Citation: Zhonggang Feng, Tadashi Kosawada, Takao Nakamura, Daisuke Sato, Tatsuo Kitajima, Mitsuo Umezu. Theoretical methods and models for mechanical properties of soft biomaterials[J]. AIMS Materials Science, 2017, 4(3): 680-705. doi: 10.3934/matersci.2017.3.680
[1] | Jabbari E, Leijten J, Xu Q, et al. (2016) The matrix reloaded: the evolution of regenerative hydrogels. Mater Today 19: 190–196. doi: 10.1016/j.mattod.2015.10.005 |
[2] | Green J, Elisseeff J (2016) Mimicking biological functionality with polymers for biomedical applications. Nature 540: 386–394. doi: 10.1038/nature21005 |
[3] | Brandl F, Sommer F, Goepferich A (2007) Rational design of hydrogels for tissue engineering: Impact of physical factors on cell behavior. Biomaterials 28: 134–146. doi: 10.1016/j.biomaterials.2006.09.017 |
[4] | Hu Y, You J, Aizenberg J (2016) Micropatterned hydrogel surface with high-aspect-ratio features for cell guidance and tissue growth. ACS Appl Mater Interfaces 8: 21939–21945. doi: 10.1021/acsami.5b12268 |
[5] | Liu X, Tang T, Tham E, et al. (2017) Stretchable living materials and devices with hydrogel–elastomer hybrids hosting programmed cells. Proc Natl Acad Sci USA 114: 2200–2205. doi: 10.1073/pnas.1618307114 |
[6] | Engler AJ, Sen S, Sweeney HL, et al. (2006) Matrix elasticity directs stem cell lineage specification. Cell 126: 677–689. doi: 10.1016/j.cell.2006.06.044 |
[7] | Bordeleau F, Mason B, Lollis E, et al. (2017) Matrix stiffening promotes a tumor vasculature phenotype. Proc Natl Acad Sci USA 114: 492–497. doi: 10.1073/pnas.1613855114 |
[8] | Chaudhuri O, Gu L, Klumpers D, et al. (2016) Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater 15: 326–334. |
[9] | Chaudhuri O, Gu L, Darnell M, et al. (2015) Substrate stress relaxation regulates cell spreading. Nat Commun 6: 6364. doi: 10.1038/ncomms7364 |
[10] | Lin D, Horkay F (2008) Nanomechanics of polymer gels and biological tissues: A critical review of analytical approaches in the Hertzian regime and beyond. Soft Matter 4: 669–682. doi: 10.1039/b714637j |
[11] | Andreu I, Luque T, Sancho A, et al. (2014) Heterogeneous micromechanical properties of the extracellular matrix in healthy and infarcted hearts. Acta Biomater 10: 3235–3242. doi: 10.1016/j.actbio.2014.03.034 |
[12] | Gimenez A, Uriarte J, Vieyra J, et al. (2017) Elastic properties of hydrogels and decellularized tissue sections used in mechanobiology studies probed by atomic force microscopy. Microsc Res Techniq 80: 85–96. doi: 10.1002/jemt.22740 |
[13] | Chen D, Wen Q, Janmey P, et al. (2010) Rheology of soft materials. Annu Rev Conden Ma P 1: 301–322. doi: 10.1146/annurev-conmatphys-070909-104120 |
[14] | Voigtmann T (2014) Nonlinear glassy rheology. Curr Opin Colloid In 19: 549–560. doi: 10.1016/j.cocis.2014.11.001 |
[15] | Freutel M, Schmidt H, Dürselen L, et al. (2014) Finite element modeling of soft tissues: material models, tissue interaction and challenges. Clin Biomech 29: 363–372. doi: 10.1016/j.clinbiomech.2014.01.006 |
[16] | Bhatia SK (2012) Engineering biomaterials for regenerative medicine: novel technologies for clinical applications, Springer Science Business Media, LLC. |
[17] | Wiles K, Fishman J, De Coppi P, et al. (2016) The host immune response to tissue-engineered organs: current problems and future directions. Tissue Eng B-Rev 22: 208–219. |
[18] | Seal BL, Otero TC, Panitch A (2001) Polymeric biomaterials for tissue and organ regeneration. Mat Sci Eng R 34: 147–230. doi: 10.1016/S0927-796X(01)00035-3 |
[19] | Green AE, Adkins JE (1960) Large elastic deformations, New York: Oxford University Press. |
[20] | Ogden RW (1984) Non-linear elastic deformations, Dover Publications, Inc. |
[21] | Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edition, Springer-Verlag New York, Inc. |
[22] | Bechir H, Chevalier L, Chaouche M, et al. (2006) Hyperelastic constitutive model for rubber-like materials based on the first Seth strain measures invariant. Eur J Mech A-Solid 25: 110–124. doi: 10.1016/j.euromechsol.2005.03.005 |
[23] | Chagnon G, Rebouah M, Favier D (2015) Hyperelastic energy densities for soft biological tissues: a review. J Elasticity 120: 129–160. |
[24] | Madireddy S, Sista B, Vemaganti K (2016) Bayesian calibration of hyperelastic constitutive models of soft tissue. J Mech Behav Biomed 59: 108–127. doi: 10.1016/j.jmbbm.2015.10.025 |
[25] | Jhun C, Evans MC, Barocas VH, et al. (2009) Planar biaxial mechanical behavior of bioartificial tissues possessing prescribed fiber alignment. J Biomech Eng 131: 081006. doi: 10.1115/1.3148194 |
[26] | Sander EA, Stylianopoulos T, Tranquillo RT, et al. (2009) Image-based multiscale modeling predicts tissue-level and network-level fiber reorganization in stretched cell-compacted collagen gels. Proc Natl Acad Sci USA 106: 17675–17680. doi: 10.1073/pnas.0903716106 |
[27] | Lanir Y (1980) A microstructural model for the rheology of mammalian tendon. J Biomech Eng 102: 332–339. |
[28] | Lanir Y (1983) Constitutive equations for fibrous connective tissues. J Biomech 16: 1–12. doi: 10.1016/0021-9290(83)90041-6 |
[29] | Rajagopal KR, Wineman AS (1992) A constitutive equation for nonlinear solids which undergo deformation induced microstructural changes. Int J Plasticity 8: 385–395. doi: 10.1016/0749-6419(92)90056-I |
[30] | Ogden RW, Roxburgh DG (1999) A pseudo-elastic model for the Mullins effect in filled rubber. Proceedings A 455: 2861–2877. |
[31] | Lu T, Wang J, Yang R, et al. (2016) A constitutive model for soft materials incorporating viscoelasticity and Mullins effect. J Appl Mech 84: 021010. doi: 10.1115/1.4035180 |
[32] | Horgan CO, Murphy JG (2011) Simple shearing of soft biological tissues. Proceedings A 467: 760–777. |
[33] | Ben Amar M, Wu M, Trejo M, et al. (2015) Morpho-elasticity of inflammatory fibrosis: the case of capsular contracture. J R Soc Interface 12: 20150343. doi: 10.1098/rsif.2015.0343 |
[34] | Saxena T, Gilbert JL, Hasenwinkel JM (2009) A versatile mesoindentation system to evaluate the micromechanical properties of soft, hydrated substrates on a cellular scale. J Biomed Mater Res A 90: 1206–1217. |
[35] | White CC, Vanlandingham MR, Drzal PL, et al. (2005) Viscoelastic characterization of polymers using instrumented indentation. II. dynamic testing. J Polym Sci Pol Phys 43: 1812–1824. |
[36] | Tirella A, Mattei G, Ahluwalia A (2014) Strain rate viscoelastic analysis of soft and highly hydrated biomaterials. J Biomed Mater Res A 102: 3352–3360. doi: 10.1002/jbm.a.34914 |
[37] | Feng Z, Yamato M, Akutsu T, et al. (2003) Investigation on the mechanical properties of contracted collagen gels as a scaffold for tissue engineering. Artif Organs 27: 84–91. doi: 10.1046/j.1525-1594.2003.07187.x |
[38] | Feng Z, Seya D, Kitajima T (2010) Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes. J Artif Organs 13: 139–144. doi: 10.1007/s10047-010-0508-x |
[39] | Toyjanova J, Hannen E, Bar-Kochba E, et al. (2014) 3D Viscoelastic traction force microscopy. Soft Matter 10: 8095–8106. doi: 10.1039/C4SM01271B |
[40] | Zacharatos A, Kontou E (2015) Nonlinear viscoelastic modeling of soft polymers. J Appl Polym Sci 132: 42141. |
[41] | Chen J, Hu H, Li S, et al. (2016) Quantitative relation between the relaxation time and the strain rate for polymeric solids under quasi-static conditions. J Appl Polym Sci 133: 44114. |
[42] | Kikuchi M, Feng Z, Kosawada T, et al. (2016) Stress relaxation and stress-strain characteristics of porcine amniotic membrane. Bio-Med Mater Eng 27: 603–611. |
[43] | Fujita K, Tuchida Y, Seki H, et al. (2015) Characterizing and modulating the mechanical properties of hydrogels from ventricular extracellular matrix. Proceeding of 10th Asian Control Conference (ASCC 2015), 718–722. |
[44] | Taira Y, Shiraishi Y, Inoue Y, et al. (2016) Spatially distributed modeling of esophageal function by nonlinear characteristic analyses. Proceeding of Japanese Biomedical Engineering Symposium, 1P-3-1. |
[45] | Scott-Blair GW (1947) The role of psychophysics in rheology. J Colloid Sci 2: 21–32. doi: 10.1016/0095-8522(47)90007-X |
[46] | Schiessel H, Metzler R, Blumen A, et al. (1995) Genneralized viscoelastic models: their fractional equations with solutions. J Phys A-Math Gen 28: 6567–6584. doi: 10.1088/0305-4470/28/23/012 |
[47] | Jaishankar A, McKinley GH (2012) Power-law rheology in the bulk and at the interface: quasi-properties and fractional constitutive equations. Proceedings A 20120284. |
[48] | De Sousa JS, Santos JAC, Barros EB, et al. (2017) Analytical model of atomic-force-microscopy force curves in viscoelastic materials exhibiting power law relaxation. J Appl Phys 121: 034901. doi: 10.1063/1.4974043 |
[49] | Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12: 155–164. doi: 10.1063/1.1712886 |
[50] | Bowen RM (1976) Theory of mixtures, In: Eringen AC, Continuum Physics, New York: Academic Press, 1–127. |
[51] | Green AE, Naghdi PM (1970) The flow of fluid through an elastic solid. Acta Mech 9: 329–340. doi: 10.1007/BF01179830 |
[52] | Mow VC, Kuei SC, Lai WM, et al. (1980) Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J Biomech Eng 102: 73–84. doi: 10.1115/1.3138202 |
[53] | Ehlers W, Acartürk A, Karajan N (2010) Advances in modelling saturated soft biological tissues and chemically active gels. Arch Appl Mech 80: 467–478. doi: 10.1007/s00419-009-0386-y |
[54] | Gao X, Gu W (2014) A new constitutive model for hydration-dependent mechanical properties in biological soft tissues and hydrogels. J Biomech 47: 3196–3200. doi: 10.1016/j.jbiomech.2014.06.012 |
[55] | Bonilla MR, Lopez-Sanchez P, Gidley MJ, et al. (2016) Micromechanical model of biphasic biomaterials with internal adhesion: Application to nanocellulose hydrogel composites. Acta Biomater 29: 149–160. doi: 10.1016/j.actbio.2015.10.032 |
[56] | Olberding JE, Suh JF (2006) A dual optimization method for the material parameter identification of a biphasic poroviscoelastic hydrogel: Potential application to hypercompliant soft tissues. J Biomech 39: 2468–2475. doi: 10.1016/j.jbiomech.2005.07.019 |
[57] | Castro APG, Laity P, Shariatzadeh M, et al. (2016) Combined numerical and experimental biomechanical characterization of soft collagen hydrogel substrate. J Mater Sci-Mater M 27: 79. doi: 10.1007/s10856-016-5688-3 |
[58] | Gentile G, Greco F, Larobina D (2013) Stress-relaxation behavior of a physical gel: Evidence of co-occurrence of structural relaxation and water diffusion in ionic alginate gels. Eur Polym J 49: 3929–3936. doi: 10.1016/j.eurpolymj.2013.08.023 |
[59] | Galli M, Comley K, Shean T, et al. (2009) Viscoelastic and poroelastic mechanical characterization of hydrated gels. J Mater Res 24: 973–979. doi: 10.1557/jmr.2009.0129 |
[60] | Bush BG, Shapiro JM, DelRio FW, et al. (2015) Mechanical measurements of heterogeneity and length scale effects in PEG-based hydrogels. Soft Matter 11: 7191–7200. doi: 10.1039/C5SM01210D |
[61] | Oyen ML (2015) Nanoindentation of hydrated materials and tissues. Curr Opin Solid St M 19: 317–323. doi: 10.1016/j.cossms.2015.03.001 |
[62] | Wang Q, Mohan AC, Oyen ML, et al. (2014) Separating viscoelasticity and poroelasticity of gels with different length and time scales. Acta Mech Sin 30: 20–27. doi: 10.1007/s10409-014-0015-z |
[63] | Guth E, James HM, Mark H (1946) The kinetic theory of rubber elasticity. In: Mark H, Whitby GS, Scientific progress in the field of rubber and synthetic elastomers, New York: Interscience Publishers, 253–299. |
[64] | Treloar L (1975) The physics of rubber elasticity, Oxford: Oxford University Press. |
[65] | Flory PJ (1989) Statistical mechanics of chain molecules, New York: Hanser Publishers. |
[66] | Doi M, Edwards SF (1986) The theory of polymer dynamics, Oxford: Clarendon Press. |
[67] | Arruda EM, Boyce MC (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids 41: 389–412. doi: 10.1016/0022-5096(93)90013-6 |
[68] | Broedersz CP, Mao X, Lubensky TC, et al. (2011) Criticality and isostaticity in fibre networks. Nat Phys 7: 983–988. doi: 10.1038/nphys2127 |
[69] | Head DA, Levine AJ, MacKintosh FC (2003) Deformation of cross-linked semiflexible polymer networks. Phys Rev Lett 91: 108102. doi: 10.1103/PhysRevLett.91.108102 |
[70] | Broedersz CP, MacKintosh FC (2014) Modeling semiflexible polymer networks. Rev Mod Phys 86: 995–1036. doi: 10.1103/RevModPhys.86.995 |
[71] | Marko JF, Siggia ED (1995) Stretching DNA. Macromolecules 28: 8759–8770. doi: 10.1021/ma00130a008 |
[72] | Wilhelm J, Frey E (1996) Radial distribution of semiflexible polymers. Phys Rev Lett 77: 2581–2584. doi: 10.1103/PhysRevLett.77.2581 |
[73] | MacKintosh FC, Kas J, Janmey PA (1995) Elasticity of semiflexible biopolymer networks. Phys Rev Lett 75: 4425–4428. doi: 10.1103/PhysRevLett.75.4425 |
[74] | Storm C, Pastore JJ, MacKintosh FC, et al. (2005) Nonlinear elasticity in biological gels. Nature 435: 191–194. doi: 10.1038/nature03521 |
[75] | Odijk T (1995) Stiff chains and filaments under tension. Macromolecules 28: 7016–7018. doi: 10.1021/ma00124a044 |
[76] | Gardel ML, Shin JH, MacKintosh FC, et al. (2004) Elastic behavior of cross-linked and bundled actin networks. Science 304: 1301–1305. doi: 10.1126/science.1095087 |
[77] | Yao NY, Broedersz CP, Lin Y, et al. (2010) Elasticity in ionically cross-linked neurofilament networks. Biophys J 98: 2147–2153. doi: 10.1016/j.bpj.2010.01.062 |
[78] | Kroy K (2006) Elasticity, dynamics and relaxation in biopolymer networks. Curr Opin Colloid In 11: 56–64. doi: 10.1016/j.cocis.2005.10.001 |
[79] | Wells HC, Sizeland KH, Kayed HR, et al. (2015). Poisson's ratio of collagen fibrils measured by small angle X-ray scattering of strained bovine pericardium. J Appl Phys 117: 044701. |
[80] | Arevalo RC, Kumar P, Urbach JS, et al. (2015) Stress heterogeneities in sheared type-I collagen networks revealed by boundary stress microscopy. PloS One 10: e0118021. doi: 10.1371/journal.pone.0118021 |
[81] | Yang Z, Hemar Y, Hilliou L, et al. (2016) Nonlinear behavior of gelatin networks reveals a hierarchical structure. Biomacromolecules 17: 590–600. doi: 10.1021/acs.biomac.5b01538 |
[82] | Groot RD (1996) Molecular theory of strain hardening of a polymer gel: application to gelatin. J Chem Phys 104: 9202–9219. doi: 10.1063/1.471611 |
[83] | Jin T, Stanciulescu I (2016) Numerical simulation of fibrous biomaterials with randomly distributed fiber network structure. Biomech Model Mechan 15: 817–830. doi: 10.1007/s10237-015-0725-6 |
[84] | Cioroianu AR, Spiesz EM, Storm C (2016) Disorder, pre-stress and non-affinity in polymer 8-chain models. J Mech Phys Solids 89: 110–125. doi: 10.1016/j.jmps.2016.01.014 |
[85] | Onck PR, Koeman T, van Dillen T, et al. (2005) Alternative explanation of stiffening in cross-linked semiflexible networks. Phys Rev Lett 95: 178102. doi: 10.1103/PhysRevLett.95.178102 |
[86] | Chandran PL, Barocas VH (2006) Affine versus non-affine fibril kinematics in collagen networks: theoretical studies of network behavior. J Biomech Eng 128: 259–270. |
[87] | Feng Z, Ishiguro Y, Fujita K, et al. (2015) A fibril-based structural constitutive theory reveals the dominant role of network characteristics on the mechanical behavior of fibroblast-compacted collagen gels. Biomaterials 67: 365–381. doi: 10.1016/j.biomaterials.2015.07.038 |
[88] | Tobolsky AV (1960) Properties and structure of polymers, New York: John Wiley and Sons. |
[89] | Green MS, Tobolsky AV (1946) A new approach to the theory of relaxing polymeric media. J Chem Phys 14: 80–92. doi: 10.1063/1.1724109 |
[90] | Simo JC (1987) On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput Method Appl M 60: 153–173. doi: 10.1016/0045-7825(87)90107-1 |
[91] | Septanika EG, Ernst LJ (1998) Application of the network alteration theory for modeling the time-dependent constitutive behaviour of rubbers. Part I. General theory. Mech Mater 30: 253–263. |
[92] | Wu X, Levenston ME, Chaikof EL (2006) A constitutive model for protein-based materials. Biomaterials 30: 5315–5325. |
[93] | Bergstrom JS, Boyce MC (1998) Constitutive modeling of the large strain time-dependent behavior of elastomers. J Mech Phys Solids 46: 931–954. doi: 10.1016/S0022-5096(97)00075-6 |
[94] | Bergstrom JS, Boyce MC (2001) Constitutive modeling of the time-dependent and cyclic loading of elastomers and application to soft biological tissues. Mech Mater 33: 523–530. doi: 10.1016/S0167-6636(01)00070-9 |
[95] | Meng F, Pritchard RH, Terentjev EM (2016) Stress relaxation, dynamics, and plasticity of transient polymer networks. Macromolecules 49: 2843–2852. doi: 10.1021/acs.macromol.5b02667 |
[96] | Li Y, Tang S, Kröger M, et al. (2016) Molecular simulation guided constitutive modeling on finite strain viscoelasticity of elastomers. J Mech Phys Solids 88: 204–226. doi: 10.1016/j.jmps.2015.12.007 |
[97] | Li Y, Liu Z, Jia Z, et al. (2017) Modular-based multiscale modeling on viscoelasticity of polymer nanocomposites. Comput Mech 59: 187–201. doi: 10.1007/s00466-016-1346-3 |
[98] | Wang Q, Gao Z (2016) A constitutive model of nanocomposite hydrogels with nanoparticle crosslinkers. J Mech Phys Solids 94: 127–147. doi: 10.1016/j.jmps.2016.04.011 |
[99] | Nam S, Hu KH, Butte MJ, et al. (2016) Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels. Proc Natl Acad Sci USA 113: 5492–5497. |
[100] | Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200: 618–627. doi: 10.1126/science.347575 |
[101] | Vos BE, Liebrand LC, Vahabi M, et al. (2016) Programming filamentous network mechanics by compression. arXiv:1612.08601. |
[102] | Brown RA, Wiseman M, Chuo CB, et al. (2005) Ultrarapid engineering of biomimetic materials and tissues: fabrication of nano- and microstructures by plastic compression. Adv Funct Mater 15: 1762–1770. doi: 10.1002/adfm.200500042 |
[103] | Ghezzi CE, Rnjak-Kovacina J, Kaplan DL (2015) Corneal tissue engineering: recent advances and future perspectives. Tissue Eng B-Rev 21: 278–287. doi: 10.1089/ten.teb.2014.0397 |
[104] | Bell E, Ivarsson B, Merrill C (1979) Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci USA 76: 1274–1278. doi: 10.1073/pnas.76.3.1274 |
[105] | Brown RA (2013) In the beginning there were soft collagen-cell gels: towards better 3D connective tissue models? Exp Cell Res 319: 2460–2469. doi: 10.1016/j.yexcr.2013.07.001 |
[106] | Barocas VH, Tranquillo RT (1997) An anisotropic biphasic theory of tissue-equivalent mechanics: the interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance. J Biomech Eng 119: 137–145. doi: 10.1115/1.2796072 |
[107] | Zahalak GI, Wagenseil JE, Wakatsuki T, et al. (2009) A cell-based constitutive relation for bio-artificial tissues. Biophys J 79: 2369–2381. |
[108] | Feng Z, Wagatsuma Y, Kikuchi M, et al. (2014) The mechanisms of fibroblast-mediated compaction of collagen gels and the mechanical niche around individual fibroblasts. Biomaterials 35: 8078–8091. |
[109] | Hall M, Long R, Feng X, et al. (2013) Toward single cell traction microscopy within 3D collagen matrices. Exp Cell Res 319: 2396–2408. doi: 10.1016/j.yexcr.2013.06.009 |
[110] | Jones C, Cibula M, Feng J, et al. (2015) Micromechanics of cellularized biopolymer networks. Proc Natl Acad Sci USA 112: E5117–E5122. doi: 10.1073/pnas.1509663112 |
[111] | Zeng X, Li S (2011) Multiscale modeling and simulation of soft adhesion and contact of stem cells. J Mech Behav Biomed 4: 180–189. doi: 10.1016/j.jmbbm.2010.06.002 |
[112] | Aghvami M, Billiar KL, Sander EA (2016) Fiber network models predict enhanced cell mechanosensing on fibrous gels. J Biomech Eng 138: 101006. doi: 10.1115/1.4034490 |
[113] | Darling EM, Zauscher S, Block JA, et al. (2007) A thin-layer model for viscoelastic, stress–relaxation testing of cells using atomic force microscopy: do cell properties reflect metastatic potential. Biophys J 92: 1784–1791. doi: 10.1529/biophysj.106.083097 |
[114] | Darling EM, Topel M, Zauscher S, et al. (2008) Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. J Biomech 41: 454–464. doi: 10.1016/j.jbiomech.2007.06.019 |
[115] | Nguyen TD, Oloyede A, Singh S, et al. (2015) Microscale consolidation analysis of relaxation behavior of single living chondrocytes subjected to varying strain-rates. J Mech Behav Biomed 49: 343–354. doi: 10.1016/j.jmbbm.2015.05.003 |
[116] | Moeendarbary E, Valon L, Fritzsche M, et al. (2013) The cytoplasm of living cells behaves as a poroelastic material. Nat Mater 12: 253–261. doi: 10.1038/nmat3517 |
[117] | Chen J (2014) Nanobiomechanics of living cells: a review. Interface Focus 4: 20130055. doi: 10.1098/rsfs.2013.0055 |
[118] | Mattei G, Ahluwalia A (2016) Sample, testing and analysis variables affecting liver mechanical properties: a review. Acta Biomater 45: 60–71 doi: 10.1016/j.actbio.2016.08.055 |
[119] | Bustamante C, Marko JF, Siggia ED, et al. (1994) Entropic elasticity of λ-phage DNA. Science 265: 1599–1600. doi: 10.1126/science.8079175 |
[120] | Marszalek PE, Li H, Fernandez JM (2001) Fingerprinting polysaccharides with singlemolecule atomic force microscopy. Nat Biotechnol 19: 258–262. doi: 10.1038/85712 |
[121] | Van der Rijt JAJ, van der Werf KO, Bennink ML, et al. (2006) Micromechanical testing of individual collagen fibrils. Macromol Biosci 6: 697–702. doi: 10.1002/mabi.200600063 |
[122] | Buehler MJ, Keten S, Ackbarow T (2008) Theoretical and computational hierarchical nanomechanics of protein materials: Deformation and fracture. Prog Mater Sci 53: 1101–1241. doi: 10.1016/j.pmatsci.2008.06.002 |
[123] | Sharma A, Licup AJ, Jansen KA, et al. (2016) Strain-controlled criticality governs the nonlinear mechanics of fibre networks. Nat Phys 12: 584–587. doi: 10.1038/nphys3628 |
[124] | Licup AJ, Munster S, Sharma A, et al. (2015) Stress controls the mechanics of collagen networks. Proc Natl Acad Sci USA 112: 9573–9578. doi: 10.1073/pnas.1504258112 |
[125] | Wyart M, Liang H, Kabla A, et al. (2008) Elasticity of floppy and stiff random networks. Phys Rev Lett 101: 215501. doi: 10.1103/PhysRevLett.101.215501 |
[126] | Mao X, Souslov A, Mendoza CI, et al. (2015) Mechanical instability at finite temperature. Nat Commun 6: 5968. doi: 10.1038/ncomms6968 |
[127] | Roeder BA, Kokini K, Voytik-Harbin SL (2009) Fibril microstructure affects strain transmission within collagen extracellular matrices. J Biomed Eng 131: 031004. |
[128] | Lai VK, Lake SP, Frey CR, et al. (2012) Mechanical behavior of collagen-fibrin co-gels reflects transition from series to parallel interactions with increasing collagen content. J Biomed Eng 134: 011004. |
[129] | Brown AEX, Litvinov RI, Discher DE, et al. (2009) Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science 325: 741–744. doi: 10.1126/science.1172484 |
[130] | Gupta HS, Seto J, Krauss S, et al. (2010) In situ multi-level analysis of viscoelastic deformation mechanisms in tendon collagen. J Struct Biol 169: 183–191. doi: 10.1016/j.jsb.2009.10.002 |
[131] | Trappmann B, Gautrot JE, Connelly JT, et al. (2012) Extracellular-matrix tethering regulates stem-cell fate. Nat Mater 11: 642–649. doi: 10.1038/nmat3339 |
[132] | Chaudhuri O, Koshy ST, Da Cunha CB, et al. (2014) Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat Mater 13: 970–978. doi: 10.1038/nmat4009 |
[133] | Wen JH, Vincent LG, Fuhrmann A, et al. (2014) Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater 13: 979–987. doi: 10.1038/nmat4051 |
[134] | Kumar S (2014) Cellular mechanotransduction: stiffness does matter. Nat Mater 13: 918–920. doi: 10.1038/nmat4094 |
[135] | Stein AM, Vader DA, Weitz DA, et al. (2011) The micromechanics of three-dimensional collagen-I gels. Complexity 16: 22–28. |