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Abstract: High-tech miniaturization is a strategic area to empower new scientific challenges for 
which carbon nanotubes are ideal candidates with outstanding electronic, optical and mechanical 
properties. Carbon nanotubes and their heterojunctions are efficient components for reinforcement of 
composites, for constructing micro- and nanodevices, and for designing new materials with required 
electronic and mechanical properties. The carbon nanotubes have been studied experimentally, but a 
big inconsistency in experimental results has been observed, because of the technical difficulties to 
operate with nanoscale objects. For this reason, modelling and computer simulation for predicting 
their mechanical properties have received much attention. This review attempts to classify the 
accomplishments in predicting of the elastic properties of carbon nanotubes and their heterojunctions 
by analytical and computational approaches. The literature results concerning Young’s modulus, 
shear modulus and Poisson’s ratio of perfect and with defects single-walled and multi-walled carbon 
nanotubes and their heterojunction are analysed and systematized. 
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1. Introduction 

For more than two decades, systematic research has been conducted for developing 
nano-materials such as carbon nanotubes (CNTs) that are unique nanostructures with regard to their 
mechanical, optical, thermal and electrical properties [1], the latter of which can also be seen as a 
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prototypical quantum nanowire, where quantum effects influence the electrical transport   
properties [2]. Carbon nanotubes are optimal structures to reinforce composites, building blocks for 
optical and electronic nanodevices [3,4,5], and efficient components for designing new materials 
with required electronic and mechanical properties [6]. From the point of view of construction of 
nanodevices, the CNT heterojunctions are necessary constituents for the circuits, amplifiers, switches 
and nanodiodes [7]. In order to design composites reinforced with CNTs, nanosensors and 
CNT-based electronic devices, the understanding of the CNTs’ mechanical properties is 
indispensable, since the stability and efficiency of nanodevices are highly dependent on the 
mechanical properties of their components. 

There are two approaches commonly used to assess the elastic properties of CNTs: experimental 
and computational. Experimental methods for measuring the elastic modulus of CNTs, based on in 
situ techniques of atomic force microscopy (AFM) and transmission electron microscopy (TEM) 
have been established [8–11]. All experimental studies show the unparalleled mechanical properties 
of CNTs. However, there is inconsistency in the experimental mechanical results reported in the 
literature, owing to the complexity of the characterization of nanomaterials at the atomic scale. In 
fact, the experimental studies still show a wide scattering of their results. The reason of the scattering 
can also be associated with defects in the CNT’s structure: it is almost impossible to produce carbon 
nanotubes with a perfect structure because of the manufacturing constraints. It should be noted, that 
the lack of perfection of the lattice of the CNTs, used in experimental studies, can influence the 
results [12,13]. Due to these reasons, modelling and computer simulation for predicting the 
mechanical properties of CNTs have been developed. 

A considerable part of the theoretical investigations has been devoted to the modelling and the 
evaluation of the elastic properties, mainly Young’s modulus, of perfect (without defects) 
single-walled carbon nanotubes (SWCNTs), as for example [14,15,16]. Less attention has been paid 
to understanding the mechanical behaviour of SWCNT with defects and nanotube heterojunctions. 
The building of adequate numerical models of the multi-walled carbon nanotubes (MWCNTs) has 
also received less analysis so far, in spite of their high level of commercialization. 

Two recent review articles have been published under the scope of the work on carbon 
nanotubes. One, conducted by Rafiee and Moghadam [17], concerns the modelling techniques and 
simulation of mechanical and thermal properties, buckling and vibrational behaviour of perfect 
SWCNTs. Moreover, Yengejeh et al. [18] have reviewed the advances in the modelling and 
numerical characterization of the mechanical properties, buckling and vibrational behaviour of 
imperfect (with defects) and structurally modified carbon nanotubes, including CNT heterojunctions. 

The present work is focused on the achievements in the characterisation of mechanical 
properties of perfect and imperfect (with defects) single-walled and multi-walled CNTs, as well as 
CNT heterojunctions (HJs) by modelling their structure and mechanical behaviour, using theoretical 
(analytical and numerical) approaches. 

Following this introduction, the review gives a brief introduction to the atomic structure of 
CNTs and their heterojunctions. Afterwards, the modelling techniques for characterization of the 
CNTs’ mechanical behaviour are described and the outcomes attained in the evaluation of the elastic 
properties (Young’s and shear moduli, Poisson’s ratio) of SWCNTs, MWCNTs and CNT 
heterojunctions, with and without vacancy defects, are presented and discussed. 
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2. Atomic Structure of CNTs and Their Heterojunctions 

A simple way to describe an ideal single-walled nanotube is as a rolled-up graphene sheet 
giving rise to a hollow cylinder, whose surface is composed of hexagonal carbon rings (see, for 
example [19,20]). The hexagonal pattern is repeated periodically, leading to binding of each carbon 
atom to three neighbouring atoms by covalent bonds. A schematic illustration of an unrolled 
hexagonal graphene sheet is shown in Figure 1. The symmetry of the atomic structure of a nanotube 
is characterized by the chirality, which is defined by the chiral vector ࢎ࡯: 

ࢎ࡯ ൌ ૚ࢇ݊ ൅ ૛ (1)ࢇ݉

where n and m are integers, and ࢇ૚ and ࢇ૛ are the unit vectors of the hexagonal lattice. 

 

Figure 1. Illustration of an unrolled graphene sheet with definition of the chiral vector. 

The length of the unit vector ࢇ is defined as ܽ ൌ √3ܽ஼ି஼ with the equilibrium carbon–carbon 
(C–C) covalent bond length ܽ஼ି஼ usually taken to be 0.1421 nm [2]. The nanotube circumference, 
Lc, and diameter, ܦ௡ are: 

௖ܮ ൌ |ࢎ࡯| ൌ ܽඥ݊ଶ ൅ ݊݉ ൅݉ଶ (2)

௡ܦ ൌ
௖ܮ
ߨ

(3)

The chiral angle, ߠ, is defined by the angle between the chiral vector ࢎ࡯ and the direction (n, 
0). The chiral angle, ߠ, is given by Dresselhaus et al. [19]: 

ߠ ൌ sinିଵ
√3݉

2√݊ଶ ൅ ݊݉ ൅݉ଶ
 (4)

Three main symmetry groups of single-walled carbon nanotubes (SWCNTs) exist. When 
݊ ൌ ݉, the structure (n, n) is called armchair configuration; when ݉ ൌ 0, the structure (n, 0) is 
named zigzag; when ݊ ് ݉, the structure (n, m) is chiral. These three major categories of carbon 
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nanotubes can also be defined based on the chiral angle ߠ, as can be deduced from Eq. (4). For the 
two limiting chiral angles of 0 and 30, the nanotubes are referred to as non-chiral, zigzag and 
armchair, respectively. For ߠ different from 0 and 30, the nanotubes are designated as chiral. 
Schematic representations of three types of SWCNTs are shown on the Figure 2. 

zigzag 

armchair 

chiral 

Figure 2. Three structural models of SWCNTs. Obtained by using Nanotube Modeler  
software. 

The multi-walled carbon nanotubes are composed of multiple coaxial SWCNTs, which interact 
with each other by non-covalent interactions, the weak van der Waals forces which can be adequately 
modelled by using the Lennard–Jones potential. 

The CNT heterojunction can be represented as two CNTs that are connected by introducing an 
intermediate region with Stone–Wales defects [21], as illustrated in Figure 3 (Figure 3(a): heptagon 
defect; Figure 3(b): pentagon defect). Similarly to SWCNT structures, the geometrical parameters of 
heterojunctions (HJs) are the chirality, and diameter. There are two main heterojunction 
configurations [21]: (i) cone-heterojunctions (HJs of nanotubes with a given chiral angle but different 
radii) as armchair–armchair and zigzag–zigzag HJs, and (ii) radius-preserving heterojunctions (HJs 
preserving the radii, but with different chiral angles of the constituent nanotubes) as armchair–zigzag 
or chiral–armchair (or zigzag) HJs. Ghavamian et al. [22] also define heterojunctions of 
armchair–zigzag or chiral–armchair (or zigzag), with different radii, that designate as HJ with bent 
connection, in contrast to the cone-heterojunctions that they name as HJ with straight connection. 
According to the study of Yao et al. [23] most HJs (95%) are cone-heterojunctions type. The 
geometry of different type of heterojunctions is shown in Figure 4(a–c). 

The overall length of the heterojunction is defined as follows: 

ு௃ܮ ൌ ଵܮ ൅ ଶܮ ൅ ଷ (5)ܮ

where ܮଵ, ܮଶ are the lengths of the narrower and wider SWCNTs regions, respectively, and ܮଷ is 
the length of the connecting region (see, Figure 4(a)). 
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(a) 

 (b) 

Figure 3. Defects (in bold red) in the connecting region of the armchair–armchair (10, 
10)–(20, 20) heterojunction: (a) Heptagon defect; (b) Pentagon defect. HJ is obtained by 
using academic software CoNTub 1.0  [21]. 

When the heterojunction consists of two SWCNTs with different diameters (i.e., 
cone-heterojunction), the diameter of HJ can be characterised by the average of the narrower and 
wider diameters (see, for example [21]): 

ഥு௃ܦ ൌ
1
2
ሺܦ௡ଵ ൅ ௡ଶሻ (6)ܦ

And the aspect ratio of the cone-heterojunction is defined as [24]: 

ߟ ൌ
ଷܮ
ഥு௃ܦ

 (7)

According to Sakharova et al. [25], the length of the connecting region, ܮଷ, follows a quasi 
linear function with ሺܦ௡ଶ െ  .௡ଵሻ, for armchair–armchair and zigzag–zigzag cone-heterojunctionsܦ
The fitted straight line equation allows determining ܮଷ as follows: 

ଷܮ ൌ 2.9157ሺܦ௡ଶ െ ௡ଵሻ (8)ܦ

where ܦ௡ଵ  and ܦ௡ଶ  are diameters of the narrow and wider nanotubes, respectively. Similar 
relationship for the connecting region of cone-heterojunctions was proposed by Qin et al. 26, 
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basing on geometrical analysis: 

ଷܮ ൌ
√ଷ
ଶ
௡ଶܦሺߨ െ ௡ଵሻܦ ൌ 2.7207ሺܦ௡ଶ െ ௡ଵሻ (9)ܦ

 
(a) 

  

(b) (c) 

Figure 4. Geometry of (a) cone armchair–armchair (10, 10)–(15, 15) HJ; (b) 
radius-preserving armchair–zigzag (5, 5)–(10, 0) HJ and (c) armchair–zigzag (5, 5)–(15, 
0) HJ with bent connection. HJs structures obtained by using academic software CoNTub 
1.0  [21]. 

3. Modelling Techniques 

The theoretical approaches for the modelling and characterization of the CNTs’ mechanical 
behaviour can be grouped into three main categories: the atomistic approach, the continuum 
mechanics (CM) approach and the nanoscale continuum modelling (NCM) approach, also called 
molecular structural mechanics (MSM), as it was firstly introduced by Rafie and Moghadam [17], 
who discussed the applicability and efficiency of these three approaches toward understanding 
behaviour of carbon nanotubes. 

During the first years of theoretical studies on CNTs, solely atomistic modelling, which 
calculates the positions of atoms based on their interactive forces and boundary conditions (see, for 
example, [27]), has been used. Atomistic modelling, used solely during the first years of theoretical 
studies on CNTs. Atomistic modelling comprises the molecular dynamics (MD) [28–34] and ab 
initio approach [35]. MD is a numerical technique simulating the motions of a system of particles 
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based on Newton’s second law. The key to the MD simulation is to choose an appropriate potential 
energy model to describe the bonding and nonbonding interactions between carbon atoms in 
nanotube. These interactions are described by means of analytical or empirical potential functions. 
Lu [29] employed an empirical force-constant model, where the atomic interactions near the 
equilibrium structure were approximated by the sum of pairwise harmonic potentials between atoms. 
Jin and Yuan [30] in their MD simulation adopted force-constant approach, using force potentials to 
describe the interatomic atomic interactions. In the MD simulation studies of Liew et al. [31] and 
WenXing et al. [32], the interaction force between atoms was modelled using a second generation 
reactive empirical bond order (REBO) potential coupled with the Lennard–Jones potential.  
Yakobson et al. [28] used a many-body interatomic potential (Tersoff–Brenner potential) with a 
continuum shell model. Zhang et al., [33] compared two MD modelling approaches, using for this 
purpose the Tersoff–Brenner and modified Morse potentials. The approach of Cheng et al. [34] 
integrated classical MD simulation with Tersoff–Brenner potential and nanoscale continuum 
modelling. Wilmes and Pinho [36] proposed a new molecular dynamics finite element method 
(MDFEM), where the equilibrium equations of MD are embedded within computationally more 
favourable FE method. Also, tight-binding molecular dynamics (TBMD), another atomistic 
modelling method, which offers a compromise between ab initio methods and MD simulations with 
empirical potentials, was developed [37,38]. Molecular dynamics can be used in large systems and 
provide good predictions of CNTs’ mechanical properties under different loading conditions, but it is 
still restricted owing to its being very time consuming, especially when long or multi-walled CNTs 
are simulated. Generally, ab initio methods give more accurate results than MD, but they are highly 
expensive in terms of computational resources and are limited to be used for a small number of 
molecules or atoms. In recent years, the atomistic approaches, due to their big computation cost, have 
been gradually replaced by continuum approaches, which are at the moment the most indicated for 
effective computational simulation of large systems. 

The basic assumption of the continuum mechanics (CM) approach consists of the modelling of 
CNTs as a continuum structure, concerning the distribution of mass, stiffness, etc., i.e., the real 
discrete structure of the nanotubes is neglected and replaced by a continuum medium. Some authors 
have explored continuum shell modelling for studying the mechanical behaviour of CNTs [39–42]. 
However, the chirality of CNTs is not taken into account in the continuous shell approach, and so its 
effect on the mechanical behaviour of CNTs cannot be captured. To overcome this obstacle, Chang 
proposed an anisotropic shell model for SWCNTs [43] that can predict some anisotropic effects, 
related to chirality. Besides shell structures, other continuum structures, such as tubes and plates, are 
employed in CM approaches. In the models of Sears and Batra [44], and Gupta and Batra [45] the 
whole single-walled CNT’s structure was simulated as an equivalent continuum tube. Wang [46] 
employed the equivalent elastic plate model. Arash and Wang [47] show the advantages of the 
continuum theory applied to the modelling of shells and plates. However, whatever the type of the 
CM approach, the replacement of the whole CNT’s structure by a continuum element is not a 
completely satisfactory method to evaluate CNT’s mechanical properties, because it depends on 
additionally introduced material properties and it is restricted to certain mechanical behaviours of 
CNTs [17]. 

The nanoscale continuum modelling (or molecular structure mechanics: NCM/MSM) approach 
consists of replacing the carbon–carbon (C–C) bond with a continuum element. As a result, 
continuum mechanics theories can be used at the nanoscale, i.e., the connection between molecular 
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configuration and solid mechanics is considered. The NCM/MSM approach consists of considering 
different elements, such as rod, truss, spring and beam, well described in elasticity theory, to simulate 
C–C bonds (see, for example, [14,16,48–52]). The first nanoscale continuum model of CNTs was 
developed by Odegard et al. [48] and consisted of a continuum truss model. The disadvantage of the 
truss model is the impossibility of describing the CNTs’ mechanical behaviour under torsional load, 
because the out-of-plane torsion of the C–C bond cannot be taken into account. Various FE models 
where the C–C bonds are simulated using diverse kinds of elastic spring elements, such as linear, 
non-linear, rotational, torsional, have been recently reported [15,53–59]. Although the use of spring 
elements is an effective way for simulating the bond angle variations, the accuracy of the 
determination of the elastic properties depends on the choice of the potential function for the 
calculation of the force constants. 

Since Li and Chou [49] established a direct relationship between the structural mechanics 
parameters of the beam element and the molecular mechanics parameters, the NCM approach, 
employing the beam element for replacing the C–C bond, has been successfully used to simulate the 
mechanical behaviour of CNT, although with different formulations of the inter-atomic molecular 
potential energies and boundary conditions [14,16,51,52,60–67]. The FE models, which employed 
beam elements, developed by Tserpes and Papanikos [14], To [60], Papanikos et al. [61], Ávila and 
Lacerda [62], Sakharova et al. [16], and Ghadyani and Öchsner [67] differ from each other mainly 
due to the boundary conditions and the method for the Young’s modulus calculation. The recent 
three-dimensional (3D) FE model of Lu and Hu [65] used the same formulation for the potential 
energy of the covalent system, but considering an elliptical cross-section area of the equivalent beam. 
In the works of Chen et al. [51] and Eberhardt and Wallmersperger [52] the original Li and Chou [46] 
model was modified, mainly with respect to the bending rigidity of the beam element. For this 
purpose, rectangular beam elements with minor and major axes of bending rigidities were considered 
by Chen et al. [51], for representation of the covalent bonds. Eberhardt and Wallmersperger [52] 
proposed that the geometrical and material parameters defining the beams can be obtained with the 
help of a specific modified molecular structural mechanics approach which is consistent in terms of 
the involved energies. In another analytical approach developed by Shokrieh and Rafiee [63], the 
deformations of the beam elements were obtained using the Castiglinao’s theorem. In the works of 
Her and Liu [64], and Mohammadpour and Awang [61] the modified Morse potential function for the 
potential energy of the covalent system was applied for describing the non-linear behaviour of C–C 
bonds. In their recent work, Giannopoulos et al. [68], who employed linear bar elements to simulate 
interatomic interactions between carbon atoms, showed the efficiency of this model for the 
investigation of the stability of CNTs under compressive and radial loads. In contrast to 
abovementioned works, which used classical truss, spring, bar and beam elements to simulate C–C 
bond, Nasdala and Ernst [69] developed a special 4-node element for computing internal forces of 
the molecular system without necessity of the determination of material parameters. In a recent 
review, Rafiee and Moghadam [17] concluded that NCM is an efficient modelling approach for 
simulation of the CNT’s behaviour, which does not require intensive computation and can be applied 
to complex systems without limitation of length scales, when comparing with atomistic modelling. 

The knowledge of the bond length of CNTs is of fundamental importance for the modelling of 
their mechanical properties. Its value is generally considered to be equal to that of the graphene sheet, 
ܽ஼ି஼ = 0.1421 nm. Nevertheless other values have been considered: for example, Budyka [70] 
reported that rolling up the graphene sheet into armchair SWCNT leads to a slight elongation of the 
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C–C bond. The value of the wall thickness of CNTs is varied in the literature sources. Although a few 
theoretical reports have provided values for nanotube wall thickness, ݐ௡, that range from 0.064 [40] 
to 0.69 nm [48], the most widely used value is 0.34 nm (equal to the interlayer spacing of graphite). 
Most of the elastic properties results, obtained in the theoretical and numerical simulation studies, 
depend on the assumption of the value of CNT’s wall thickness. In recent times, an attempt to 
acquire a thickness free expression for the CNT’s stiffness has been undertaken by Ghadyani and 
Öchsner [71]. 

4. Elastic Properties of the Single-walled Carbon Nanotubes 

4.1. Rigidities of SWCNTs 

Numerical simulation studies related to nanotube rigidities are infrequent in the       
literature [16,61,72]. The linear relationships between the nanotube elastic rigidities and chiral 
indices, ݊, were firstly obtained by Papanikos et al. [61] for non-chiral SWCNTs. Later, in the works 
of Sakharova et al. [16] and Pereira et al. [72], single equations valid for armchair, zigzag and chiral 
SWCNTs, which allows correlating the tensile, ܣܧ, bending, ܫܧ, and torsional, ܬܩ, rigidities of the 
SWCNT with the nanotube diameter, ܦ௡, were proposed: 

ܣܧ ൌ ௡ܦሺߙ െ ଴ሻ (10)ܦ

ܫܧ ൌ ௡ܦሺߚ െ ଴ሻଷܦ (11)

ܬܩ ൌ ௡ܦሺߛ െ ଴ሻଷܦ (12)

The values of the fitting parameters ߚ ,ߙ,  and ܦ଴ obtained in the works [16,72], and those 
calculated based on the results of the work [61] are summarized in Table 1. 

Table 1. Fitting parameters   ,ߙ  ,ߚ  ߛ and ܦ଴. 

Parameter Value [16,72] Value [61] 

,ߙ ݊ܰ ∙ ݊݉ିଵ 1131.66 1128.15 

,ߚ ݊ܰ ∙ ݊݉ିଵ 143.48 142.54 

ܰ݊ ,ߛ ∙ ݊݉ିଵ 130.39 135.38 

,଴ܦ ݊݉/݊଴ 3.5 × 10−3 0 
 Includes armchair, zigzag and three families, ߠ ൌ 8.9°, 13.9°, 19.1°, of chiral SWCNTs. 
 Includes armchair and zigzag SWCNTs (these values were obtained by equations similar to (10–12), in 

which ݊ and ݊଴ replace ܦ௡ and ܦ଴, respectively). 

The relationships (10–12) and the values of the parameters ߚ ,ߙ,  and ܦ଴, in Table 1, allow 
easy evaluation of the Young’s modulus and the shear modulus as a function of the nanotube 
diameter [16,72]: 

ܧ ൌ
௡ܦሺߙ െ ଴ሻܦ

௡ට8ݐߨ
௡ܦሺߚ െ ଴ሻଶܦ

ߙ െ ௡ଶݐ
(13)
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ܩ ൌ
௡ܦሺߛ െ ଴ሻܦ

௡ݐߨ2 ൬
ߚ
൰ߙ

ට8
௡ܦሺߚ െ ଴ሻଶܦ

ߙ െ ௡ଶݐ
 

(14)

4.2. Young’s Modulus of SWCNTs 

The results available in the literature, concerning the evaluation of SWCNTs’ Young’s modulus 
by different modelling methods, are summarized in Table 2. This table also includes experimental 
results reported by Krishnan et al. [73], who used thermal vibrations to estimate the Young’s modulus, 
and the results of Yu et al. [74], who used the tensile test. The discrepancies observed between the 
Young’s modulus results are due to different assumptions for the value of the CNT’s wall thickness, 
 ,௡, (indicated in the Table 2), modelling approaches (MD, CM, NCM/MSM), potential functionsݐ
force fields constants, formulations for Young’s modulus determinations, etc. 

Reviewing the data available in the literature, concerning the prediction of the SWCNTs’ elastic 
moduli, it can be seen that there are some discrepancies not only in the Young’s modulus values, but 
also in the trend of their evolution with the nanotube diameter. This evolution can be separated into 
two tendencies, as shown in Figure 5: (i) the Young’s modulus decreases with increase of the 
nanotube diameter, and with further increase of the nanotube diameter, the Young’s modulus tends 
towards approximately a constant value [16,33,58,61,75] as shown in Figure 5(a); (ii) the Young’s 
modulus is almost constant over the whole range of nanotube diameters [15,30,32,51,52,62,65,67,68] 
as shown in Figure 5(b). In some cases the Young’s modulus slightly changes for small nanotube 
diameters [15,51,52,62,65,68]—see Figure 5(b). Concerning the effect of SWCNT’s chirality on the 
Young’s modulus, some authors reported similar values for non-chiral and chiral        
SWCNTs [16,61,75]. A small difference between the Young’s modulus for armchair and zigzag 
SWCNTs is reported by Zhang et al. 31, Chen et al. [51] and Eberhardt and Wallmersperger [52], 
and for the three SWCNTs’ chirality configurations by WengXing et al. [32], Avila and Lacerda 62, 
Lu and Hu 65, Ghadyani and Öchsner [67] and Giannopoulos et al. [68]. 

The evolution of the Young’s modulus with the wall thickness follows a quasi-linear trend with 
the inverse of the wall thickness, 1 ⁄௡ݐ  as it was reported by Tserpes and Papanikos 14 and Avila 
and Lacerda 62, for the case of (8, 8) armchair SWCNT with diameter ܦ௡ ൌ 1.085	݊݉, by 
Ghadyani and Öchsner [71] for the (10, 10) armchair SWCNT with diameter ܦ௡ ൌ 1.356	݊݉, and 
by Sakharova et al. [16] for nanotubes with diameter ܦ௡ ≳ 1.085	݊݉. In the latter case, for small 
nanotube diameters, ܦ௡ ≲ 1.085	݊݉, the deviation from the quasi-linear trend is pronounced for 
smaller values of 1 ⁄௡ݐ , particularly when the nanotube wall thickness approximates to half of its 
diameter, ݐ௡ ≳ 1 2⁄  .௡ܦ
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Table 2. Young’s modulus results of SWCNTs, available in the literature. 

Reference ݐ௡, nm Method Young’s modulus, ܧ, TPa 
A

to
m

is
tic

 m
od

el
lin

g [28] Yakobson et al., 1996 0.066 MD: Tersoff–Brenner potential 5.5 average value 

[29] Lu, 1997 0.34 MD: empirical force potential 0.97 average value 

[30] Jin and Yuan, 2003 0.34 MD: force-constant approach 1.236 average value 

[31] Liew et al., 2004 0.335 MD: REBO empirical potential 1.043 (10, 10) armchair 

[32] WenXing et al., 2004 0.34 MD: REBO empirical potential 0.929 average value 

[33] Zhang et al., 2005 0.335 MD: Tersoff–Brenner potential 1.08 converged value; zigzag 

[38] Cheng et al., 2009 0.34 MD: Tersoff–Brenner potential 1.2 converged value; armchair 

[37] Hernandez et al., 1998 0.34 TBMD 1.24 (10, 10) armchair 

[35] Zhou et al., 2000 0.074 TBMD 5.1 average value 

[35] Kudin et al., 2001 0.089 ab initio 3.859 average value 

C
M

 

[40] Pantano et al., 2004 0.075 FE continuum shell model 4.84 average value 

[41] Sears and Batra, 2004 0.134 Equivalent continuum tube 2.52 (16, 0) zigzag 

[44] Kalamkarov et al., 2006 0.129 Analytical shell model 1.44 – 

[45] Gupta and Batra, 2008 0.34 Equivalent continuum tube 0.964 av. value; non-chiral, chiral 

N
C

M
/M

SM
 

[48] Odegard et al., 2002 0.69 FE model: truss elements 0.49 – 

[53] Natsuki et al., 2004 0.34 Analytical 2D model: springs 0.61 average value 

[54] Meo and Rossi, 2006 0.34 FE model: non-linear springs and linear 

torsional springs 

0.926 (10, 10) armchair 

[55] Giannopoulos et al., 2008 0.34 3D FE model: linear springs 1.247 average value 

[58] Parvaneh and Shariati, 2011 0.34 FE model: linear and non-linear springs 1.170 (22, 0) zigzag 

[15] Rafiee and Heidarhaei, 2012 0.34 FE model: non-linear springs 1.325 converged value; non-chiral 

[59] Mahmoudinezhad et al., 2012 0.34 3D FE model: rotational springs 0.85 converged value; armchair 

[49] Li and Chou, 2003 0.34 3D FE model: linear beams 1.015 average value; non-chiral 
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N
C

M
/M

SM
 

[14] Tserpes and Papanikos, 2005 0.147 3D FE model: linear beams 2.377 (8, 8) armchair 

[60] To, 2006 0.34 3D FE model: linear beams 1.03 (17, 0) zigzag 

[61] Papanikos et al., 2008 0.34 3D FE model: linear beams 1.072 converged value; non-chiral 

[62] Ávila and Lacerda, 2008 0.34 3D FE model: linear beams 1.005 av. value; non-chiral, chiral 

[63] Shokrieh and Rafiee, 2010 0.33 Analytical model: beams 1.042 converged value; armchair 

[51] Cheng et al., 2010 – Analytical model: rectangular beams 1.083 (24, 24) armchair 

[66] Mohammadpour and Awang, 2011 0.147 FE model: nonlinear beams; Morse potential 2.037 (10, 10) armchair 

[64] Her and Liu, 2012 0.34 FE model: nonlinear beams; Morse potential 0.927 (10, 10) armchair 

[65] Lu and Hu, 2012 0.34 3D FE model: elliptical cross section beams 1.058 converged value; zigzag 

[68] Giannopoulos et al., 2013 0.34 3D FE model: linear bar elements 1.347 converged value 

[67] Ghadyani and Öchsner, 2015 0.34 3D FE model: linear beams 1.053 converged value; zigzag 

[52] Eberhardt and Wallmersperger, 2015 0.34 3D FE model: tetrahedrons formed by beams 0.803 converged value; non-chiral 

[16] Sakharova et al., 2015 0.34 3D FE model: linear beams 1.078 converged average value; 

non-chiral and chiral 

E
xp

er
im

en
ta

l [73] Krishnan et al., 1998 – TEM, thermal vibrations 1.3 

(−0.4/ 

+0.6) 

average value; ܦ௡ in the range of 

1.0 െ 1.5 ݊݉ 

[74] Yu et al., 2000 – AFM, tensile test 1.0 average value 
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(a) 

(b) 

Figure 5. Literature results for the Young’s modulus of SWCNTs. (a) and (b) show two 
different trends for the evolution of the Young’s modulus	ܧ, with respect to the nanotube 
diameter, ܦ௡. 

4.3. Shear Modulus and Poisson’s Ratio of SWCNTs 

The works dealing with the evaluation of the shear modulus are scarcer than the ones 
determining the Young’s modulus. It can be concluded from the available studies that there are two 
methods commonly used to evaluate the CNTs’ shear modulus. One of them consists of the direct 
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determination of the shear modulus, from numerical simulation results of the torsion        
tests [30,45,50,55,60,61,65,68,76] or using analytical models that describe the torsional     
response [53,77,78]. The other method to assess the CNTs’ shear modulus uses the results of the 
tensile test and resorts to the relationship between the Young’s modulus and the Poisson’s ratio, 
under isotropic conditions [30,50,75,79]. Only a few works compare results of the shear modulus, 
obtained by torsion and tensile tests [30,50,72]. A robust methodology for evaluating the shear 
modulus from results of tensile, bending and torsion tests was proposed by Pereira et al. [72]. 

Table 3 summarizes the numerical and analytical shear modulus results available in the 
literature. The only experimental result reported in the literature [8], to the best of our knowledge, 
was obtained by electrostatic torsion and is also shown in the Table 3. The discrepancies observed 
between the shear modulus values available in the literature are due to the same type of reasons 
above specified for the Young’s modulus results: different assumptions for the value of the CNT’s 
wall thickness, ݐ௡, (indicated in the Table 3), modelling approaches (MD, CM, NCM), potential 
functions, force fields constants and formulations for shear modulus determinations. Figure 6 shows 
the evolutions of the shear modulus value with the nanotube diameter, ܦ௡. In cases of Figure 6(a), 
the shear modulus decreases with increasing the nanotube diameter, and with further increase of the 
nanotube diameter, the shear modulus tends towards approximately a constant value [33,53,61,72]; in 
Figure 6(b) the shear modulus mainly increases with increasing the nanotube        
diameter [14,29,30,45,51,60,68,76,77]. 

Although several studies regarding the Poisson’s ratio of SWCNTs have been carried       
out [29,30,45,52,62,72,75,77,78,80], there is still no commonly accepted value. The most common 
values reported in the literature are in range 0.1–0.3 (see, for example, [30,52,53,72,75,77]), but 
values of 0.64 [81], 0.66 [62] and close to zero [63,80] are also reported. Most        
authors 29,30,53,62,75,77,78,80 used the definition of Poisson’s ratio for its evaluation. This 
requires the knowledge of the axial, ߝ∥, and normal ୄߝ strains in tension, as follows: 

ߥ ൌ െ
ୄߝ
∥ߝ

 (15)

Recently, a robust methodology to assess Poisson’s ratio from the results of the bending and 
torsion rigidities was recommended recently by Pereira et al. [65]. 

Figure 7 and Table 4 allow comparing the Poisson’s ratio results currently available in the 
literature. Table 4 contains the comprehensive information on the methodology and formulation used 
for assessing the Poisson’s ratio. Whenever possible, Table 4 also refers to whether or not it agree 
with the relationship ܩ ൌ ܧ ⁄ ሾ2ሺ1 ൅  ሻሿ, for isotropic conditions. Figure 7 and Table 4 show thatߥ
the Poisson’s ratio is very sensitive to different modelling approaches, analytical or numerical 
simulation methods, force fields constants used and formulation for Poisson’s ratio assessment. For 
example, Dominguez-Rodriguez et al. 80 attributed the difference between the values of the 
Poisson’s ratio obtained by the equivalent beam approach and density functional theory (DFT), to the 
input values of the force field constants (݇௥, ݇ఏ) in the numerical simulations. Nevertheless, the 
evaluation of the Poisson’s ratio from the results of the tensile and torsion elastic moduli (E and G), 
by using the relationship ܩ ൌ ܧ ⁄ ሾ2ሺ1 ൅  ሻሿ, allows obtaining values similar to those determinedߥ
by Eq. (15). Figure 7 also allows comparing the evolution of the Poisson’s ratio value with the 
nanotube diameter, ܦ௡, reported in the literature. 
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Table 3. Shear modulus results of SWCNTs, available in the literature. 

Reference ݐ௡, nm Method Test Shear modulus, ܩ, TPa 
M

D
 

[29] Lu, 1997 0.34 empirical force potential tensile 0.455 av. value; non-chiral, chiral 

[30] Jin and Yuan, 2003 0.34 force-constant approach torsion 0.492 average value; armchair 

tensile 0.491 

energy approach torsion 0.547 

tensile 0.536 

C
M

 

[45] Gupta and Batra, 2008 0.34 Equivalent continuum tube torsional 

vibrations 

0.403 av. value; non-chiral, chiral 

N
C

M
/M

SM
 [53] Natsuki et al., 2004 0.34 Analytical 2D model: springs torsion 0.300 average value; non-chiral

[49] Li and Chou, 2003 0.34 3D FE model: linear beams torsion 0.480 average value; non-chiral

[75] Shen and Li, 2004 – Analytical model torsion 0.439 converged value; non-chiral

[77] Xiao et al., 2005 0.34 Analytical model torsion 0.470 converged value; non-chiral

[14] Tserpes and Papanikos, 2005 0.147 3D FE model: linear beams torsion 2.377 (8, 8) armchair

[78] Wu et al., 2006 0.268 Analytical model torsion 0.418 converged value; non-chiral

[60] To, 2006 0.34 3D FE model: linear beams torsion 0.475 (17, 0) zigzag

[55] Giannopoulos et al., 2008 0.34 3D FE model: linear springs torsion 0.325 average value

[61] Papanikos et al., 2008 0.34 3D FE model: linear beams torsion 0.509 converged value; non-chiral

[51] Cheng et al., 2010 – Analytical model: rectangular beams torsion 0.427 (24, 24) armchair

[65] Lu and Hu, 2012 0.34 3D FE model: elliptical cross section 
beams

torsion 0.469 (18, 18) armchair

[68] Giannopoulos et al., 2013 0.34 3D FE model: linear bars torsion 0.327 converged value

[50] Ghavamian et al., 2013  0.34 3D FE model: linear beams tensile 0.378 (10, 10) armchair 

torsion 0.500 

[72] Pereira et al., 2016 0.34 3D FE model: linear beams tensile + 

bending + 

torsion 

0.484 converged value; non-chiral, chiral 

E
xp

 

[9] Hall et al., 2006 – SEM electrostatic 
torsion 

0.410 unidentified type 
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(a) 

 
(b) 

Figure 6. Literature results for the shear modulus of SWCNTs; (a) and (b) show two 
different trends for the evolution of the shear modulus ܩ, with respect to the nanotube 
diameter, ܦ௡.
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Table 4. Poisson’s ratio of SWCNTs, available in the literature. 

Reference Method Test Formulation Poisson’s ratio,  ߥ

A
to

m
is

ti
c 

ap
pr

oa
ch

 

[27] Lu, 1997 MD: empirical force potential tensile ߥ ൌ െୄߝ ⁄∥ߝ   0.278** average value; non-chiral, chiral 

[28] Jin and Yuan, 2003 MD tensile ߥ ൌ െୄߝ ⁄∥ߝ   0.259* average value; armchair 

[73] Domínguez-Rodríguez et 

al., 2014 

ab initio (DFT) tensile ߥ ൌ െୄߝ ⁄∥ߝ   0.185 average value; armchair 

C
M

 

[42] Gupta and Batra, 2008 Equivalent continuum tube axial + 

torsional 

vibrations 

normal mode 

vibration 

0.140–0.249* non-chiral, chiral 

N
C

M
/M

SM
 

[48] Natsuki et al., 2004 Analytical 2D model: springs tensile ߥ ൌ െୄߝ ⁄∥ߝ   0.27** non-chiral 

[68] Shen and Li, 2004 Analytical model tensile ߥ ൌ െୄߝ ⁄∥ߝ   0.16** converged value; non-chiral 

[70] Xiao et al., 2005 Analytical model tensile ߥ ൌ െୄߝ ⁄∥ߝ   0.2* converged value; non-chiral 

[71] Wu et al., 2006 Analytical model tensile ߥ ൌ െୄߝ ⁄∥ߝ   0.273* converged value; non-chiral 

[56] Papanikos et al., 2008 3D FE model: linear beams bending + 

torsion 

ߥ ൌ ሺߚ∗ ⁄∗ߛ ሻ െ 1 0.056** armchair 

0.049** zigzag 

[57] Ávila and Lacerda, 2008 3D FE model: linear beams tensile ߥ ൌ െୄߝ ⁄∥ߝ   0.15–0.29 average value; non-chiral, chiral 

[73] Domínguez-Rodríguez et 

al., 2014 

3D FE model: linear beams tensile ߥ ൌ െୄߝ ⁄∥ߝ   0.061 average value; armchair 

[52] Eberhardt and 

Wallmersperger, 2015 

3D FE model: tetrahedrons formed 

by beams 

tensile ߥ ൌ െୄߝ ⁄∥ߝ   0.274 average value; non-chiral 

[72] Pereira et al., 2016 3D FE model: linear beams bending + 

torsion 

ߥ ൌ ሺܫܧ ⁄ܬܩ ሻ െ 1  

ߥ ൌ ሺߚ ⁄ߛ ሻ െ 1   

(see Eqs. 10–12) 

0.10* converged value; non-chiral, 

chiral 

ܫܧ :relate the bending and torsion rigidities, respectively, with the chiral index, ݊ by cubic equations ∗ߛ	and	∗ߚ ൌ ሺ݊∗ߚ െ ݊଴ሻଷ and ܬܩ ൌ ሺ݊∗ߛ െ ݊଴ሻଷ. 

ܩ value satisfies the relationship ߥ * ൌ ܧ ሾ2ሺ1 ൅ ⁄ሻሿߥ . 

ܩ value does not satisfy the relationship ߥ ** ൌ ܧ ሾ2ሺ1 ൅ ⁄ሻሿߥ . 



723 

AIMS Materials Science  Volume 4, Issue 3, 706-737. 

 

Figure 7. Literature results for the evolution of the Poisson’s ratio, , with respect to the 
nanotube diameter, ܦ௡. 

4.4. Elastic Properties of SWCNTs with Vacancy Defects 

The defects of the CNT’s structure, such as single and multiple vacancies, show suitable effects 
for numerous applications of nanotubes. CNT’s vacancy defects act as interfacial bonding places in 
reinforced nanocomposites, as storage of hydrogen and help the transition from one diameter to 
another in nanotube heterojunctions. The defects in CNTs are mainly due to their chemical  
synthesis [82] and to their chemical treatment in the purification process [83], or when the CNTs are 
subjected to irradiation [84]. 

In recent years, numerical studies regarding the effect of the defects on the CNT’s mechanical 
properties have been carried out. For example, Scarpa et al. [85], Parvaneh and Shariati [58], 
Parvaneh et al. [86], Rahmandoust and Öchsner [87], Ghavamian et al. [88], Ghavamian and  
Öchsner [89,90], Poelma et al. [91], Sakharova et al. [92,93], Wong [94], Rafiee and Pourazizi [95], 
Zhang et al. [96] and Rafiee and Mahdavi [97] performed the simulations of the elastic behaviour of 
SWCNTs with vacancy defects; these defects consist in the absence of carbon atoms and their bonds. 
Other authors have reconstructed the C–C bonds near the atoms removed to form new bonds, as for 
example, Sharma et al. [98], Saxena and Lal [99] and Yuan and Liew [100]. 

The influence of vacancy defects on the Young’s modulus has been extensively studied. The 
studies of Scarpa et al. [85], Parvaneh and Shariati [58], Parvaneh et al. [86], Rafiee and    
Pourazizi [95], Zhang et al. [96], Rafiee and Mahdavi [97], Sharma et al. [98], and Saxena and   
Lal [99] relate to a few specific types of nanotubes and vacancies, and also to relatively small 
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percentages of defects (less than 2.5% or in terms of the number of vacancies, up to 6). 
Wong [94] considered a high number of the vacancies with several configurations, reaching a 

defect composed of twelve single vacancies together. Yuan and Liew [100] studied two types of 
vacancies (single and double ones) with percentages up to 8.0%. The studies of        
Sakharova et al. [92,93] have contributed to the understanding of the influence of the large amount 
(up to 10%) of different types of vacancies (single, double, triple and four single vacancies together) 
on the elastic properties of non-chiral and chiral SWCNTs, over a wide range of diameters. 

The reduction of the Young’s modulus observed in nanotubes with defects is a common result of 
the conducted studies. Several authors reported an approximately linear trend of the decreasing of 
Young’s modulus with increasing of the number of vacancies (see, for example [87,88,92,96,97]. The 
literature results regarding the Young’s modulus of defective SWCNTs are shown in the Table 5. 

Also other SWCNTs’ mechanical properties are deteriorated in presence of the vacancy defects. 
The studies of Ghavamian and Öchsner [89,90] showed that the presence of 0.5 and 1.0% of vacancy 
defects in the armchair and zigzag single-walled and multi-walled CNTs leads to a significant 
decrease of the CNT’s critical buckling load [89] and natural frequencies [90]. Poelma et al. [91] 
found that the position of the single vacancy defect significantly influences the critical buckling load 
of the SWCNTs at low temperatures. The study of Wong [94] showed a drop of the ultimate tensile 
strength and the tensile failure strain when the number of vacancies increases in the armchair and 
zigzag SWCNTs, especially when the vacancies are situated along the cross-section of the nanotube. 
Saxena and Lal [99], and Sharma et al. [98] found, that the presence of vacancy defects reduces the 
tensile and compressive strengths, and failure strain of the nanotube. Zhang et al. [96] showed that 
the presence of double vacancy defect can deteriorate the radial mechanical properties of SWCNTs, 
reducing the collapse pressure. 

For studying the fracture behaviour, some authors [12,13,101] have chosen to rebuild the C–C 
bonds around the atoms removed. Among their findings, a substantial reduction of the nanotube 
strength [13,101] and failure stresses and strains [12] should be pointed out. 

5. Modelling and Elastic Properties of Multi-walled Carbon Nanotubes 

In recent years, the research interest has also been focused on multi-walled carbon nanotubes 
(MWCNTs), i.e., structures formed by two or more concentric SWCNTs, because of their outstanding 
mechanical properties which can be advantageous for the improvement of structural composites and 
due to their high level of commercialization 102. MWCNTs are comprised of 2 to 50 coaxial 
SWCNTs with an interlayer spacing generally considered similar to the interlayer spacing of graphene, 
0.34 nm. The most common values experimentally determined for the interlayer distance are close to 
this value. For example, Kharissova and Kharisov 103 and Kiang et al. 104 reported values in the 
ranges of 0.32–0.35 nm and 0.342–0.375 nm, respectively. The diameter of MWCNTs can attain    
30 nm in contrast to 0.7–2.0 nm for typical SWCNTs. 

In spite of numerous numerical simulation studies performed towards the evaluation of the 
mechanical properties of carbon nanotubes, the modelling and numerical characterization of 
MWCNTs have received less research attention compared to SWCNTs. The essential difference 
between the simulation of SWCNTs and MWCNTs is to consider, in the simulation of the latter, the 
non-covalent weak van der Waals force. This requires significant modelling and computing efforts. 
The first simulations taking into account the van der Waals force were performed by Li and Chou [105], 
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introducing a nonlinear truss rod model in their study on the elastic behaviour of multi-walled carbon 
nanotubes with up to 4 layers under tension and torsion. This model comprises the complex mesh of 
the truss rods in addition to the beam element mesh for the simulation of each SWCNT composing the 
MWCNT. The studies that followed this work seek to simplify the MWCNT modelling technique. To 
this end, Kalmakarov et al. [41] recommended a massless non-linear spring element for the van der 
Waals force simulation. Also, several MWCNT’s models with up to 5 layers using spring elements to 
describe the van der Waals interactions were successfully developed by Rahmandoust and Öchsner [79] 
and Ghavamian et al. [50,88]. Rahmandoust and Öchsner [79] concluded that the modelling of the van 
der Waals interactions between atoms of neighbour layers (SWCNTs) of the MWCNTs is not 
necessary in the case of uniaxial tensile test, because the MWCNT’s models, whether or not taking into 
account the van der Waals force, showed similar Young’s modulus results. In case of torsion test, a 
difference in the shear modulus values of about 9.0% is observed between results obtained with and 
without the van der Waals interactions. In their finite element model of double-walled carbon 
nanotubes, Fan et al. [106] proposed an interlayer pressure to model the van der Waals interaction. The 
mentioned models help to save the computing effort and show reasonable agreement with the results in 
the literature. Besides springs, other elements were tested to model the van der Waals force; for 
example, beam elements were used by Nahas and Abd-Rabou [107] to simulate not only the covalent 
C–C bonds but also the van der Waals force between layers, in double- and triple-walled CNTs. 
Recently, Sakharova et al. [108] have employed a simplified finite element model of MWCNTs 
without taking into account the van der Waals forces, but with boundary conditions allowing the 
simultaneous deformation of all the SWCNTs that constitute the respective MWCNT. With the help of 
this model, a systematic evaluation of the Young’s modulus of non-chiral MWCNTs with up to 10 
layers was carried out [108], from tensile and bending tests. The Young’s modulus values obtained in 
their work [108] were in good agreement with the results available in the literature, where the van der 
Waals interactions were taken into account. The elastic moduli results for MWCNTs available in the 
literature are presented in the Table 6. In most cases, the Young’s modulus and the shear modulus were 
calculated from the numerical results of the conventional tensile [41,50,88,105,106,107] and   
torsion [41,50,105,106] tests, using the respective definitions from the classical theory of elasticity. 
Sakharova et al. [107] evaluated the MWCNTs’ Young’s modulus from the values of the tensile and 
bending rigidities. With regard to the boundary conditions, the simulation of the MWCNT’s tensile test, 
in the works [41,50,105,106], was achieved by subjecting all nodes at one end to the same axial force, 
while all nodes at the other end were fixed. In the simulation of torsion tests, Kalmakarov et al. [41] 
and Fan et al. [106] applied a torsional moment to all end nodes of multi-walled nanotube, when in the 
study of Li and Chou [105] only the outer layer of MWCNT was subjected to torsion.      
Ghavamian et al. [50,88], in tensile and torsion tests, Nahas and Abd-Rabou [107], in tensile tests, and 
Sakharova et al. [108], in tensile and bending tests, applied displacements, instead of forces or 
moments, to all nodes at one end of the MWCNT, leaving the other end fixed. Figure 8 compares the 
evolutions of the Young’s modulus and shear modulus with the number of layers, N, constituting the 
MWCNTs. 



726 

AIMS Materials Science                                                                            Volume 4, Issue 3, 706-737. 

Table 5. Results available in the literature on the reduction of the elastic moduli of SWCNTs due to vacancy defects. 

Reference Method 
Numb./ 

percentage 
vac. 

C–C bond 
reconstruction

Vac. 
configuration SWCNT 

Ered 

(%) 

Gred 

(%) 
Comments 

[100] Yuan and Liew, 

2009 

ab initio (DFT) 2.5% yes single 
double 

armchair (5, 5) 18.0 – Young’s modulus decreases with 
different rates with respect to the 
number of vacancy defects 

8.0% 31.0
2.2% armchair (10, 10) 21.0
8.5% 36.0

[94] Wong, 2010 MD: 
Tersoff–Brenner 
(TB) potential 

8 no single 
double 

12 vac. cluster

zigzag (8, 0) 12.0 – Approximately linear reduction of 

Young’s modulus; vacancy location 

along the axial direction. 
16 armchair (10, 10) 8.0

[58] Parvaneh and 

Shariati, 2011 

NCM: linear and 
non-linear 
springs 

1.0% yes single double 
triple 

armchair (7, 7) 6.6 – The vacancy configuration does not 

influence the results. 1.25% zigzag (12, 0) 8.2

[99] Saxena and Lal, 

2012 

MD: COMPASS 
potential 

1 no single armchair (6, 6),
(10, 10) 

0.9 – Non-linear reduction of Young’s 

modulus 4 5.09

[88] Ghavamian et 

al., 2012 

NCM: linear 
beams 

0.5% no single armchair (10, 10) 3.8 – Linear reduction of Young’s 

modulus: Ered = 7.69 Vac%. 1.0% zigzag (14, 0) 7.7 

[98] Sharma et al., 

2014  

MD: COMPASS 
potential 

1 yes single armchair (4, 4) 6.0 8.0 Non-linear reduction of elastic 

moduli. 4 17.0 40.0

[95] Rafiee and 
Pourazizi, 2014

NCM: linear 
beams 

1.0% no single armchair (5, 5), (7, 7) 6.0 – Reduction of Young’s modulus does 

not depend on the SWCNTs. 2.0% zigzag (0, 9), (0,12) 12.0

[97] Rafiee and 

Mahdavi, 2016 

MD: TB 
potential 

6 no single armchair 3.44 – Approximately linear reduction of 

Young’s modulus. zigzag 10.05

MD: REBO 
potential 

6 armchair 3.75

zigzag 10.21

[92] Sakharova et al., 
2016 

NCM: linear 
beams 

5% no single double 
triple 

4 vac. cluster

non-chiral and chiral
௡ܦ ൌ  0.414 ൊ
2.713	݊݉ 

36.0 44.0 Linear reduction of both moduli up to 
5% of vacancy defects: 

Ered = 7.12 Vac%; Gred = 8.85 Vac%. 10% 43.0 33.0
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Table 6. Results available in literature for the elastic moduli of MWCNTs, determined using NCM approaches. 

Reference ݐ௡, nm 
Interlayer 
spacing, 
݀௜௡௧, nm 

Approach for 
the van der 

Waals 
interactions 

between layers

MWCNT 
Max. 

number of 
layers 

Young’s 
modulus, TPa 

Shear modulus, 
TPa 

[105] Li and Chou, 2003 0.34 0.339 truss rods armchair (3, 3) (8, 8) (13, 13) (18, 18) 4 1.05–1.10 0.33–0.48 

0.352 zigzag (5, 0) (14, 0) (23, 0) (32, 0) 1.05–1.12 0.33–0.36 

[41] Kalamkarov et al., 2006 0.68 0.339 springs armchair (5, 5) (10, 10) (15, 15) (20, 20) 4 1.00–1.45 0.44–0.47 

0.352 zigzag (5, 0) (14, 0) (23, 0) (32, 0) 0.96–1.50 0.44–0.47 
[106] Fan et al., 2009 0.34 0.352 springs: 

interlayer 
pressure 

zigzag (5, 0) (14, 0) (23, 0) 3 1.006–1.011 0.43–0.34 

zigzag (18, 0) (27, 0) (36, 0) 1.040–1.019 0.36–0.33 

[107] Nahas and Abd-Rabou, 
2010 

0.346 – beams armchair 3 0.98–1.02 – 
zigzag 0.876–0.937

[88] Ghavamian et al., 2012 0.34 0.339 springs armchair (10, 10) (15, 15) (20, 20) (25, 25)
(30, 30) 

5 1.040–1.044 – 

0.352 zigzag (14, 0) (23, 0) (32, 0) (41, 0) (50, 0) 1.030–1.035

[50] Ghavamian et al., 2013 0.34 0.339 springs armchair (10, 10) (15, 15) (20, 20) (25, 25)
(30, 30) 

5 – 0.50 

0.352 zigzag (14, 0) (23, 0) (32, 0) (41, 0) (50, 0)

[108] Sakharova et al., 2017 0.34 0.339 – armchair

(10, 10) (15, 15) (20, 20) (25, 25) (30, 30) 
(35, 35) (40, 40) (45, 45) (50, 50) (55, 55) 

10 1.061–1.054 – 

0.352 zigzag

(14, 0) (23, 0) (32, 0) (41, 0) (50, 0) (59, 0) 
(68, 0) (77, 0) (86, 0) (95, 0) 

1.069–1.012 
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Some authors [105,106,107] pointed out that Young’s modulus of MWCNTs is slightly higher 
than that of SWCNTs. The Young’s modulus values for MWCNTs, which are very close to the values 
obtained for SWCNTs constituting the MWCNT, were also reported [88,108]. A substantial increase 
of the Young’s modulus with the number of layers was reported by Kalmakarov et al. [41]. Shear 
modulus trends similar to the trend for the Young’s modulus of MWCNTs were described in the works 
of Kalmakarov et al. [41] and Ghavamian et al. [50]. Li and Chou [105] and Fan et al. [106] reported 
values of the MWCNTs’ shear modulus slightly lower than those of SWCNTs. 

 
(a) 

 

(b) 

Figure 8. Literature results for elastic moduli of MWCNTs: (a) Young’s modulus and (b) 
shear modulus with respect to the number of layers, N, constituting the MWCNT. 
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6. Modelling and Mechanical Behaviour of CNT HJs 

From the point of view of the construction of nanodevices, the CNT junctions are necessary 
constituents for circuits, amplifiers, switches, rectifiers, molecular storages, field-effect transistors and 
nanodiodes. A comprehensive review on synthesis, properties and realistic applications of CNT 
junctions was published by Wei and Liu [6]. CNT HJs have attracted special research interest, because 
of their singular electrical and optical properties, and potentially attractive applications as nanodiodes 
and filters [109,110]. Despite the progress achieved in recent years in this research field, many 
challenges still remain. One of them is to understand the deformation behaviour of CNT 
heterojunctions, since the stability and efficiency of the nanodevices is highly dependent on the 
mechanical properties of their components. 

Molecular dynamics and nanoscale continuum approaches combined with finite element 
modelling have become the most prevalent methods to simulate the mechanical behaviour of CNT 
heterojunctions. A few studies were performed using the MD approach [24,26,111]. Lee and Su [111] 
investigated the temperature effect on the mechanical properties, yield stress and Young’s modulus, of 
(6, 0)–(8, 0) SWCNT HJs under tension and compression, by using an MD simulation approach, 
employing a REBO potential to describe the carbon–carbon (C–C) interaction. Also employing a 
REBO potential, Li et al. [24] investigated the tensile strength and failure modes of single-walled and 
double-walled CNT HJs at different temperatures and strain rates. 

Qin et al. [26] performed an MD simulation study, using second-generation Tersoff–Brenner 
potential, in order to evaluate Young’s modulus and failure stress of single-walled and double-walled 
CNT HJs. Kang et al. [112], also using MD simulation with Tersoff–Brenner potential coupled with 
NCM approach, studied the buckling behaviour of (7, 7)–(9, 9) HJs under compression.     
Kinoshita et al. [113] used ab initio density functional theory calculations in order to assess the 
Young’s modulus and stress–strain relationship for (8, 0)–(6, 0)–(8, 0) SWCNT HJs structures. An 
MD simulation, employing second-generation Tersoff–Brenner potential, was used by Xi et al. [114] 
in order to study the mechanical behaviour of complex HJs structures consisting of four ሺ݊, ݊ሻ 
armchair and five ሺ2݊, 0ሻ zigzag SWCNTs. 

The studies using the NCM approach were devoted to the characterization of the        
buckling [115,116], tensile [22,25,116,117,118,119] and shear [22,25,116,120] behaviour of HJs, and 
the evaluation of their Poisson’s ratio [110]. Sakharova et al. [22], analysing the mechanical behaviour 
of the armchair–armchair and zigzag–zigzag HJs, pointed out the occurrence of redundant bending 
deformation during the tensile test, making it difficult to analyse this test. Scarpa et al. [110] also 
reported this aspect when calculating the Poisson’s ratio from the tensile test of (5, 5)–(10, 10) HJs. 

Regarding the evaluation of the HJs elastic properties such as rigidities, Young’s and shear 
moduli, some of the authors reported their decrease when compared with the elastic properties of the 
constituent SWCNTs [22,25,116,117,119]. The literature results on the studies of the heterojunction 
elastic properties are resumed in Table 7. The aforementioned investigations must be understood as the 
beginning of broader necessary studies on the mechanical properties of the carbon nanotube 
heterojunctions. 
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Table 7. Results for the elastic moduli of CNT HJs available in literature. 

Reference Method Type of HJs 

Young’s 
modulus, 
 TPa ,ܧ

Shear 
modulus, 
 TPa ,ܩ

Comments 

[26] Qin et al., 2008 MD: 
Tersoff-Brenner 
potential 

armchair–armchair (5, 5)–(7, 7),
(5, 5)–(8, 8), …(5, 5)–(10, 10)

0.775 – Young’s modulus of HJ about 20% higher than 
for the narrower (5, 5) or (9, 0) SWCNT; 
 value increases with increasing the HJ average ܧ
diameter. 

zigzag–zigzag (9, 0)–(10, 0),
(9, 0)–(11, 0), …(9, 0)–(14, 0)

0.795 –

double-walled, triple-walled and 
four-walled armchair composed by 
(5, 5), (10, 10), (15, 15), ...(25, 25)

0.773 – Young’s modulus decreases with the number of 
SWCNTs constituting an N-walled CNT 
heterojunction.

[110] Scarpa et al., 2011 NCM: linear beams armchair–armchair (5, 5)–(10, 10) 1.010 – Bending deformation of HJ in tension were taken 
into account.zigzag–zigzag (9, 0)–(14, 0) 0.945 

[113] Kinoshita et al., 
2013 

ab initio (DFT) 
with AIREBO 
potential 

zigzag–zigzag–zigzag
(8, 0)–(6, 0)–(8, 0) 

0.995 – The Young’s modulus for a HJ structure is lower 
at about 10.23% than for the narrower (6, 0) 
SWCNT and at about 4.25% than for the wider 
(8, 0) SWCNT.

[117] Hemmatian et al., 
2014 

NCM: linear beams armchair–armchair (5, 5)–(10, 10),
(10, 10)–(15, 15), …(25, 25)–(30, 30) 

1.109 0.344 Elastic moduli are lower than those for 
constituent SWCNTs; ܧ and ܩ increase with 
increasing the HJ average diameter, ܦഥு௃, and 
decrease with increasing of overall length	ܮு௃. 

[116] 
 
[119] 

Ghavamian and 
Ochsner, 2015; 
Yengejeh et al., 
2015 

NCM: linear beams armchair–armchair composed by a 
variety of SWCNTs in a range of (3, 3) 
to (18, 18)

0.927 0.180 Elastic moduli are lower than those for 
constituent SWCNTs. 

zigzag–zigzag composed by a variety 
of SWCNTs in a range of (6, 0) to  
(19, 0)

0.939 0.270

[22] 
 
[116] 

Ghavamian et al., 
2015; 
Ghavamian and 
Ochsner, 2015

NCM: linear beams armchair–zigzag with bent connection 0.177 0.179 The Young’s modulus of HJs decreases 
drastically; the shear modulus is close to that of 
the constituent SWCNTs. chiral–armchair (zigzag) with bent 

connection 
0.160 0.220

[25] Sakharova et al., 
2016 

NCM: linear beams armchair–armchair (5, 5)–(10, 10), 
(10, 10)–(15, 15), (15, 15)–(20, 20) 
zigzag–zigzag (5, 0)–(10, 0), 
(10, 0)–(15, 0), (15, 0)–(20, 0) 

Bending (EI) and torsional (GJ) rigidities increase with increasing the HJ 
average diameter. EI rigidities are comparable with those for narrower 
SWCNTs. GJ rigidities are higher than for narrower SWCNTs, and lower than 
for wider SWCNTs. 

 Average values. 
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7. Conclusions 

This review shows that a great investment has been made lately in the development of the 
modelling of mechanical properties of carbon nanotubes. These include the elastic moduli and the 
Poisson ratio of single and multi-walled carbon nanotubes and their heterojunctions, without and 
with vacancy defects. In spite of great developments has been made in predicting the mechanical 
properties of CNTs by numerical simulation, the theoretical studies (analytical and numerical) have 
led to some variety of results due to different modelling approaches and formulations. The resulting 
scattering in the values of the elastic constants raises questions on the reliability of the data obtained 
and can affect its interpretation. Among the several approaches, the nanoscale continuum modelling 
(NCM/MSM) proves to be efficient for simulating the nanotubes behaviour without requiring 
extensive computation. 
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