Citation: Nataliya A. Sakharova, Jorge M. Antunes, Andre F. G. Pereira, Jose V. Fernandes. Developments in the evaluation of elastic properties of carbon nanotubes and their heterojunctions by numerical simulation[J]. AIMS Materials Science, 2017, 4(3): 706-737. doi: 10.3934/matersci.2017.3.706
[1] | Robertson J (2004) Realistic applications of CNTs. Mater Today 7: 46–52. doi: 10.1016/S1369-7021(04)00448-1 |
[2] | Dresselhaus MS, Avouris P (2001) Introduction to carbon materials research, In: Dresselhaus, MS, Dresselhaus G, Avouris P, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Springer Book Series: Topics in Applied Physics, Germany: Springer-Verlag Berlin Heidelberg, 80: 1–9. |
[3] | Neubauer E, Kitzmantel M, Hulman M, et al. (2010) Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes. Compos Sci Technol 70: 2228–2236. doi: 10.1016/j.compscitech.2010.09.003 |
[4] | Lan Y, Wang Y, Ren ZF (2011) Physics and applications of aligned carbon nanotubes. Adv Phys 60: 553–678. doi: 10.1080/00018732.2011.599963 |
[5] | Zhang Y, Zhuang X, Muthu J, et al. (2014) Load transfer of graphene/carbon nanotube/polyethylene hybrid nanocomposite by molecular dynamics simulation. Compos Part B-Eng 63: 27–33. |
[6] | Schulz MJ, Shanov VN, Yin Z (2014) Nanotube superfiber Materials, Oxford (UK): Elsevier, 848. |
[7] | Wei DC, Liu YQ (2008) The intramolecular junctions of carbon nanotubes. Adv Mater 20: 2815–2841. doi: 10.1002/adma.200800589 |
[8] | Salvetat JP, Briggs GAD, Bonard JM, et al. (1999) Elastic and shear moduli of single-walled carbon nanotube ropes. Phys Rev Lett 82: 944–947. doi: 10.1103/PhysRevLett.82.944 |
[9] | Hall AR, An L, Liu J, et al. (2006) Experimental measurement of single-wall carbon nanotube torsional properties. Phys Rev Lett 96: 256102. doi: 10.1103/PhysRevLett.96.256102 |
[10] | Kallesøe C, Larsen MB, Bøggild P, et al. (2012) 3D mechanical measurements with an atomic force microscope on 1D structures. Rev Sci Instrum 83: 023704. doi: 10.1063/1.3681784 |
[11] | Wang L, Zhang Z, Han X (2013) In situ experimental mechanics of nanomaterials at the atomic scale. NPG Asia Mater 5: e40. doi: 10.1038/am.2012.70 |
[12] | Mielke SL, Troya D, Zhan S, et al. (2004) The role of vacancy defects and holes in the fracture of carbon nanotubes. Chem Phys Lett 390: 413–420. doi: 10.1016/j.cplett.2004.04.054 |
[13] | Hou W, Xiao S (2007) Mechanical behaviors of carbon nanotubes with randomly located vacancy defects. J Nanosci Nanotechnol 7: 4478–4485. doi: 10.1166/jnn.2007.862 |
[14] | Tserpes KI, Papanikos P (2005) Finite element modeling of single-walled carbon nanotubes. Compos Part B-Eng 36: 468–477. doi: 10.1016/j.compositesb.2004.10.003 |
[15] | Rafiee R, Heidarhaei M (2012) Investigation of chirality and diameter effects on the Young's modulus of carbon nanotubes using non-linear potentials. Compos Struct 94: 2460–2464. doi: 10.1016/j.compstruct.2012.03.010 |
[16] | Sakharova NA, Pereira AFG, Antunes JM, et al. (2015) Mechanical characterization of single-walled carbon nanotubes: Numerical simulation study. Compos Part B-Eng 75: 73–85. doi: 10.1016/j.compositesb.2015.01.014 |
[17] | Rafiee R, Moghadam RM (2014) On the modelling of carbon nanotubes: A critical review. Compos Part B-Eng 56: 435–449. doi: 10.1016/j.compositesb.2013.08.037 |
[18] | Yengejeh SI, Kazemi SA, Öchsner A (2016) Advances in mechanical analysis of structurally and atomically modified carbon nanotubes and degenerated nanostructures: A review. Compos Part B-Eng 86: 95–107. doi: 10.1016/j.compositesb.2015.10.006 |
[19] | Dresselhaus MS, Dresselhaus G, Saito R (1995) Physics of carbon nanotubes. Carbon 33: 883–891. doi: 10.1016/0008-6223(95)00017-8 |
[20] | Barros EB, Jorio A, Samsonidze GG, et al. (2006) Review on the symmetry-related properties of carbon nanotubes. Phys Rep 431: 261–302. doi: 10.1016/j.physrep.2006.05.007 |
[21] | Melchor S, Dobado JA (2004) CoNTub: An algorithm for connecting two arbitrary carbon nanotubes. J Chem Inf Comp Sci 44: 1639–1646. |
[22] | Ghavamian A, Andriyana A, Chin AB, et al. (2015) Numerical investigation on the influence of atomic defects on the tensile and torsional behavior of hetero-junction carbon nanotubes. Mater Chem Phys 164: 122–137. doi: 10.1016/j.matchemphys.2015.08.033 |
[23] | Yao YG, Li QW, Zhang J, et al. (2007) Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions. Nat Mater 6: 283–286. |
[24] | Li M, Kang Z, Li R, et al. (2013) A molecular dynamics study on tensile strength and failure modes of carbon nanotube junctions. J Phys D Appl Phys 46: 495301. doi: 10.1088/0022-3727/46/49/495301 |
[25] | Sakharova NA, Pereira AFG, Antunes JM, et al. (2016) Numerical simulation of the mechanical behaviour of single-walled carbon nanotubes heterojunctions. J Nano Res 38: 73–87. doi: 10.4028/www.scientific.net/JNanoR.38.73 |
[26] | Qin Z, Qin QH, Feng XQ (2008) Mechanical property of carbon nanotubes with intramolecular junctions: Molecular dynamics simulations. Phys Lett A 372: 6661–6666. doi: 10.1016/j.physleta.2008.09.010 |
[27] | Lu Q, Bhattacharya B (2005) The role of atomistic simulations in probing the small scale aspects of fracture-a case study on a single-walled carbon nanotube. Eng Fract Mech 72: 2037–2071. doi: 10.1016/j.engfracmech.2005.01.009 |
[28] | Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76: 2511–2514. doi: 10.1103/PhysRevLett.76.2511 |
[29] | Lu JP (1997) Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett 79: 1298–1300. |
[30] | Jin Y, Yuan FG (2003) Simulation of elastic properties of single-walled carbon nanotubes. Compos Sci Technol 63: 1507–1515. doi: 10.1016/S0266-3538(03)00074-5 |
[31] | Liew KM, He XQ, Wong CH (2004) On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation. Acta Mater 52: 2521–2527. doi: 10.1016/j.actamat.2004.01.043 |
[32] | Bao WX, Zhu CC, Cui WZ (2004) Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics. Physica B 352: 156–163. doi: 10.1016/j.physb.2004.07.005 |
[33] | Zhang HW, Wang JB, Guo X (2005) Predicting the elastic properties of single-walled carbon nanotubes. J Mech Phys Solids 53: 1929–1950. doi: 10.1016/j.jmps.2005.05.001 |
[34] | Cheng HC, Liu YL, Hsu YC, et al. (2009) Atomistic continuum modelling for mechanical properties of single-walled carbon nanotubes. Int J Solids Struct 46: 1695–1704. doi: 10.1016/j.ijsolstr.2008.12.013 |
[35] | Kudin KN, Scuseria GE, Yakobson BI (2001) C2F, BN and C nanoshell elasticity from ab initio computations. Phys Rev B 64: 235406. doi: 10.1103/PhysRevB.64.235406 |
[36] | Wilmes AA, Pinho ST (2014) A coupled mechanical-charge/dipole molecular dynamics finite element method, with multi-scale applications to the design of graphene nano-devices. Int J Numer Meth Eng 100: 243–276. doi: 10.1002/nme.4706 |
[37] | Hernandez E, Goze C, Bernier P, et al. (1998) Elastic properties of C and BxCyNz composite nanotubes. Phys Rev Lett 80: 4502–4505. doi: 10.1103/PhysRevLett.80.4502 |
[38] | Zhou X, Zhou J, Ou-Yang ZC (2000) Strain energy and Young's modulus of single-wall carbon nanotubes calculated from electronic energy-band theory. Phys Rev B 62: 13692–13696. doi: 10.1103/PhysRevB.62.13692 |
[39] | Ru CQ (2000) Effective bending stiffness of carbon nanotubes. Phys Rev B 62: 9973–9976. |
[40] | Pantano A, Parks DM, Boyce MC (2004) Mechanics of deformation of single- and multi-wall carbon nanotubes. J Mech Phys Solids 52: 789–821. doi: 10.1016/j.jmps.2003.08.004 |
[41] | Kalamkarov AL, Georgiades AV, Rokkam SK, et al. (2006) Analytical and numerical techniques to predict carbon nanotubes properties. Int J Solids Struct 43: 6832–6854. doi: 10.1016/j.ijsolstr.2006.02.009 |
[42] | Muc A (2010) Design and identification methods of effective mechanical properties for carbon nanotubes. Mater Design 31: 1671–1675. doi: 10.1016/j.matdes.2009.03.046 |
[43] | Chang TC (2010) A molecular based anisotropic shell model for single-walled carbon nanotubes. J Mech Phys Solids 58: 1422–1433. doi: 10.1016/j.jmps.2010.05.004 |
[44] | Sears A, Batra RC (2004) Macroscopic properties of carbon nanotubes from molecular-mechanics simulations. Phys Rev B 69: 235406. doi: 10.1103/PhysRevB.69.235406 |
[45] | Gupta SS, Batra RC (2008) Continuum structures equivalent in normal mode vibrations to single-walled carbon nanotubes. Comp Mater Sci 43: 715–723. |
[46] | Wang Q (2004) Effective in-plane stiffness and bending rigidity of armchair and zigzag carbon nanotubes. Int J Solids Struct 41: 5451–5461. doi: 10.1016/j.ijsolstr.2004.05.002 |
[47] | Arash B, Wang Q (2012) A review on the application of nonlocal elastic models in modelling of carbon nanotubes and graphenes. Comp Mater Sci 51: 303–313. doi: 10.1016/j.commatsci.2011.07.040 |
[48] | Odegard GM, Gates TS, Nicholson LM, et al. (2002) Equivalent continuum modelling of nano-structured materials. Compos Sci Technol 62: 1869–1880. doi: 10.1016/S0266-3538(02)00113-6 |
[49] | Li C, Chou TW (2003) A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40: 2487–2499. doi: 10.1016/S0020-7683(03)00056-8 |
[50] | Ghavamian A, Rahmandoust M, Öchsner A (2013) On the determination of the shear modulus of carbon nanotubes. Compos Part B-Eng 44: 52–59. doi: 10.1016/j.compositesb.2012.07.040 |
[51] | Chen WH, Cheng HC, Liu YL (2010) Radial mechanical properties of single-walled carbon nanotubes using modified molecular structure mechanics. Comp Mater Sci 47: 985–993. doi: 10.1016/j.commatsci.2009.11.034 |
[52] | Eberhardt O, Wallmersperger T (2015) Energy consistent modified molecular structural mechanics model for the determination of the elastic properties of single wall carbon nanotubes. Carbon 95: 166–180. doi: 10.1016/j.carbon.2015.07.092 |
[53] | Natsuki T, Tantrakarn K, Endo M (2004) Prediction of elastic properties for single-walled carbon nanotubes. Carbon 42: 39–45. doi: 10.1016/j.carbon.2003.09.011 |
[54] | Meo M, Rossi M (2006) Prediction of Young's modulus of single wall carbon nanotubes by molecular-mechanics based finite element modeling. Compos Sci Technol 66: 1597–1605. doi: 10.1016/j.compscitech.2005.11.015 |
[55] | Giannopoulos GI, Kakavas PA, Anifantis NK (2008) Evaluation of the effective mechanical properties of single-walled carbon nanotubes using a spring based finite element approach. Comp Mater Sci 41: 561–569. doi: 10.1016/j.commatsci.2007.05.016 |
[56] | Wernik JM, Meguid SA (2010) Atomistic-based continuum modelling of the nonlinear behavior of carbon nanotubes. Acta Mech 212: 167–179. doi: 10.1007/s00707-009-0246-4 |
[57] | Ranjbartoreh AZ, Wang G (2010) Consideration of mechanical properties of single-walled carbon nanotubes under various loading conditions. J Nanopart Res 12: 537–543. doi: 10.1007/s11051-009-9808-6 |
[58] | Parvaneh V, Shariati M (2011) Effect of defects and loading on prediction of Young's modulus of SWCNTs. Acta Mech 216: 281–289. doi: 10.1007/s00707-010-0373-y |
[59] | Mahmoudinezhad E, Ansari R, Basti A, et al. (2012) An accurate spring-mass model for predicting mechanical properties of single-walled carbon nanotubes. Comp Mater Sci 62: 6–11. doi: 10.1016/j.commatsci.2012.05.004 |
[60] | To CWS (2006) Bending and shear moduli of single-walled carbon nanotubes. Finite Elem Anal Design 42: 404–413. doi: 10.1016/j.finel.2005.08.004 |
[61] | Papanikos P, Nikolopoulos DD, Tserpes KI (2008) Equivalent beams for carbon nanotubes. Comp Mater Sci 43: 345–352. |
[62] | Ávila AF, Lacerda GSR (2008) Molecular mechanics applied to single-walled carbon nanotubes. Mater Res 11: 325–333. doi: 10.1590/S1516-14392008000300016 |
[63] | Shokrieh MM, Rafiee R (2010) Prediction of Young's modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach. Mater Design 31: 790–795. doi: 10.1016/j.matdes.2009.07.058 |
[64] | Her SC, Liu SJ (2012) Theoretical prediction of tensile behavior of single-walled carbon nanotubes. Curr Nanosci 8: 42–46. doi: 10.2174/1573413711208010042 |
[65] | Lu X, Hu Z (2012) Mechanical property evaluation of single-walled carbon nanotubes by finite element modeling. Compos Part B-Eng 43: 1902–1913. doi: 10.1016/j.compositesb.2012.02.002 |
[66] | Mohammadpour E, Awang M (2011) Predicting the nonlinear tensile behavior of carbon nanotubes using finite element simulation. Appl Phys A-Mater 104: 609–614. |
[67] | Ghadyani G, Öchsner A (2015) Derivation of a universal estimate for the stiffness of carbon nanotubes. Physica E 73: 116–125. doi: 10.1016/j.physe.2015.05.024 |
[68] | Giannopoulos GI, Tsiros AP, Georgantzinos SK (2013) Prediction of Elastic Mechanical Behavior and Stability of Single-Walled Carbon Nanotubes Using Bar Elements. Mech Adv Mater Struct 20: 730–741. doi: 10.1080/15376494.2012.676714 |
[69] | Nasdala L, Ernst G (2005) Development of a 4-node finite element for the computation of nano-structured materials. Comp Mater Sci 33: 443–458. doi: 10.1016/j.commatsci.2004.09.047 |
[70] | Budyka MF, Zyubina TS, Ryabenko AG, et al. (2005) Bond lengths and diameters of armchair single wall carbon nanotubes. Chem Phys Lett 407: 266–271. doi: 10.1016/j.cplett.2005.03.088 |
[71] | Ghadyani G, Öchsner A (2015) On a thickness free expression for the stiffness of carbon nanotubes. Solid State Commun 209: 38–44. |
[72] | Pereira AFG, Antunes JM, Fernandes JV, et al. (2016) Shear modulus and Poisson's ratio of single-walled carbon nanotubes: numerical evaluation. Phys Status Solidi B 253: 366–376. doi: 10.1002/pssb.201552320 |
[73] | Krishnan A, Dujardin E, Ebbesen TW, et al. (1998) Young's modulus of single-walled nanotubes. Phys Rev B 58: 14013–14018. doi: 10.1103/PhysRevB.58.14013 |
[74] | Yu MF, Files BS, Arepalli S, et al. (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84: 5552–5554. doi: 10.1103/PhysRevLett.84.5552 |
[75] | Shen L, Li J (2004) Transversely isotropic elastic properties of single-walled carbon nanotubes. Phys Rev B 69: 045414. doi: 10.1103/PhysRevB.69.045414 |
[76] | Ghadyani G, Soufeiani L, Ӧchsner A (2017) Angle dependence of the shear behaviour of asymmetric carbon nanotubes. Mater Design 116:136–143. doi: 10.1016/j.matdes.2016.11.097 |
[77] | Xiao JR, Gama BA, Gillespie Jr JW (2005) An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. Int J Solids Struct 42: 3075–3092. doi: 10.1016/j.ijsolstr.2004.10.031 |
[78] | Wu Y, Zhang X, Leung AYT, et al. (2006) An energy-equivalent model on studying the mechanical properties of single-walled carbon nanotubes. Thin Wall Struct 44: 667–676. doi: 10.1016/j.tws.2006.05.003 |
[79] | Rahmandoust M, Öchsner A (2012) On finite element modeling of single- and multi-walled carbon nanotubes. J Nanosci Nanotechnol 12: 8129–8136. doi: 10.1166/jnn.2012.4521 |
[80] | Domínguez-Rodríguez G, Tapia A, Avilés F (2014) An assessment of finite element analysis to predict the elastic modulus and Poisson's ratio of singlewall carbon nanotubes. Comp Mater Sci 82: 257–263. doi: 10.1016/j.commatsci.2013.10.003 |
[81] | Popov VN, Van Doren VE, Balkanski M (2000) Elastic Properties of single-walled carbon nanotubes. Phys Rev B 61: 3078–3084. |
[82] | Gao RP, Wang ZL, Bai ZG, et al. (2000) Nanomechanics of individual carbon nanotubes from pyrolytically grown arrays. Phys Rev Lett 85: 622–625. doi: 10.1103/PhysRevLett.85.622 |
[83] | Andrews R, Jacques D, Qian D, et al. (2001) Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures. Carbon 39: 1681–1687. doi: 10.1016/S0008-6223(00)00301-8 |
[84] | Terrones M, Banhart F, Grobert N, et al. (2002) Molecular junctions by joining single-walled carbon nanotubes. Phys Rev Lett 89: 075505. doi: 10.1103/PhysRevLett.89.075505 |
[85] | Scarpa F, Adhikari S, Wang CY (2009) Mechanical properties of non-reconstructed defective single-wall carbon nanotubes. J Phys D Appl Phys 42: 142002. doi: 10.1088/0022-3727/42/14/142002 |
[86] | Parvaneh V, Shariati M, Torabi H (2012) Bending buckling behavior of perfect and defective single-walled carbon nanotubes via a structural mechanics model. Acta Mech 223: 2369–2378. doi: 10.1007/s00707-012-0711-3 |
[87] | Rahmandoust M, Öchsner A (2009) Influence of structural imperfections and doping on the mechanical properties of single-walled carbon nanotubes. J Nano Res 6: 185–196. doi: 10.4028/www.scientific.net/JNanoR.6.185 |
[88] | Ghavamian A, Rahmandoust M, Öchsner A (2012) A numerical evaluation of the influence of defects on the elastic modulus of single and multi-walled carbon nanotubes. Comp Mater Sci 62: 110–116. doi: 10.1016/j.commatsci.2012.05.003 |
[89] | Ghavamian A, Öchsner A (2012) Numerical investigation on the influence of defects on the buckling behavior of single-and multi-walled carbon nanotubes. Physica E 46: 241–249. doi: 10.1016/j.physe.2012.08.002 |
[90] | Ghavamian A, Öchsner A (2013) Numerical modeling of eigenmodes and eigenfrequencies of single- and multi-walled carbon nanotubes under the influence of atomic defects. Comp Mater Sci 72: 42–48. doi: 10.1016/j.commatsci.2013.02.002 |
[91] | Poelma RH, Sadeghian H, Koh S, et al. (2012) Effects of single vacancy defect position on the stability of carbon nanotubes. Microelectron Reliab 52: 1279–1284. doi: 10.1016/j.microrel.2012.03.015 |
[92] | Sakharova NA, Pereira AFG, Antunes JM, et al. (2016) Numerical simulation study of the elastic properties of single-walled carbon nanotubes containing vacancy defects. Compos Part B-Eng 89: 155–168. doi: 10.1016/j.compositesb.2015.11.029 |
[93] | Sakharova NA, Antunes JM, Pereira AFG, et al. (2015) The effect of vacancy defects on the evaluation of the mechanical properties of single-wall carbon nanotubes: Numerical simulation study, In: Öchsner A, Altenbach H, Springer Book Series On Advanced Structured Materials: Mechanical and Materials Engineering of Modern Structure and Component Design, Germany: Springer, 70: 323–339. |
[94] | Wong CH (2010) Elastic properties of imperfect single-walled carbon nanotubes under axial tension. Comp Mater Sci 49: 143–147. doi: 10.1016/j.commatsci.2010.04.037 |
[95] | Rafiee R, Pourazizi R (2014) Evaluating the Influence of Defects on the Young's Modulus of Carbon Nanotubes Using Stochastic Modeling. Mater Res 17: 758–766. doi: 10.1590/S1516-14392014005000071 |
[96] | Zhang YP, Ling CC, Li GX, et al. (2015) Radial collapse and physical mechanism of carbon nanotube with divacancy and 5-8-5 defects. Chinese Phys B 24: 046401. doi: 10.1088/1674-1056/24/4/046401 |
[97] | Rafiee R, Mahdavi M (2016) Molecular dynamics simulation of defected carbon nanotubes. P I Mech Eng L-J Mat 230: 654–662. |
[98] | Sharma S, Chandra R, Kumar P, et al. (2014) Effect of Stone-Wales and vacancy defects on elastic moduli of carbon nanotubes and their composites using molecular dynamics simulation. Comp Mater Sci 86: 1–8. doi: 10.1016/j.commatsci.2014.01.035 |
[99] | Saxena KK, Lal A (2012) Comparative molecular dynamics simulation study of mechanical properties of carbon nanotubes with number of Stone-Wales and vacancy defects. Procedia Eng 38: 2347–2355. doi: 10.1016/j.proeng.2012.06.280 |
[100] | Yuan J, Liew KM (2009) Effects of vacancy defect reconstruction on the elastic properties of carbon nanotubes. Carbon 47: 1526–1533. doi: 10.1016/j.carbon.2009.01.048 |
[101] | Xiao S, Hou W (2006) Fracture of vacancy-defected carbon nanotubes and their embedded nanocomposites. Phys Rev B 73: 115406. doi: 10.1103/PhysRevB.73.115406 |
[102] | Kurita H, Estili M, Kwon H, et al. (2015) Load-bearing contribution of multi-walled carbon nanotubes on tensile response of aluminium. Compos Part A-Appl S 68: 133–139. |
[103] | Kharissova OV, Kharisov BI (2014) Variations of interlayer spacing in carbon nanotubes. RSC Adv 58: 30807–30815. |
[104] | Kiang CH, Endo M, Ajayan PM, et al. (1998) Size effects in carbon nanotubes. Phys Rev Lett 81: 1869–1872. doi: 10.1103/PhysRevLett.81.1869 |
[105] | Li C, Chou TW (2003) Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Comp Sci Tech 63: 1517–1524. doi: 10.1016/S0266-3538(03)00072-1 |
[106] | Fan CW, Liu YY, Hwu C (2009) Finite element simulation for estimating the mechanical properties of multi-walled carbon nanotubes. Appl Phys A-Mater 5: 819–831. |
[107] | Nahas MN, Abd-Rabou M (2010) Finite element modeling of multi-walled carbon nanotubes. Int J Eng Technol 10: 63–71. |
[108] | Sakharova NA, Pereira AFG, Antunes JM, et al. (2017) Numerical simulation on the mechanical behaviour of the multi-walled carbon nanotubes. J Nano Res 47: 106–119. doi: 10.4028/www.scientific.net/JNanoR.47.106 |
[109] | Liu Q, Liu W, Cui ZM, et al. (2007) Synthesis and characterization of 3D double branched K junction carbon nanotubes and nanorods. Carbon 45: 268–273. doi: 10.1016/j.carbon.2006.09.029 |
[110] | Scarpa F, Narojczyk JW, Wojciechowski KW (2011) Unusual deformation mechanisms in carbon nanotube heterojunctions (5, 5)–(10, 10) under tensile loading. Phys Status Solidi B 248: 82–87. doi: 10.1002/pssb.201083984 |
[111] | Lee WJ, Su WS (2013) Investigation into the mechanical properties of single-walled carbon nanotube heterojunctions. Phys Chem Chem Phys 15: 11579–11585. doi: 10.1039/c3cp51340h |
[112] | Kang Z, Li M, Tang Q (2010) Buckling behavior of carbon nanotube-based intramolecular junctions under compression: Molecular dynamics simulation and finite element analysis. Comp Mater Sci 50: 253–259. doi: 10.1016/j.commatsci.2010.08.011 |
[113] | Kinoshita Y, Murashima M, Kawachi M, et al. (2013) First-principles study of mechanical properties of one-dimensional carbon nanotube intramolecular junctions. Comp Mater Sci 70: 1–7. doi: 10.1016/j.commatsci.2012.12.033 |
[114] | Xi H, Song HY, Zou R (2015) Simulation of mechanical properties of carbon nanotubes with superlattice structure. Curr Appl Phys 15: 1216–1221. doi: 10.1016/j.cap.2015.07.008 |
[115] | Yengejeh SI, Zadeh MA, Öchsner A (2014) On the buckling behavior of connected carbon nanotubes with parallel longitudinal axes. Appl Phys A-Mater 115: 1335–1344. doi: 10.1007/s00339-013-7999-2 |
[116] | Ghavamian A, Öchsner A (2015) A comprehensive numerical investigation on the mechanical properties of hetero-junction carbon nanotubes. Commun Theor Phys 64: 215–230. doi: 10.1088/0253-6102/64/2/215 |
[117] | Hemmatian H, Fereidoon A, Rajabpour M (2014) Mechanical properties investigation of defected, twisted, elliptic, bended and hetero-junction carbon nanotubes based on FEM. Fuller Nanotub Car N 22: 528–544. doi: 10.1080/1536383X.2012.684183 |
[118] | Rajabpour M, Hemmatian H, Fereidoon A (2011) Investigation of Length and Chirality Effects on Young's Modulus of Heterojunction Nanotube with FEM. Proceedings of the 2nd International Conference on Nanotechnology: Fundamentals and Applications, Ottawa, Ontario, Canada. |
[119] | Yengejeh SI, Zadeh MA, Öchsner A (2015) On the tensile behavior of hetero-junction carbon nanotubes. Compos Part B-Eng 75: 274–280. doi: 10.1016/j.compositesb.2015.02.001 |
[120] | Yengejeh SI, Zadeh MA, Öchsner A (2014) Numerical characterization of the shear behavior of hetero-junction carbon nanotubes. J Nano Res 26: 143–151. |