protein phosphorylation, are also indicated. Note that the sizes of protein are modified 

for clarity. PH domain = pleckstrin homology domain; C2 domain = a protein structural 

domain involved in targeting proteins to cell membranes; PDZ = a common structural 

domain in signaling proteins (PSD95, Dlg, ZO-1, etc.) 

5. PI3K/AKT/PTEN signaling modulators involved in NAFLD  

The molecular mechanisms underlying how the conversion from modest fatty liver to NASH is 

made are not well understood. However, accumulating evidence indicates that deregulation of the 

PI3K/AKT pathway in hepatocytes is a collective event associated with metabolic dysfunctions, 

including NAFLD. Animals with NAFLD show pathological changes, including inflammation foci 

and apoptotic cells in the liver [61]. HSCs have been shown to produce leptin when they become 

activated during hepatic fibrogenesis [62]. Leptin augments the proliferation of HSCs by enhancing 

downstream intracellular signaling pathways via the PI3K/AKT pathway [63]. Leptin is one of the key 

regulators for inflammation and the progression of fibrosis in various chronic liver diseases, including 



433 
 

AIMS Molecular Science  Volume 2, Issue 4, 427-439. 

NASH [62, 64]. Interestingly, treatment with ghrelin also improves those liver injury accompanied 

with a restoration of PI3K/AKT pathways [65]. Ghrelin treatment alone did not influence the healthy 

rat liver. Ghrelin and leptin are hormones which regulate appetite and energy balance; while ghrelin 

increases food intake and causes a positive energy balance, leptin decreases food intake and enhances 

a negative energy balance. Cigarette smoke limits food intake and body weight increase and plasma 

levels of ghrelin and leptin may change to compensate for the negative energy balance created by 

cigarette smoke [66]. 

The heterocyclic nitrogen compound, 2,3,5,6-tetramethylpyrazine (TMP), naturally present in 

tobacco and also added to tobacco as a flavor ingredient, blocks the downstream PI3K/AKT pathway. 

TMP inhibits HSC activation and extracellular matrix (ECM) production by inhibiting the PI3K/AKT 

pathway [67]. Guanosine can afford protection against mitochondrial oxidative stress through 

PI3K/AKT signaling and by induction of the antioxidant enzyme heme oxygenase-1 (HO-1) [68]. The 

protective effects of this pathway may be linked to the action of HO-1. Unusual fatty acid accumulation 

has a possible role in promoting in vivo hepato-tumorigenesis under constitutive activation of the PI3K 

pathway [69]. Impairment of fatty acid oxidation and the accumulation of lipids characterize 

lipotoxicity. Experimental studies have shown the toxic effects of cigarette smoke on energy 

metabolism [70]. Silibinin is a well-studied hepato-protective agent against a spectrum of liver diseases. 

Silibinin treatment significantly ameliorates the pathological features of liver diseases partly through 

restoring the PI3K/AKT pathway. Accordingly, specific blockers of PI3K abolish the positive effects 

of silibinin on cellular steatosis. Silibinin may also improve steatosis and insulin resistance partly 

through regulation of the PI3K/AKT pathway [71]. Furthermore, silibinin has the potential to inhibit 

the induction of DNA damage mediated by chlorination, thus there is a possible application of reducing 

the DNA damage associated with inflammation and cigarette-smoke toxicity [72]. Likewise, lycopene 

may also exert protective effects against the risk of cigarette smoke [73]. 

Molecular NAFLD studies support a key role for PTEN in the development of steatosis and 

fibrosis. However, deletion of PTEN paradoxically causes NAFLD and hepatocellular cancer [74]. 

The mechanism for this paradox is yet to be clarified. In PTEN-deficient mice, there is increased 

triglyceride synthesis and storage in hepatocytes, due to the up-regulation of PI3K/AKT activity. As a 

consequence of the lack of PTEN activity, there may be increased hepatocyte fatty acid uptake and 

increased fatty acid synthesis [75]. In addition, alterations of PTEN expression and activity in 

hepatocytes are common and recurrent molecular events associated with liver disorders of various 

etiologies, such as obesity, the metabolic syndrome, hepatitis B and hepatitis C viral infections, and 

frequent alcohol consumption occur. A critical role for PTEN in hepatic insulin sensitivity and the 

development of steatohepatitis and fibrosis has been supported. PTEN mutations, deletion, or low 

PTEN expression have also been associated with diverse liver malignancies, suggesting a critical role 

for PTEN in hepatic cancers [76]. In contrast, overexpression of PTEN has been shown to have 

inhibitory effects on insulin signaling, including decreased AKT activity and GLUT4 (glucose 

transporter 4) translocation to the hepatic cell membrane, showing PTEN’s contribution to insulin 

resistance and NAFLD progression [77, 78]. 

6. Conclusion 

Occasionally, it would be difficult to avoid second and third hand smoke exposure. Given the 

development of smoking as a concern, far less research has focused on the perceived harm of smoke 
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exposure. It is important to exploit the potential benefits of agents in NAFLD and/or optimal treatment, 

as they could become effective intervention targets (Figure 3). NAFLD is a multifactorial disease 

predominantly regulated by the interaction of genetic predisposition and environmental factors. It is 

accepted that the molecular mechanisms involved in the development and progression of NAFLD are 

similar to those leading to metabolic syndrome. In fact, the dysregulation of lipid metabolism, insulin 

signaling, the inflammatory response, and the immune response have important role in the onset and 

result of NAFLD. There may be common signaling pathways between inflammation and NAFLD, 

including the PI3K/AKT pathway. It is possible that inhibition of the signaling in specific hepatic cell 

populations could be associated with distinct therapeutic outcomes; therefore, the molecular 

mechanism contributing to the diseases are the subject of considerable investigation [79]. A better 

understanding of the precise intracellular mechanisms downstream of PI3K/AKT/PTEN signaling and 

their changes in NAFLD could provide novel insights into the development of new therapeutic 

approaches having greater efficacy against NAFLD. 

 

Figure 3. Possible role of cigarette smoke, hypoxia, reactive oxygen species (ROS), 

and several PI3K/AKT/PTEN modulators in the development of NAFLD and NASH 

based on the predominant PI3K/AKT/PTEN pathways. Note that some critical events 

have been omitted for clarity. 
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