Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Associations of CYP1A1 gene polymorphisms and risk of breast cancer in Indian women: a meta-analysis

  • Received: 06 August 2015 Accepted: 15 October 2015 Published: 25 January 2015
  • Reported associations of CYP1A1 polymorphisms with breast cancer have been inconsistent. In this meta-analysis examining breast cancer associations of three CYP1A1 polymorphisms (M1, M2 and M4) among Indian women may yield information that may be of clinical and epidemiological use for this particular demography. We searched MEDLINE using PubMed and Embase for association studies. From seven published case-control studies, we estimated overall associations and applied subgroup analysis to explore differential effects. All three polymorphisms exhibited overall increased risk, significant in M1 (OR 1.61-1.65, p = 0.04) and M4 (OR 2.02-3.92, p = 0.02-0.04). Differential effects were observed only in the M1 polymorphism where M1 effects were significant in South Indians (OR 2.20-4.34, p < 0.0001) but not the North population, who were at reduced risk (OR 0.64-0.77, p = 0.03-0.55). These populations were not materially different in regard to M2 and M4 as did the women stratified by menopausal status. In this meta-analysis, M1 and M4 effects may render Indian women susceptible, but may be limited by heterogeneity of the studies. Differential effects of the M1 polymorphism in breast cancer render South Indians susceptible compared to those in the North.

    Citation: Noel Pabalan, Neetu Singh, Eloisa Singian, Caio Parente Barbosa, Bianca Bianco, Hamdi Jarjanazi. Associations of CYP1A1 gene polymorphisms and risk of breast cancer in Indian women: a meta-analysis[J]. AIMS Genetics, 2015, 2(4): 250-262. doi: 10.3934/genet.2015.4.250

    Related Papers:

    [1] Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Thabet Abdeljawad, Kottakkaran Sooppy Nisar . Integral transforms of an extended generalized multi-index Bessel function. AIMS Mathematics, 2020, 5(6): 7531-7547. doi: 10.3934/math.2020482
    [2] Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Abdel-Haleem Abdel-Aty, Emad E. Mahmoud, Kottakkaran Sooppy Nisar . Estimation of generalized fractional integral operators with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(5): 4492-4506. doi: 10.3934/math.2021266
    [3] Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565
    [4] Sobia Rafeeq, Sabir Hussain, Jongsuk Ro . On fractional Bullen-type inequalities with applications. AIMS Mathematics, 2024, 9(9): 24590-24609. doi: 10.3934/math.20241198
    [5] Mustafa Gürbüz, Yakup Taşdan, Erhan Set . Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Mathematics, 2020, 5(1): 42-53. doi: 10.3934/math.2020004
    [6] Hari M. Srivastava, Artion Kashuri, Pshtiwan Othman Mohammed, Abdullah M. Alsharif, Juan L. G. Guirao . New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel. AIMS Mathematics, 2021, 6(10): 11167-11186. doi: 10.3934/math.2021648
    [7] Ghulam Farid, Maja Andrić, Maryam Saddiqa, Josip Pečarić, Chahn Yong Jung . Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions. AIMS Mathematics, 2020, 5(6): 7332-7349. doi: 10.3934/math.2020469
    [8] Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814
    [9] Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441
    [10] Muhammad Amer Latif, Humaira Kalsoom, Zareen A. Khan . Hermite-Hadamard-Fejér type fractional inequalities relating to a convex harmonic function and a positive symmetric increasing function. AIMS Mathematics, 2022, 7(3): 4176-4198. doi: 10.3934/math.2022232
  • Reported associations of CYP1A1 polymorphisms with breast cancer have been inconsistent. In this meta-analysis examining breast cancer associations of three CYP1A1 polymorphisms (M1, M2 and M4) among Indian women may yield information that may be of clinical and epidemiological use for this particular demography. We searched MEDLINE using PubMed and Embase for association studies. From seven published case-control studies, we estimated overall associations and applied subgroup analysis to explore differential effects. All three polymorphisms exhibited overall increased risk, significant in M1 (OR 1.61-1.65, p = 0.04) and M4 (OR 2.02-3.92, p = 0.02-0.04). Differential effects were observed only in the M1 polymorphism where M1 effects were significant in South Indians (OR 2.20-4.34, p < 0.0001) but not the North population, who were at reduced risk (OR 0.64-0.77, p = 0.03-0.55). These populations were not materially different in regard to M2 and M4 as did the women stratified by menopausal status. In this meta-analysis, M1 and M4 effects may render Indian women susceptible, but may be limited by heterogeneity of the studies. Differential effects of the M1 polymorphism in breast cancer render South Indians susceptible compared to those in the North.


    Fractional calculus signifies the identity of the distinguished materials in the modern research field due to its integrated applications in diverse regions such as mathematical physics, fluid dynamics, mathematical biology, etc. Convex function, exponentially convex function [1,2,3,4,5], related inequalities like as trapezium inequality, Ostrowski's inequality and Hermite Hadamard inequality, integrals [6,7,8,9,10] having succeed in mathematical analysis, approximation theory due to immense applications [11,12] have great importance in mathematics theory. Many authors established quadrature rules in numerical analysis for approximate definite integrals. Recently, Pólya-Szegö and Chebyshev inequalities occupied immense space in the field analysis. Chebyshev [13] was introduced the well-known inequality called Chebyshev inequality.

    In the literature of convex function, the Jensen inequality has gained much importance which describes a connection between an integral of the convex function and the value of the convex function of an interval [14,15,16]. Pshtiwan and Thabet [17] considered the modified Hermite Hadamard inequality in the context of fractional calculus using the Riemann-Liouville fractional integrals. Arran and Pshtiwan [18] discussed the Hermite Hadamard inequality results with fractional integrals and derivatives using Mittag-Leffler kernel. Pshtiwan and Thabet [19] constructed a connection between the Riemann-Liouville fractional integrals of a function concerning a monotone function with nonsingular kernel and Atangana-Baleanu. Pshtiwan and Brevik [20] obtained an inequality of Hermite Hadamard type for Riemann-Liouville fractional integrals, and proved the application of obtained inequalities on modified Bessel functions and $ q $-digamma function. In [21], Set et al. introduced Grüss type inequalities by employing generalized $ k $-fractional integrals. Recently, Nisar et al. [22] gave some new generalized fractional integral inequalities.

    Very recently, the fractional conformable and proportional fractional integral operators were given in [23,24]. Later on, Huang et al. [25] gave Hermite–Hadamard type inequalities by using fractional conformable integrals (FCI). Qi et al. [26] investigated Čebyšev type inequalities involving FCI. The Chebyshev type inequalities and certain Minkowski's type inequalities are found in [27,28,29]. Nisar et al. [30] have investigated some new inequalities for a class of $ n\ \ (n\in\mathbb{N}) $ positive, continuous, and decreasing functions by employing FCI. Rahman et al. [31] introduced Grüss type inequalities for $ k $-fractional conformable integrals.

    Some significant inequalities are given as applications of fractional integrals [32,33,34,35,36,37,38]. Recently, Rahman et al. [39,40] presented fractional integral inequalities involving tempered fractional integrals. Qiang et al. [41] discussed a fractional integral containing the Mittag-Leffler function in inequality theory and contributed Hadamard type inequality, continuity, and boundedness, upper bounds of that integral. Nisar et al. [42] established weighted fractional Pólya-Szegö and Chebyshev type integral inequalities by operating the generalized weighted fractional integral involving kernel function. The dynamical approach of fractional calculus [43,44,45,46,47,48,49] in the field of inequalities.

    Grüss inequality [50] established for two integrable function as follows

    $ |T(h,l)|(kK)(sS)4, $ (1.1)

    where the $ h $ and $ l $ are two integrable functions which are synchronous on $ [a, b] $ and satisfy:

    $ sh(z)K,sl(y1)S, z,y1[a,b] $ (1.2)

    for some $ s, k, S, K \in \mathbb{R} $.

    Pólya and Szegö [51] proved the inequalities

    $ bah2(z)dzabl2(z)dz(abh(z)l(z)dz)214(KSks+ksKS)2. $ (1.3)

    Dragomir and Diamond [52], proves the inequality by using the Pólya-szegö inequality

    $ |T(h,l)|(Ss)(Kk)4(ba)2skSKbah(z)l(z)dz $ (1.4)

    where $ h $ and $ l $ are two integrable functions which are synchronous on $ [a, b] $, and

    $ 0<sh(z)S<,0<kl(y1)K<, z,y1[a,b] $ (1.5)

    for some $ s, k, S, K \in \mathbb{R} $.

    The aim of this paper is to estimate a new version of Pólya-Szegö inequality, Chebyshev integral inequality, and Hermite Hadamard type integral inequality by a fractional integral operator having a nonsingular function (generalized multi-index Bessel function) as a kernel, and these established results have great contribution in the field of inequalities. The Hermite Hadamard type integral inequality provides the upper and lower estimate to find the average integral for the convex function of any defined interval.

    The structure of the paper follows:

    In section 2, we present some well-known definitions and mathematical preliminaries. The new generalized fractional integral with nonsingular function as a kernel is defined in section 3. In section 4, we present Hermite Hadamard type Mercer inequality of new designed fractional integral operator with nonsingular function (generalized multi-index Bessel function) as a kernel. some inequalities of $ (s-m) $-preinvex function involving new designed fractional integral operator with nonsingular function (generalized multi-index Bessel function) as a kernel are presented in section 5. Here section 6 and 7, we present Pólya-Szegö and Chebyshev integral inequalities involving generalized fractional integral operator with nonsingular function as a kernel, respectively.

    Definition 2.1. The inequality holds for the convex function if a mapping $ g: K \rightarrow \mathbb{R} $ exist as

    $ g(δy1+(1δ)y2)δg(y1)+(1δ)g(y2), $ (2.1)

    where $ \forall y_{1}, y_{2}\in K $ and $ \delta\in[0, 1] $.

    Definition 2.2. The inequality derived by Hermite [53] call as Hermite Hadamard inequality

    $ g(y1+y22)1y2y1y2y1g(t)dtg(y1)+g(y2)2, $ (2.2)

    where $ y_{1}, y_{2} \in I $, with $ y_{2}\neq y_{1} $, if $ g:I \subseteq \mathbb{R} \rightarrow \mathbb{R} $ is a convex function.

    Definition 2.3. Let $ y_{j}\in K $ for all $ j \in I_{n} $, $ \omega_{j} > 0 $ such that $ \sum_{j \in I_{n}} \omega_{j} = 1 $. Then the Jensen inequality holds

    $ g(jInωjyj)jInωjg(yj), $ (2.3)

    exist if $ g:k \rightarrow \mathbb{R} $ is convex function.

    Mercer [54] derived the Mercer inequality by applying the Jensen inequality and properties of convex function.

    Definition 2.4. Let $ y_{j}\in K $ for all $ j \in I_{n} $, $ \omega_{j} > 0 $ such that $ \sum_{j \in I_{n}} \omega_{j} = 1 $, $ m = \min_{j \in I_{n}}\{y_{j}\} $ and $ n = \max_{j \in I_{n}}\{y_{j}\} $. Then the inequality holds for convex function as

    $ g(m+niInωjyj)g(m)+g(n)jInωjg(yj), $ (2.4)

    if $ g:k \rightarrow \mathbb{R} $ is convex function.

    Definition 2.5. [55] The inequality holds for exponentially convex function, if a real valued mapping $ g: K \rightarrow \mathbb{R} $ exist as

    $ g(δy1+(1δ)y2)δg(y1)eθy1+(1δ)g(y2)eθy2, $ (2.5)

    where $ \forall y_{1}, y_{2}\in K $ and $ \delta\in[0, 1] $ and $ \theta\in \mathbb{R} $.

    Suppose that $ \Omega\subseteq \mathbb{R}^{n} $ is a set. Let $ g:\Omega\rightarrow \mathbb{R} $ continuous function and let $ \xi:\Omega\times\Omega\rightarrow \mathbb{R}^{n} $ be continuous function:

    Definition 2.6. [56] With respect to bifunction $ \xi(., .) $ a set $ \Omega $ is called a invex set, if

    $ y1+δξ(y2,y1), $ (2.6)

    where $ \forall y_{1}, y_{2} \in \Omega, \delta\in[0, 1] $.

    Definition 2.7. [57] A invex set $ \Omega $ and a mapping $ g $ with respect to $ \xi(., .) $ is called a preinvex function, as

    $ g(y1+δξ(y2,y1))(1δ)g(y1)+δg(y2), $ (2.7)

    where $ \forall $ $ y_{1}, y_{2}+\xi(y_{2}, y_{1})\in \Omega, \delta \in [0, 1] $.

    Definition 2.8. A invex set $ \Omega $ with real valued mapping $ g $ and respect to $ \xi(., .) $ is called a exponentially preinvex, if the inequality

    $ g(y1+δξ(y2,y1))(1δ)g(y1)eθy1+δg(y2)eθy2, $ (2.8)

    where for all $ y_{1}, y_{2}+\xi(y_{2}, y_{1})\in \Omega, \delta \in [0, 1] $ and $ \theta \in \mathbb{R} $.

    Definition 2.9. A invex set $ \Omega $ with real valued mapping $ g $ and respect to $ \xi(., .) $ is called a exponentially s-preinvex, if

    $ g(y1+δξ(y2,y1))(1δ)sg(y1)eθy1+δsg(y2)eθy2, $ (2.9)

    where for all $ y_{1}, y_{2}+\xi(y_{2}, y_{1})\in \Omega, \delta \in [0, 1] $, $ s\in(0, 1] $ and $ \theta \in \mathbb{R} $.

    Definition 2.10. A invex set $ \Omega $ with real valued mapping $ g $ and respect to $ \xi(., .) $ is called exponentially (s-m)-preinvex, if

    $ g(y1+mδξ(y2,y1))(1δ)sg(y1)eθy1+mδsg(y2)eθy2, $ (2.10)

    where for all $ y_{1}, y_{2}+\xi(y_{2}, y_{1})\in \Omega $, $ \delta, m \in [0, 1] $ and $ \theta \in \mathbb{R} $.

    Definition 2.11. [58] Generalized multi-index Bessel function is defined by Choi et al as follows

    $ J(ξj)m,λ(δj)m,σ(z)=s=0(λ)σsmj=1Γ(ξjs+δj+1)(z)ss!, $ (2.11)

    where $ \xi_j, \delta_j, \lambda \in\mathbb{C} $, $ (j = 1, \cdots, m) $, $ \Re(\lambda) > 0, \Re(\delta_{j}) > -1, \sum^{m}_{j = 1} \Re(\xi)_j > max\{0: \Re(\sigma)-1\}, \sigma > 0 $.

    Definition 2.12. [58] Pohhammer symbol is defined for $ \lambda\in \mathbb{C} $ as follows

    $ (λ)s={λ(λ+1)(λ+s1),sN1,s=0, $ (2.12)
    $ =Γ(λ+s)Γ(λ),(λC/Z0) $ (2.13)

    where $ \Gamma $ being the Gamma function.

    This section presents a generalized fractional integral operator with a nonsingular function (multi-index Bessel function) as a kernel.

    Definition 3.1. Let $ \xi_j, \delta_j, \lambda, \zeta \in \mathbb{C}, (j = 1, \cdots, m), \Re(\lambda) > 0, \Re(\delta_{j}) > -1, \sum^{m}_{j = 1} \Re(\xi_{j}) > max\{0: \Re(\sigma)-1\}, \sigma > 0 $. Let $ g \in L \ \ [y_{1}, y_{2}] $ and $ t\in[y_{1}, y_{2}] $. Then the corresponding left sided and right sided generalized integral operators having generalized multi-index Bessel function defined as:

    $ (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)=zy1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g(t)dt, $ (3.1)

    and

    $ (Œ(ξj,δj)mλ,σ,ζ;y2g)(z)=y2z(tz)δjJ(ξj)m,λ(δj)m,σ(ζ(tz)ξj)g(t)dt. $ (3.2)

    Remark 3.1. The special cases of generalized fractional integrals with nonsingular kernel are given below:

    1. If set $ j = m = 1 $, $ \sigma = 0 $ and limits from $ [0, z] $ in Eq (3.1), we get a fractional integral defined by Srivastava and Singh in [59] as

    $ (Œξ1,δ1λ,0,ζ;0+g)(z)=z0(zt)δ1Jξ1δ1(ζ(zt)ξ1)g(t)dt=f(z). $ (3.3)

    2. If set $ j = m = 1 $, $ \delta_{1} = \delta_{1}-1 $ in Eq (3.1), we have a fractional integral defined by Srivastava and Tomovski in [60] as

    $ (Œξ1,δ11λ,σ,ζ;y+1g)(z)=(Eζ;λ,σy+1;ξ1,δ1g)(z). $ (3.4)

    3. If set $ j = m = 1 $, $ \delta_{1} = \delta_{1}-1 $, $ \zeta = 0 $ in Eq (3.1), we get a Riemann-Liouville fractional integral operator defined in [61] as

    $ (Œξ1,δ1λ,σ,ζ;y+1g)(z)=(Iδ1y+1g)(z). $ (3.5)

    4. If set $ j = m = 1 $, $ \sigma = 1 $, $ \delta_{1} = \delta_{1}-1 $, in Eq (3.1) and Eq (3.2), we get the fractional integral operator defined by Prabhakar in [62] as follows

    $ (Œξ1,δ11λ,1,ζ;y+1g)(z)=E(ξ1,δ1;λ;ζ)g(z)=g(z) $ (3.6)
    $ (Œ(ξ1,δ11)λ,1,ζ;y2g)(z)=E(ξ1,δ1;λ;ζ)g(z). $ (3.7)

    Lemma 3.1. From generalized fractional integral operator, we have

    $ (Œ(ξj,δj)mλ,σ,ζ;y+11)(z)=zy1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)dt=zy1(zt)δjs=0(λ)σs(ζ)smj=1Γ(ξjs+δj+1)(zt)ξjss!dt=s=0(λ)σs(ζ)smj=1Γ(ξjs+δj+1)s!zy1(zt)ξjs+δjdt=(zy1)δj+1s=0(λ)σs(ζ)smj=1Γ(ξjs+δj+1)s!(zy1)ξjsξjs+δj+1. $ (3.8)

    Hence, the Eq (3.8) becomes

    $ (Œ(ξj,δj+1)mλ,σ,ζ;y+11)(z)=(zy1)δj+1J(ξj)m,λ(δj)m+1,σ(ζ(zy1)ξj), $ (3.9)

    and similarly we have

    $ (Œ(ξj,δj+1)mλ,σ,ζ;y21)(z)=(y2z)δj+1J(ξj)m,λ(δj)m+1,σ(ζ(y2z)ξj). $ (3.10)

    In this section, we derive Hermite Hadamard type Mercer inequality of new designed fractional integral operator in a generalized multi-index Bessel function using a kernel.

    Theorem 4.1. Let $ g:[m, n] \rightarrow (0, \infty) $ is convex function such that $ g\in\chi_{c}(m, n) $, $ \forall x, y \in [m, n] $ and the operator defined in Eq (5.2) in the form of left sense operator and Eq (3.2) in the form of right sense operator then we have

    $ g(m+nx+y2)g(m)+g(n)[J(ξj)m,λ(δj)m+1,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)] $ (4.1)
    $ g(m)+g(n)g(x)+g(y)2. $ (4.2)

    Proof. Consider the mercer inequality

    $ g(m+ny1+y22)g(m)+g(n)g(y1)+g(y2)2,y1,y2[m,n]. $ (4.3)

    Let $ x, y \in [m, n] $, $ t \in [z-1, z] $, $ y_{1} = (z-t)x+(1-z+t)y $ and $ y_{2} = (1-z+t)x+(z-t)y $ then inequality (4.3) becomes

    $ g(m+ny1+y22)g(m)+g(n)g((zt)x+(1z+t)y)+g(1z+t)x+(zt)y)2. $ (4.4)

    Multiply both sides of Eq (4.4) by $ (z-t)^{\delta_j} {\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(z-t)^{\xi_{j}})} $ and integrating with respect to $ t $ from $ [z-1, z] $, we get

    $ J(ξj)m,λ(δj)m+1,σ(ζ)g(m+nx+y2)J(ξj)m,λ(δj)m+1,σ(ζ)[g(m)+g(n)]12[zz1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)×[g((zt)y1+(1z+t)y2)+g(1z+t)x+(zt)y2]]dt=J(ξj)m,λ(δj)m+1,σ(ζ)[g(m)+g(n)]12[yx(yuyx)δjJ(ξj)m,λ(δj)m,σ(ζ(yuyx)ξj)×g(u)(yx)du+xy(uxyx)δjJ(ξj)m,λ(δj)m,σ(ζ(uxyx)ξj)g(u)(yx)du]=J(ξj)m,λ(δj)m+1,σ(ζ)[g(m)+g(n)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)], $

    we get the desired inequality, as

    $ g(m+nx+y2)g(m)+g(n)[J(ξj)m,λ(δj)m+1,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)]. $ (4.5)

    Thus, we get the inequality (4.1). Let $ t \in[z-1, z] $. From the convexity of function $ g $ we have

    $ g(x+y2)=g[(zt)x+(1z+t)y+(1z+t)x+(zt)y]2g((zt)x+(1z+t)y)+g((1z+t)x+(zt)y)2. $ (4.6)

    Both sides multiply of Eq (4.6) by $ (z-t)^{\delta_j} {\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(z-t)^{\xi_{j}})} $ and integrating with respect to $ t $ from $ [z-1, z] $, we obtain

    $ J(ξj)m,λ(δj)m,σ(ζ)g(x+y2)zz1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)×[g((zt)x+(1z+t)y)+g((1z+t)x+(zt)y)]dt=12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)]. $

    We get the inequality of negative sign

    $ g(x+y2)[J(ξj)m,λ(δj)m+1,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)]. $ (4.7)

    By adding $ g(m)+g(n) $ of both sides of inequality (4.7), we have

    $ g(m)+g(n)g(x+y2)g(m)+g(n)[J(ξj)m,λ(δj)m+1,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;yg(x)]. $

    Hence, we get the inequality (4.2).

    Theorem 4.2. Let $ g:[m, n] \rightarrow (0, \infty) $ is convex function such that $ g\in\chi_{c}(m, n) $ then we have the following inequalities:

    $ g(m+nx+y2)[J(ξj)m,λ(δj)m,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;(m+ny)+g(m+nx)+Œ(ξj,δj)mλ,σ,ζ;(m+nx)g(m+ny)]. $ (4.8)
    $ g(m+nx)+g(m+ny)2g(m)+g(n)g(m)+g(n)2. $ (4.9)

    Where $ \forall x, y \in [m, n] $.

    Proof. We see that from the convexity of $ g $ as

    $ g(m+ny1+y22)=g(m+ny1+m+ny22)12[g(m+ny1)+g(m+ny2)],y1,y2[m,n]. $ (4.10)

    Let $ x, y \in[m, n] $, $ t \in [z-1, z] $, $ m+n-y_{1} = (z-t)(m+n-x)+(1-z+t)(m+n-y) $, $ m+n-y_{2} = (1-z+t)(m+n-x)+(z-t)(m+n-y) $, then inequality (4.10) gives

    $ g(m+ny1+y22)12g[(zt)(m+nx)+(1z+t)(m+ny)]+12g[(1z+t)(m+nx)+(zt)(m+ny)], $ (4.11)

    multiply of both sides of inequality (4.11) by $ (z-t)^{\delta_j} {\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(z-t)^{\xi_{j}})} $ then integrate with respect to $ t $ from $ [z-1, z] $, we get

    $ J(ξj)m,λ(δj)m,σ(ζ)g(m+nx+y2)12zz1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g[(zt)(m+nx)+(1z+t)(m+ny)]dt+12zz1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g[(1z+t)(m+nx)+(zt)(m+ny)]dt=12(yx)[m+nxm+ny(u(m+ny)yx)δj)J(ξj)m,λ(δj)m,σ(ζ(u(m+ny)yx)ξj)g(u)du+m+nym+nx((m+ny)uyx)δj)J(ξj)m,λ(δj)m,σ(ζ((m+ny)uyx)ξj)g(u)du]=12(yx)[Œ(ξj,δj)mλ,σ,ζ;(m+ny)+g(m+nx)+Œ(ξj,δj)mλ,σ,ζ;(m+nx)g(m+ny)]. $

    Thus, we get the inequality (4.8)

    $ g(m+nx+y2)[J(ξj)m,λ(δj)m,σ(ζ)]12(yx)[Œ(ξj,δj)mλ,σ,ζ;(m+ny)+g(m+nx)+Œ(ξj,δj)mλ,σ,ζ;(m+nx)g(m+ny)]. $

    From the convexity of $ g $, we obtain

    $ g((zt)(m+nx)+(1z+t)(m+ny))(zt)g(m+nx)+(1z+t)g(m+ny), $ (4.12)

    and

    $ g((1z+t)(m+nx)+(zt)(m+ny))(1z+t)g(m+nx)+(zt)g(m+ny). $ (4.13)

    Adding up the above inequalities and applying Jensen-Mercer inequality, we get

    $ g((zt)(m+nx)+(1z+t)(m+ny))+g((1z+t)(m+nx)+(zt)(m+ny))g(m+nx)+g(m+ny)2[g(m)+g(n)][g(x)+g(y)]. $ (4.14)

    Multiply both sides of inequality (4.14) by $ (z-t)^{\delta_j} {\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(z-t)^{\xi_{j}})} $ and then integrating with respect to $ t $ from $ [z-1, z] $ we obtain the two inequalities (4.9).

    In this section, we derive some inequalities of $ (s-m) $ preinvex function involving new designed fractional integral operator $ Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta} g)(z) $ having generalized multi-index Bessel function as its kernel in the form of theorems.

    Theorem 5.1. Suppose a real valued function $ g:[y_{1}, y_{1}+\xi(y_{2}, y_{1})]\rightarrow R $ be exponentially (s-m) preinvex function, then the following fractional inequality holds:

    $ (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[g(y1)eθ1y1+mg(z)eθ1z]+(y1+ξ(y2,y1)z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)[g(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+mg(z)eθ2z]. $

    $ \forall $ $ z\in[y_{1}, y_{1}+\xi(y_{2}, y_{1})] $, $ \theta_{1}, \theta_{2} \in R $.

    Proof. Let $ z\in[y_{1}, y_{1}+\xi(y_{2}, y_{1})] $, and then for $ t\in [y_{1}, z) $ and $ \delta_{j} > -1 $, we have the subsequent inequality

    $ (zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj). $ (5.1)

    For $ g $ is exponentially (s-m)-preinvex function, we obtain

    $ g(t)(ztzy1)sg(y1)eθ1y1+m(ty1zy1)sg(z)eθ1z. $ (5.2)

    Taking product (5.1) and (5.2), and integrating with respect to $ t $ from $ y_{1} $ to $ z $, we get

    $ zy1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g(t)dtzy1(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj)×[(ztzy1)sg(y1)eθ1y1+m(ty1zy1)sg(z)eθ1z]dt, $ (5.3)

    apply definition (13) in Eq (5.3), we have

    $ (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[g(y1)eθ1y1+mg(z)eθ1z]. $ (5.4)

    Analogously for $ t\in(z, y_{1}+\xi(y_{2}, y_{1})] $ and $ \mu_{j} > -1 $, we have

    $ (tz)μjJ(ξj)m,λ(μj)m,σ(ζ(tz)ξj)(y1+ξ(y2,y1)z)μjJ(ξj)m,λ(μj)m,σ(ζ(y1+ξ(y2,y1)z)ξj). $ (5.5)

    Further, the exponentially (s-m) convexity of $ g $, we get

    $ g(t)(tzy1+ξ(y2,y1)z)sg(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+m(y1+ξ(y2,y1)ty1+ξ(y2,y1)z)sg(z)eθ2z. $ (5.6)

    Taking product of (5.5) and (5.6) and integrating with respect to $ t $ from $ z $ to $ y_{1}+\xi(y_{2}, y_{1}) $, we have

    $ y1+ξ(y2,y1)z(tz)μjJ(ξj)m,λ(μj)m,σ(ζ(tz)ξj)g(t)dty1+ξ(y2,y1)z(y1+ξ(y2,y1)z)μjJ(ξj)m,λ(μj)m,σ(ζ(y1+ξ(y2,y1)z)ξj)×[(tzy1+ξ(y2,y1)z)sg(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+m(y1+ξ(y2,y1)ty1+ξ(y2,y1)z)sg(z)eθ2z]dt, $ (5.7)

    apply the definition (13) in inequality (5.7), we have

    $ (Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)(y1+ξ(y2,y1)z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)[g(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+mg(z)eθ2z]. $ (5.8)

    Now, add the inequalities (5.4) and (5.8), we get the result

    $ (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[g(y1)eθ1y1+mg(z)eθ1z]+(y1+ξ(y2,y1)z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)[g(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+mg(z)eθ2z]. $

    Corollary 5.1. If $ g\in L_{\infty}[y_{1}, y_{1}+\xi(y_{2}, y_{1})] $, then under the assumption of theorem (5.1), we have

    $ (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)||g||s+1[(zy1)(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)(1eθ1y1+m1eθ1z)+(y1+η(y2,y1)z)(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)(1eθ2(y1+ξ(y2,y1))+m1eθ2z)]. $

    Corollary 5.2. Setting $ m = 1 $ and $ g\in L_{\infty}[y_{1}, y_{1}+\xi(y_{2}, y_{1})] $, then under the assumption of theorem (5.1), we have

    $ (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)||g||s+1[(zy1)(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)(1eθ1y1+m1eθ1z)+(y1+ξ(y2,y1)z)(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)(1eθ2(y1+ξ(y2,y1))+1eθ2z)]. $

    Corollary 5.3. Setting $ m = s = 1 $ and $ g\in L_{\infty}[y_{1}, y_{1}+\xi(y_{2}, y_{1})] $, then under the assumption of theorem (5.1), we have

    $ (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)||g||2[(zy1)(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)(1eθ1y1+m1eθ1z)+(y1+ξ(y2,y1)z)(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)(1eθ2(y1+ξ(y2,y1))+1eθ2z)]. $

    Corollary 5.4. Setting $ \xi(y_{2}, y_{1}) = y_{2}-y_{1} $ and $ g\in L_{\infty}[y_{1}, y_{2}] $, then under the assumption of theorem (5.1), we have

    $ (Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)||g||s+1[(zy1)(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)(1eθ1y1+m1eθ1z)+(y2z)(Œ(ξj,μj)mλ,σ,ζ;y+21)(z)(1eθ2y2+1eθ2z)]. $

    Theorem 5.2. Suppose a real value function $ g:[y_{1}, y_{1}+\xi(y_{2}, y_{1})]\rightarrow R $ is differentiable and $ |g|^{\prime} $ is exponentially (s-m) preinvex, then the following fractional inequality for (3.1) and (3.2) holds:

    $ |(Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(z)+(Œ(ξj)m,(μj1)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)[(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)]g(y1)[(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)]g(y1+ξ(y2,y1))|(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+m|g(z)|eθ1z]+((y1+ξ(y2,y1)z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)[|g(y1+ξ(y2,y1))|eθ1(y1+ξ(y2,y1))+m|g(z)|eθ1z]. $

    $ \forall $ $ z\in[y_{1}, y_{1}+\xi(y_{2}, y_{1})] $, $ \theta_{1}, \theta_{2} \in \mathbb{R} $.

    Proof. Let $ z\in[y_{1}, y_{1}+\xi(y_{2}, y_{1})] $, $ t\in[y_{1}, z) $, and applying exponentially (s-m) preinvex of $ |g|^{\prime} $, we get

    $ |g(t)|(ztzy1)s|g(y1)|eθ1y1+m(ty1zx1)s|g(z)|eθ1z. $ (5.9)

    Get the inequality (5.9), we have

    $ g(t)(ztzy1)s|g(y1)|eθ1y1+m(ty1zy1)s|g(x)|eθ1z. $ (5.10)

    Subsequently inequality as:

    $ (zt)δjJ(ξj)m,λ(δj)m,k(ζ(zt)ξj)(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj). $ (5.11)

    Conducting product of inequality (5.10) and (5.11), we have

    $ (zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g(t)(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj)×[(ztzy1)s|g(y1)|eθ1y1+m(ty1zy1)s|g(x)|eθ1z], $ (5.12)

    integrating before mention inequality with respect to $ t $ from $ y_{1} $ to $ z $, we have

    $ zy1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g(t)dtzy1(zy1)δjJ(ξj)m,λ(δj)m,k(ζ(zy1)ξj)[(ztzy1)s|g(y1)|eθ1y1+m(ty1zy1)s|g(z)|eθ1z]dt=(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+m|g(z)|eθ1z]. $ (5.13)

    Now, solving left side of (5.13) by putting $ z-t = \alpha $, then we have

    $ zy1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g(t)dt=zy10αδjJ(ξj)m,λ(δj)m,σ(ζ(α)ξj)g(zα)dα=(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj)g(y1)+zy10αδj1J(ξj)m,λ(δj)m1,σ(ζ(α)ξj)g(zα)dα. $

    Now, again subsisting $ z-\alpha = t $, we get

    $ zy1(zt)δjJ(ξj)m,λ(δj)m,σ(ζ(zt)ξj)g(t)dt=zy1(zt)δj1J(ξj)m,λ(δj)m1,σ(ζ(zt)ξj)g(t)dt(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj)g(y1)=(Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(z)[(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)]g(y1). $

    Therefore, the inequality (5.13) have the following form

    $ (Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(x)[(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)]g(y1)(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+m|g(z)|eθ1z]. $ (5.14)

    Also from (5.9), we get

    $ g(t)(ztzy1)s|g(y1)|eθ1y1m(ty1zy1)s|g(z)|eθ1z. $ (5.15)

    Adopting the same procedure as we have done for (5.10), we obtain

    $ (Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(z)[(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)]g(y1)(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+m|g(z)|eθ1z]. $ (5.16)

    From (5.14) and (5.16), we get

    $ |(Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(z)[(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)]g(y1)|(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+m|g(z)|eθ1z]. $ (5.17)

    Now, we let $ z\in[y_{1}, y_{1}+\eta(y_{2}, y_{1})] $ and $ t\in(z, y_{1}+\xi(y_{2}, y_{1})] $, and by exponentially (s-m) preinvex of $ |g^{\prime}| $, we get

    $ |g(t)|(tzy1+ξ(y2,y1)z)s|g(y1+ξ(y2,y1))|eθ2(y1+ξ(y2,y1))+m(y1+ξ(y2,y1)ty1+ξ(y2,y1)z)s|g(z)|eθ2z, $ (5.18)

    repeat the same procedure from Eq (5.9) to Eq (5.17), we get

    $ |(Œ(ξj)m,(μj1)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)[(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)]g(y1+ξ(y2,y1))|((y1+ξ(y2,y1)z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)[|g(y1+ξ(y2,y1))|eθ1(y1+ξ(y2,y1))+m|g(z)|eθ1z]. $ (5.19)

    From inequalities (5.17) and (5.19), we have

    $ |(Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(z)+(Œ(ξj)m,(μj1)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)[(Œ(ξj,δj)mλ,k,ζ;y+11)(z)]g(y1)[(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)]g(y1+ξ(y2,y1))|(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+m|g(z)|eθ1z]+((y1+ξ(y2,y1)z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)[|g(y1+ξ(y2,y1))|eθ1(y1+ξ(y2,y1))+m|g(z)|eθ1z]. $

    Corollary 5.5. Setting $ \xi(y_{2}, y_{1}) = y_{2}-y_{1} $, then under the assumption of theorem (5.2), we have

    $ |(Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(z)+(Œ(ξj)m,(μj1)mλ,σ,ζ;y2g)(z)[(Œ(ξj,δj)mλ,k,ζ;y+11)(z)]g(y1)[(Œ(ξj,μj)mλ,σ,ζ;y21)(z)]g(y2)|(zy1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+m|g(z)|eθ1z]+(y2z)s+1(Œ(ξj,μj)mλ,σ,ζ;y21)(z)[|g(y2)|eθ1(y2)+m|g(z)|eθ1z]. $

    $ \forall $ $ t\in[y_{1}, y_{2}] $, $ \theta_{1}, \theta_{2} \in \mathbb{R} $.

    Corollary 5.6. Setting $ \xi(y_{2}, y_{1}) = y_{2}-y_{1} $, along with $ m = s = 1 $ then under the assumption of theorem (5.2), we have

    $ |(Œ(ξj)m,(δj1)mλ,σ,ζ:y+1g)(z)+(Œ(ξj)m,(μj1)mλ,σ,ζ;y2g)(z)[(Œ(ξj,δj)mλ,k,ζ;y+11)(z)]g(y1)[(Œ(ξj,μj)mλ,σ,ζ;y21)(z)]g(y2)|(zy1)2(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[|g(y1)|eθ1y1+|g(z)|eθ1z]+(y2z)2(Œ(ξj,μj)mλ,σ,ζ;y21)(z)[|g(y2)|eθ1(y2)+|g(z)|eθ1z]. $

    $ \forall $ $ t\in[y_{1}, y_{2}] $, $ \theta_{1}, \theta_{2} \in \mathbb{R} $.

    Definition 5.1. Let $ g: [y_{1}, y_{1}+\xi(y_{2}, y_{1})]\rightarrow R $ is a function, and $ g $ is exponentially symmetric about $ \frac{2y_{1}+\xi(y_{2}, y_{1})}{2} $ if

    $ g(z)eθz=g(2y1+ξ(y2,y1)z)eθ(2y1+ξ(y2,y1)z),θR. $ (5.20)

    Lemma 5.1. Let $ g:[y_{1}, y_{1}+\xi(y_{2}, y_{1})]\rightarrow R $ be exponentially symmetric, then

    $ g(2y1+ξ(y2,y1)2)(1+m)g(z)2seθz,θR. $ (5.21)

    Proof. For $ g $ is exponentially (s-m) preinvex, therefore

    $ g(2y1+ξ(y2,y1)2)g(y1+δξ(y2,1))2seθ(y1+δξ(y2,y1))+mg(y1+(1δ)ξ(y2,y1))2seθ(y1+(1δ)ξ(y2,y1)). $ (5.22)

    Let $ t = y_{1}+\delta\xi(y_{2}, y_{1}) $, where $ t\in[y_{1}, y_{1}+\xi(y_{2}, y_{1})] $, and then $ 2y_{1}+\xi(y_{2}, y_{1}) = y_{1}+(1-\delta)\xi(y_{2}, y_{1}) $, we have

    $ g(2y1+ξ(y2,y1)2)g(z)2seθz+mg(2y1+ξ(y2,y1)z)2seθ(2y1+ξ(y2,y1)z). $ (5.23)

    applying that $ g $ is exponentially symmetric, we obtain

    $ g(2y1+ξ(y2,y1)2)(1+m)g(z)2seθz. $ (5.24)

    Theorem 5.3. Suppose a real valued function $ g:[y_{1}, y_{1}+\xi(y_{2}, y_{1})]\rightarrow R $ is exponentially (s-m) preinvex and symmetric about exponentially $ \frac{2y_{1}+\xi(y_{2}, y_{1})}{2} $, then the following integral inequality for (3.1) and (3.2) holds:

    $ 2s1+mf(2y1+ξ(y2,y1)2)[eθy1(Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(y1)+(Œ(μj,δj)mλ,σ,ζ;y+11)(y1+ξ(y2,y1))](Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)+(Œ(μj,τj)mλ,σ,ζ;y+1g)(y1+ξ(y2,y1))ξ(y2,y1)s+1(g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1)×[(Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(y1+ξ(y2,y1))]. $ (5.25)

    Proof. For $ z\in[y_{1}, y_{1}+\xi(y_{2}, y_{1})] $, we have

    $ (zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj)(ξ(y2,y1))δjJ(ξj)m,λ(δj)m,σ(ζ(ξ(y2,y1))ξj), $ (5.26)

    the real value function $ g $ is exponentially (s-m) preinvex, then for $ z\in[y_{1}, y_{1}+\xi(y_{2}, y_{1})] $, we get

    $ g(z)(zy1ξ(y2,y1))sg(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+m((y1+ξ(y2,y1)z)ξ(y2,y1))sg(y1)eθ1y1. $ (5.27)

    Conducting product of (5.26) and (5.27), and integrating with respect to $ z $ from $ y_{1} $ to $ y_{2} $, we get

    $ y2y1(zy1)δjJ(ξj)m,λ(δj)m,σ(ζ(zy1)ξj)g(z)dzy2y1(ξ(y2,y1))δjJ(ξj)m,λ(δj)m,σ(ζ(ξ(y2,y1))ξj)×[(zy1ξ(y2,y1))sg(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+m((y1+ξ(y2,y1)z)ξ(y2,y1))sg(y1)eθ1y1]dz, $ (5.28)

    then we have

    $ (Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)(ξ(y2,y1))δjJ(ξj)m,λ(δj)m,σ(ζ(ξ(y2,y1))ξj)ξ(y2,y1)s+1[g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1]=(Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)ξ(y2,y1)s+1[g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1]. $ (5.29)

    Analogously for $ z\in[y_{1}, y_{1}+\xi(y_{2}, y_{1})] $, we have

    $ (y1+ξ(y2,y1)z)μjJ(ξj)m,λ(μj)m,σ(ζ(zy1)ξj)(ξ(y2,y1))μjJ(ξj)m,λ(μj)m,σ(ζ(ξ(y2,y1))ξj). $ (5.30)

    Conducting product of (5.27) and (5.30), and integrating with respect to $ z $ from $ y_{1} $ to $ y_{2} $, we have

    $ y2y1(y1+ξ(y2,y1)z)μjJ(ξj)m,λ(μj)m,σ(ζ(zy1)ξj)g(z)dzy2y1(ξ(y2,y1))μjJ(ξj)m,λ(μj)m,σ(ζ(ξ(y2,y1))ξj)[(zy1ξ(y2,y1))sg(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+m((y1+ξ(y2,y1)z)ξ(y2,y1))sg(y1)eθ1y1]dz=(ξ(y2,y1))μjJ(ξj)m,λ(μj)m,σ(ζ(ξ(y2,y1))ξj)ξ(y2,y1)s+1[g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1], $

    then

    $ (Œ(ξj,μj)mλ,σ,ζ;y+1g)(z)(Œ(ξj,μj)mλ,σ;(y1+ξ(y2,y1))1)(y1+ξ(y2,y1))ξ(y2,y1)s+1[g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1]. $ (5.31)

    Summing (5.29) and (5.31), we obtain

    $ (Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)+(Œ(ξj,μj)mλ,σ,ζ;y+1g)(z)ξ(y2,y1)s+1(g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1)[(Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(y1+ξ(y2,y1))]. $ (5.32)

    Take the product of Eq (5.21) with $ (z-y_{1})^{\tau_{j}}{\mathrm{J}^{(\mu_j)_m, \lambda}_{(\tau_j)_m, \sigma}(\zeta(z-y_{1})^{\mu_{j}})} $ and integrating with respect to $ t $ from $ y_{1} $ to $ y_{2} $, we have

    $ g(2y1+ξ(y2,y1)2)y2y1(zy1)τjJ(μj)m,λ(τj)m,σ(ζ(zy1)μj)dz(1+m)2sy2y1(zy1)τjJ(μj)m,λ(τj)m,σ(ζ(zy1)μj)g(z)eθzdz $ (5.33)

    using definition (13), we have

    $ g(2y1+ξ(y2,y1)2)(Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(y1)(1+m)2seθy1(Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z). $ (5.34)

    Taking product (5.21) with $ (y_{1}+\xi(y_{2}, y_{1})-z)^{\delta_{j}}{\mathrm{J}^{(\mu_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(y_{1}+\xi(y_{2}, y_{1})-z)^{\mu_{j}})} $ and integrating with respect to variable $ z $ from $ y_{1} $ to $ y_{2} $, we have

    $ g(2y1+ξ(y2,y1)2)(Œ(μj,δj)mλ,σ,ζ;y+11)(y1+ξ(y2,y1))(1+m)2seθ1(y1+ξ(y2,y1))(Œ(μj,τj)mλ,σ,ζ;y+1g)(y1+ξ(y2,y1)). $ (5.35)

    Summing up (5.34) and (5.35), we get

    $ 2s1+mg(2y1+ξ(y2,y1)2)[eθy1(Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(y1)+(Œ(μj,δj)mλ,σ,ζ;y+11)(y1+ξ(y2,y1))](Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)+(Œ(μj,τj)mλ,σ,ζ;y+1g)(y1+ξ(y2,y1)). $ (5.36)

    Now, combining (5.32) and (5.36), we get inequality

    $ 2s1+mg(2y1+ξ(y2,y1)2)[eθy1(Œ(μj,τj)mλ,σ,ζ;(y1+η(y2,y1))1)(y1)+(Œ(μj,δj)mλ,σ,ζ;y+11)(y1+ξ(y2,y1))](Œ(μj,τj)mλ,σ,ζ;(y1+ξ(y2,y1))g)(z)+(Œ(μj,τj)mλ,σ,ζ;y+1g)(y1+ξ(y2,y1))ξ(y2,y1)s+1(g(y1+ξ(y2,y1))eθ1(y1+ξ(y2,y1))+mg(y1)eθ1y1)×[(Œ(ξj,δj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))1)(y1+ξ(y2,y1))]. $

    Corollary 5.7. Setting $ \xi(y_{2}, y_{1}) = y_{2}-y_{1} $, then under the assumption of theorem (5.3), we have

    $ 2s1+mg(y1+y22)[eθy1(Œ(μj,τj)mλ,σ,ζ;y21)(y1)+(Œ(μj,δj)mλ,σ,ζ;y+11)(y2)](Œ(μj,τj)mλ,σ,ζ;y2g)(z)+(Œ(μj,τj)mλ,σ,ζ;y+1g)(y2)(y2y1)s+1(g(y2y1)eθ1(y2y1)+mg(y1)eθ1y1)×[(Œ(ξj,δj)mλ,σ,ζ;y21)(z)+(Œ(ξj,μj)mλ,σ,ζ;y21)(y2)]. $ (5.37)

    In this section, we derive some Pólya-Szegö inequalities for four positive integrable functions having fractional operator $ Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma}(z) $ in the form of theorems.

    Theorem 6.1. Let $ h $ and $ l $ are integrable functions on $ [y_{1}, \infty) $. Suppose that there exist integrable functions $ \theta_{1}, \theta_{2}, \psi_{1} $ and $ \psi_{2} $ on $ [y_{1}, \infty) $ such that:

    $ (R1) 0<θ1(b)h(b)θ2(b),0<ψ1(b)l(b)ψ2(b) (b[y1,z],z>y1). $

    Then, for $ z > y_{1}, y_{1}\geq0 $, $ \xi_j, \delta_j, \lambda \in\mathbb{C}, (j = 1, \cdots, m), \Re(\lambda) > 0, \Re(\delta_{j}) > -1, \sum^{m}_{j = 1} \Re(\xi)_j > max\{0: \Re(\sigma)-1\}, \sigma > 0 $ and $ (z-b)\in \Omega $, then the following inequalities hold:

    $ Œ(ξj,δj)mλ,σ,ζ;y1+[(ψ1ψ2)h2](z)Œ(ξj,δj)mλ,σ,ζ;y+1[(θ1θ2)l2](z)[Œ(ξj,δj)mλ,σ,ζ;y+1[(θ1ψ1+θ2ψ2)hl](z)]214. $ (6.1)

    Proof. From $ (R1) $, for $ b\in[y_{1}, z] $, $ z > y_{1} $, we have

    $ h(b)l(b)θ2(b)ψ1(b), $ (6.2)

    the inequality write as

    $ (θ2(b)ψ1(b)h(b)l(b))0. $ (6.3)

    Similarly, we get

    $ θ1(b)ψ2(b)h(b)l(b), $ (6.4)

    thus

    $ (h(b)l(bθ1(b)ψ2(b))0. $ (6.5)

    Multiplying Eq (6.3) and Eq (6.5), it follows

    $ (θ2(b)ψ1(b)h(b)l(b))(h(b)l(b)θ1(b)ψ2(b))0, $ (6.6)

    i.e.

    $ (θ2(b)ψ1(b)+θ1(b)ψ2(b))h(b)l(b)h2(b)l2(b)+θ1(b)θ2(b)ψ1(b)ψ2(b). $ (6.7)

    The last inequality can be written as

    $ (θ1(b)ψ1(b)+θ2(b)ψ2(b))h(b)l(b)ψ1(b)ψ2(b)h2(b)+θ1(b)θ2(b)l2(b). $ (6.8)

    Consequently, multiply both sides of (6.8) by $ (y_{1}-b)^{\delta_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(y_{1}-b)^{\xi_{j}}) $, $ (z-b) \in \Omega $ and integrating with respect to $ b $ from $ y_{1} $ to $ z $, we get

    $ Œ(ξj,δj)mλ,σ,ζ;y1+[(θ1ψ1+θ2ψ2)hl](z)Œ(ξj,δj)mλ,σ,ζ;y1+[ψ1ψ2h2](z)+Œ(ξj,δj)mλ,σ,ζ;y1+[θ1θ2l2](z). $ (6.9)

    Besides, by AM-GM (arithmetic mean- geometric mean) inequality, i.e., $ a_{1}+b_{1}\geq2\sqrt{a_{1}b_{1}} $ $ a_{1}, b_{1} \in \Re^{+} $, we get

    $ Œ(ξj,δj)mλ,σ,ζ;y1+[(θ1ψ1+θ2ψ2)hl](x)2Œ(ξj,δj)mλ,σ,ζ;y1+[ψ1ψ2h2](z)+Œ(ξj,δj)mλ,σ,ζ;y1+[θ1θ2l2](z), $ (6.10)

    and it follows straightforward the statement of Eq (6.1).

    Corollary 6.1.. Let $ h $ and $ l $ be two integrable functions on $ [0, \infty) $ and satisfying the inequality

    $ (R2) 0<sh(b)S,0<kl(b)K(b[y1,τ],z>y1). $ (6.11)

    For $ z > y_{1}, y_{1}\geq0 $, $ \xi_j, \delta_j, \lambda \in\mathbb{C}, (j = 1, \cdots, m), \Re(\lambda) > 0, \Re(\delta_{j}) > -1, \sum^{m}_{j = 1} \Re(\xi)_j > max\{0: \Re(\sigma)-1\}, \sigma > 0 $ and $ (z-b)\in \Omega $, then the following inequalities hold:

    $ Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[l2](z)(Œ(ξj,δj)mλ,σ,ζ;y1+[hl](z))214(SKsk+skSK)2. $ (6.12)

    Theorem 6.2. Let $ h $ and $ l $ are positive integrable functions on $ [y_{1}, \infty) $. Suppose that there exist integrable functions $ \theta_{1}, \theta_{2}, \psi_{1} $ and $ \psi_{2} $ on $ [y_{1}, \infty) $ satisfying $ (R1) $ on $ [y_{1}, \infty) $. Then, for $ z > y_{1}, y_{1}\geq0 $, $ \xi_j, \delta_j, \lambda \in\mathbb{C}, (j = 1, \cdots, m), \Re(\lambda) > 0, \Re(\delta_{j}) > -1, \sum^{m}_{j = 1} \Re(\xi)_j > max\{0: \Re(\sigma)-1\}, \sigma > 0 $ and $ (z-b), (\tau-z)\in \Omega $, then the following inequalities hold:

    $ Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(ξj,δj)mλ,σ,ζ;y2[ψ1ψ2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[θ1θ2](z)Œ(ξj,δj)mλ,σ,ζ;y2[l2](z)[Œ(ξj,δj)mλ,σ,ζ;y1+[θ1h](z)Œ(ξj,δj)mλ,σ,ζ;y2[ψ1h](z)+Œ(ξj,δj)mλ,σ,ζ;y1+[θ2h](z)Œ(ξj,δj)mλ,σ,ζ;y2[ψ2l](z)]214. $ (6.13)

    Proof. By condition $ (R1) $, it is clear that

    $ (θ2(b)ψ1(α)h(b)l(α))0, $ (6.14)

    and

    $ (h(b)l(α)θ1(b)ψ2(α))0, $ (6.15)

    these inequalities implies that

    $ (θ1(b)ψ2(α)+θ2(b)ψ1(α))h(b)l(α)h2(b)l2(α)+θ1(b)θ2(b)ψ1(α)ψ2(α). $ (6.16)

    The Eq (6.16), multiply by $ \psi_{1}(\alpha)\psi_{2}(\alpha)l^{2}(\alpha) $ of both sides, we have

    $ θ1(b)h(b)ψ1(α)l(α)+θ2(b)h(b)ψ2(α)l(α)ψ1(α)ψ2(α)h2(b)+θ1(b)θ2(b)l2(α). $ (6.17)

    Hence, the Eq (6.17) multiply both sides by

    $ (zb)δjJ(ξj)m,λ(δj)m,σ(ζ(zb)ξj),(αz)δjJ(ξj)m,λ(δj)m,σ(ζ(αz)ξj). $ (6.18)

    And integrating double with respect to $ b $ and $ \alpha $ from $ y_{1} $ to $ z $ and $ z $ to $ y_{2} $ respectively, we have

    $ Œ(ξj,δj)mλ,σ,ζ;y1+[θ1h](z)Œ(ξj,δj)mλ,σ,ζ;y2[ψ1l](z)+Œ(ξj,δj)mλ,σ,ζ;y1+[θ2h](z)Œ(ξj,δj)mλ,σ,ζ;y2[ψ2l](z)Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(ξj,δj)mλ,σ,ζ;y2[ψ1ψ2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[θ1θ2](z)Œ(ξj,δj)mλ,σ,ζ;y2[l2](z). $ (6.19)

    At last, we come to Eq (6.13) by using the arithmetic and geometric mean inequality to the upper inequality.

    Theorem 6.3. Let $ h $ and $ l $ are integrable functions on $ [y_{1}, \infty) $. Suppose that there exist integrable functions $ \theta_{1}, \theta_{2}, \psi_{1} $ and $ \psi_{2} $ on $ [y_{1}, \infty) $ satisfying $ (R1) $ on $ [y_{1}, \infty) $. Then, for $ z > y_{1}, y_{1}\geq0 $, $ \xi_j, \delta_j, \lambda \in\mathbb{C}, (j = 1, \cdots, m), \Re(\lambda) > 0, \Re(\delta_{j}) > -1, \sum^{m}_{j = 1} \Re(\xi)_j > max\{0: \Re(\sigma)-1\}, \sigma > 0 $ and $ (z-b), (\alpha-z)\in \Omega $, then the following inequalities hold:

    $ Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(ξj,δj)mλ,σ,ζ;y2[l2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[(θ2hl)/ψ1](z)Œ(ξj,δj)mλ,σ,ζ;y2[(ψ2hl)/θ1]. $ (6.20)

    Proof. We have for any $ (z-b), (\alpha-z)\in \Omega $, from Eq (6.2), thus

    $ zy1(zb)δjJ(ξj,δj)mλ,σ(ζ(zb)ξj)h2(b)dby1z(αz)ξjJ(ξj,δj)mλ,σ(ζ(αz)ξj)θ2(α)ψ1(α)h(α)l(α)dα, $

    which implies

    $ Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[(θ2hl)/ψ1](z). $ (6.21)

    and analogously, by Eq (6.4), we get

    $ Œ(ξj,δj)mλ,σ,ζ;y2[l2](x)Œ(ξj,δj)mλ,σ,ζ;y2[(ψ2hl)/θ1](z), $ (6.22)

    hence, by multiplying Eq (6.21) and Eq (6.22), follow Eq (6.20).

    Corollary 6.2. Let $ h $ and $ l $ be integrable functions on $ [y_{1}, \infty) $ satisfying $ (R2) $. Then, for $ z > y_{1}, y_{1}\geq0 $, $ \xi_j, \delta_j, \lambda \in\mathbb{C}, (j = 1, \cdots, m), \Re(\lambda) > 0, \Re(\delta_{j}) > -1, \sum^{m}_{j = 1} \Re(\xi)_j > max\{0: \Re(\sigma)-1\}, \sigma > 0 $ and $ (z-b), (\alpha-z)\in \Omega $, we obtain

    $ Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(ξj,δj)mλ,σ,ζ;y2[l2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[hl](z)Œ(ξj,δj)mλ,σ,ζ;y2[hl](z)SKsk. $ (6.23)

    In this section, Chebyshev type integral inequalities established involving the fractional operator $ Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma}(z) $ and using the Pólya-Szegö fractional integral inequalities of theorem (6.1) in the form of theorem, and then discuss its corollary.

    Theorem 7.1. Let $ h $ and $ l $ be integrable functions on $ [y_{1}, \infty) $, and suppose that there exist integrable functions $ \theta_{1}, \theta_{2}, \psi_{1} $ and $ \psi_{2} $ on $ [y_{1}, \infty) $ satisfying $ (R1) $. Then, for $ z > y_{1}, y_{1}\geq0 $, $ \xi_j, \delta_j, \lambda \in\mathbb{C}, (j = 1, \cdots, m), \Re(\lambda) > 0, \Re(\delta_{j}) > -1, \sum^{m}_{j = 1} \Re(\xi)_j > max\{0: \Re(\sigma)-1\}, \sigma > 0 $ and $ (z-b)(\alpha-z)\in \Omega $ the following inequality hold:

    $ |Œ(ξj,δj)mλ,σ,ζ;y1+[hl](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+Œ(νj,μj)mλ,σ,ζ;y2[hl](z)Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)Œ(ξj,δj)mλ,σ,ζ;y1+[h](z)Œ(νj,μj)mλ,σ,ζ;y2[l](z)Œ(ξj,δj)mλ,σ,ζ;y1+[l](z)Œ(νj,μj)mλ,σ,ζ;y2[h](z)|2[Gy1,y2(h,θ1,θ2)Gy1,y2(l,ψ1,ψ2)]12. $ (7.1)

    where

    $ Gy1,y2(b,y,x)(z)=18[Œ(ξj,δj)mλ,σ,ζ;y1+[(y+x)b](z)]2Œ(ξj,δj)mλ,σ,ζ;y1+[yx](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+18[Œ(νj,μj)mλ,σ,ζ;y2[(y+x)b](z)]2Œ(μj,νj)mλ,σ,ζ;y2[yx](z)Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)Œ(ξj,δj)mλ,σ,ζ;y1+[b](z)Œ(νj,μj)mλ,σ,ζ;y2[b](z). $

    Proof. For $ (b, \alpha)\in(y_{1}, z) $ $ (z > y_{1}) $, we defined $ A(b, \alpha) = (h(b)-h(\alpha))(l(b)-l(\alpha)) $ which is the same

    $ A(b,α)=h(b)l(b)+h(α)l(α)h(b)l(α)h(α)l(b). $ (7.2)

    Further, the Eq (7.2), multiply both sides by

    $ (zb)ξjJ(ξj,δj)mλ,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj), $ (7.3)

    and integrating double with respect to $ b $ and $ \alpha $ from $ y_{1} $ to $ z $ and $ z $ to $ y_{2} $ respectively, we get

    $ zy1y2z(zb)ξjJ(ξj,δj)mλ,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)A(b,α)dbdα=zy1(zb)ξjJ(ξj,δj)mλ,σ(ζ(zb)δj)h(b)l(b)dby2z(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)dα+zy1(zb)ξjJ(ξj,δj)mλ,σ(ζ(zb)δj)dby2z(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)h(α)l(α)dαy1z(zb)ξjJ(ξj,δj)mλ,σ(ζ(zb)δj)h(b)dby2z(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)h(α)dαy1z(zb)ξjJ(ξj,δj)mλ,σ(ζ(zb)δj)l(b)dby2z(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)h(α)dα=Œ(ξj,δj)mλ,σ,ζ;y1+[hl](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)Œ(νj,μj)mλ,σ,ζ;y2[hl](z)Œ(ξj,δj)mλ,σ,ζ;y1+[h](z)Œ(νj,μj)mλ,σ,ζ;y2[l](z)Œ(ξj,δj)mλ,σ,ζ;y1+[l](z)Œ(νj,μj)mλ,σ,ζ;y2[h](z). $ (7.4)

    Now, applying Cauchy-Schwartz inequality for integrals, we get

    $ |zy1y2z(zb)ξjJ(ξj)m,λ(δj)m,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)A(b,α)dbdα|(zy1y2z(zb)ξjJ(ξj)m,λ(δj)m,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)α[h(b)]2dbdα+zy1y2z(zb)ξjJ(ξj)m,λ(δj)m,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)[h(α)]2dbdα2zy1y2z(zb)ξjJ(ξj)m,λ(δj)m,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)h(b)h(α)dbdα)1/2×(zy1y2z(zb)ξjJ(ξj)m,λ(δj)m,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)α[l(b)]2dbdα+zy1y2z(zb)ξjJ(ξj)m,λ(δj)m,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)[l(α)]2dbdα2zy1y2z(zb)ξjJ(ξj)m,λ(δj)m,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)l(b)l(α)dbdα)1/2, $ (7.5)

    it follow as

    $ |zy1y2z(zb)ξjJ(ξj)m,λ(δj)m,σ(ζ(zb)δj)(αz)νjJ(μj)m,λ(νj)m,σ(ζ(αz)μj)A(b,α)dbdα|2{1/2Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+1/2Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)Œ(νj,μj)mλ,σ,ζ;y2[h2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[h](z)Œ(νj,μj)mλ,σ,ζ;y2[h](z)}1/2×{1/2Œ(ξj,δj)mλ,σ,ζ;y1+[l2](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+1/2Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)Œ(νj,μj)mλ,σ,ζ;y2[l2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[l](z)Œ(νj,μj)mλ,σ,ζ;y2[l](z)}1/2. $ (7.6)

    By applying lemma (6.1) for $ \psi_{1}(z) = \psi_{2}(z) = l(z) = 1 $, we get for any $ \mathrm{J}^{(\xi_j, \delta_j)_m}_{\lambda, \sigma}(z)^{\delta_{j}}\in \Omega $

    $ Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)14[Œ(ξj,δj)mλ,σ,ζ;y+1[(θ1+θ2)h](z)]2Œ(ξj,δj)mλ,σ,ζ;y+1[(θ1θ2)](z), $ (7.7)

    this implies

    $ 1/2Œ(ξj,δj)mλ,σ,ζ;y1+[h2](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+1/2Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)Œ(νj,μj)mλ,σ,ζ;y2[h2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[h](z)Œ(νj,μj)mλ,σ,ζ;y2[h](z)18[Œ(ξj,δj)mλ,σ,ζ;y+1[(θ1+θ2)h](z)]2Œ(ξj,δj)mλ,σ,ζ;y+1[(θ1θ2)](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+18Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)[Œ(νj,μj)mλ,σ,ζ;y+1[(θ1+θ2)h](z)]2Œ(νj,μj)mλ,σ,ζ;y+1[(θ1θ2)](z)Œ(ξj,δj)mλ,σ,ζ;y1+[h](z)Œ(νj,μj)mλ,σ,ζ;y2[h](z)=Gy1,y2(h,θ1,θ2). $ (7.8)

    Analogously, it is clear when $ \theta_{1}(z) = \theta_{2}(z) = h(z) = 1 $, according to Lemma (6.1), we get

    $ 1/2Œ(ξj,δj)mλ,σ,ζ;y1+[l2](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+1/2Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)Œ(νj,μj)mλ,σ,ζ;y2[l2](z)Œ(ξj,δj)mλ,σ,ζ;y1+[l](z)Œ(νj,μj)mλ,σ,ζ;y2[l](x)18[Œ(ξj,δj)mλ,σ,ζ;y+1[(ψ1+ψ2)l](z)]2Œ(ξj,δj)mλ,σ,ζ;y+1[(ψ1ψ2)](z)Œ(νj,μj)mλ,σ,ζ;y2[1](z)+18Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)[Œ(νj,μj)mλ,σ,ζ;y+1[(ψ1+ψ2)l](z)]2Œ(νj,μj)mλ,σ,ζ;y+1[(ψ1ψ2)](z)Œ(ξj,δj)mλ,σ,ζ;y1+[l](z)Œ(νj,μj)mλ,σ,ζ;y2[l](z)=Gy1,y2(l,ψ1,ψ2). $ (7.9)

    Thus, by resulting Eqs (7.4), (7.6), (7.8) and (7.9), we get the desired inequality (7.1).

    Corollary 7.1. Let $ h $ and $ l $ be integrable functions on $ [y_{1}, \infty) $, suppose that there exist integrable functions $ \theta_{1}, \theta_{2}, \psi_{1} $ and $ \psi_{2} $ on $ [y_{1}, \infty) $ satisfying $ (R1) $. Then, for $ z > y_{1}, y_{1}\geq0 $, $ \xi_j, \delta_j, \lambda \in\mathbb{C}, (j = 1, \cdots, m), \Re(\lambda) > 0, \Re(\delta_{j}) > -1, \sum^{m}_{j = 1} \Re(\xi)_j > max\{0: \Re(\sigma)-1\}, \sigma > 0 $ and $ (z-b), (\alpha-z)\in \Omega $ the following inequalities hold:

    $ |Œ(ξj,δj)mλ,σ,ζ;y1+[hl](z)Œ(ξj,δj)mλ,σ,ζ;y1+[1](z)Œ(ξj,δj)mλ,σ,ζ;y1+[h](z)Œ(ξj,δj)mλ,σ,ζ;y1+[l](z)|[Gy1,y2(h,θ1,θ2)Gy1,y1(l,θ1,θ2)]12, $

    where

    $ Gy1,y1(b,y,x)(z)=14[Œ(ξj,δj)mλ,σ,ζ;y1+[(y+x)b](z)]2Œ(ξj,δj)mλ,σ,ζ;y1+[yx](z)Œ(ξj,δj)mλ,σ,ζ;y1+[1](Œ(ξj,δj)mλ,σ,ζ;y1+[b](z))2. $

    This article analyzed the generalized fractional integral operator having nonsingular function (generalized multi-index Bessel function) as kernel and developed a new version of inequalities. We estimate some inequalities (Hermite Hadamard type Mercer inequality, exponentially $ (s-m) $ preinvex inequality, Pólya-Szegö type integral inequality and the Chebyshev type inequality) with the generalized fractional integral operator in which nonsingular function as the kernel. Introducing the new version of inequalities of newly constricted operators have strengthened the idea and results.

    The authors declare that they have no competing interest.

    [1] Dikshit R, Gupta PC, Ramasundarahettige C, et al. (2012) Cancer mortality in India: a nationally representative survey. Lancet 379: 1807-1816. doi: 10.1016/S0140-6736(12)60358-4
    [2] Vargo-Gogola T, Rosen JM (2007) Modelling breast cancer: one size does not fit all. Nat Rev Cancer 7: 659-672. doi: 10.1038/nrc2193
    [3] Nickels S, Truong T, Hein R, et al. (2013) Evidence of gene-environment interactions between common breast cancer susceptibility loci and established environmental risk factors. PLoS Genet 9: e1003284. doi: 10.1371/journal.pgen.1003284
    [4] Chen C, Huang Y, Li Y, et al. (2007) Cytochrome P450 1A1 (CYP1A1) T3801C and A2455G polymorphisms in breast cancer risk: a meta-analysis. J Hum Genet 52: 423-435. doi: 10.1007/s10038-007-0131-8
    [5] Sergentanis TN, Economopoulos KP (2010) Four polymorphisms in cytochrome P450 1A1 (CYP1A1) gene and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 122: 459-469. doi: 10.1007/s10549-009-0694-5
    [6] Yao L, Yu X, Yu L (2010) Lack of significant association between CYP1A1 T3801C polymorphism and breast cancer risk: a meta-analysis involving 25,087 subjects. Breast Cancer Res Treat 122: 503-507. doi: 10.1007/s10549-009-0717-2
    [7] Syamala VS, Syamala V, Sheeja VR, et al. (2010) Possible risk modification by polymorphisms of estrogen metabolizing genes in familial breast cancer susceptibility in an Indian population. Cancer Invest 28: 304-311. doi: 10.3109/07357900902744494
    [8] Surekha D, Sailaja K, Rao DN, et al. (2009) Association of CYP1A1*2 polymorphisms with breast cancer risk: a case control study. Indian J Med Sci 63: 13-20. doi: 10.4103/0019-5359.49077
    [9] Singh V, Rastogi N, Sinha A, et al. (2007) A study on the association of cytochrome-P450 1A1 polymorphism and breast cancer risk in north Indian women. Breast Cancer Res Treat 101: 73-81. doi: 10.1007/s10549-006-9264-2
    [10] Singh N, Mitra AK, Garg VK, et al. (2007) Association of CYP1A1 polymorphisms with breast cancer in North Indian women. Oncol Res 16: 587-597. doi: 10.3727/000000007783629972
    [11] Naushad SM, Reddy CA, Rupasree Y, et al. (2011) Cross-talk between one-carbon metabolism and xenobiotic metabolism: implications on oxidative DNA damage and susceptibility to breast cancer. Cell Biochem Biophys 61: 715-723. doi: 10.1007/s12013-011-9245-x
    [12] Chacko P, Joseph T, Mathew BS, et al. (2005) Role of xenobiotic metabolizing gene polymorphisms in breast cancer susceptibility and treatment outcome. Mutat Res 581: 153-163. doi: 10.1016/j.mrgentox.2004.11.018
    [13] Kiruthiga PV, Kannan MR, Saraswathi C, et al. (2011) CYP1A1 gene polymorphisms: lack of association with breast cancer susceptibility in the southern region (Madurai) of India. Asian Pac J Cancer Prev 12: 2133-2138.
    [14] Masson LF, Sharp L, Cotton SC, et al. (2005) Cytochrome P-450 1A1 gene polymorphisms and risk of breast cancer: a HuGE review. Am J Epidemiol 161: 901-915. doi: 10.1093/aje/kwi121
    [15] Kawajiri K, Nakachi K, Imai K, et al. (1990) Identification of genetically high risk individuals to lung cancer by DNA polymorphisms of the cytochrome P450IA1 gene. FEBS Lett 263: 131-133. doi: 10.1016/0014-5793(90)80721-T
    [16] Hayashi SI, Watanabe J, Nakachi K, et al. (1991) PCR detection of an A/G polymorphism within exon 7 of the CYP1A1 gene. Nucleic Acids Res 19: 4797.
    [17] Cascorbi I, Brockmoller J, Roots I (1996) A C4887A polymorphism in exon 7 of human CYP1A1: population frequency, mutation linkages, and impact on lung cancer susceptibility. Cancer Res 56: 4965-4969.
    [18] Li Y, Millikan RC, Bell DA, et al. (2005) Polychlorinated biphenyls, cytochrome P450 1A1 (CYP1A1) polymorphisms, and breast cancer risk among African American women and white women in North Carolina: a population-based case-control study. Breast Cancer Res 7: R12-18.
    [19] Crofts F, Taioli E, Trachman J, et al. (1994) Functional significance of different human CYP1A1 genotypes. Carcinogenesis 15: 2961-2963. doi: 10.1093/carcin/15.12.2961
    [20] Kiyohara C, Hirohata T, Inutsuka S (1996) The relationship between aryl hydrocarbon hydroxylase and polymorphisms of the CYP1A1 gene. Jpn J Cancer Res 87: 18-24. doi: 10.1111/j.1349-7006.1996.tb00194.x
    [21] Li Y, Millikan RC, Bell DA, et al. (2004) Cigarette smoking, cytochrome P4501A1 polymorphisms, and breast cancer among African-American and white women. Breast Cancer Res 6: R460-473. doi: 10.1186/bcr814
    [22] Moher D, Liberati A, Tetzlaff J, et al. (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151: 264-269, W264. doi: 10.7326/0003-4819-151-4-200908180-00135
    [23] Wells S PJ, Welch V. The newcastle-ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa Health Research Institute, 2011. Available from: www.ohri.ca/programs/clinical_epidemiology/oxford/asp.
    [24] Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22: 719-748.
    [25] DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7: 177-188. doi: 10.1016/0197-2456(86)90046-2
    [26] Lau J, Ioannidis JP, Schmid CH (1997) Quantitative synthesis in systematic reviews. Ann Intern Med 127: 820-826. doi: 10.7326/0003-4819-127-9-199711010-00008
    [27] Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21: 1539-1558. doi: 10.1002/sim.1186
    [28] Higgins JP, Thompson SG, Deeks JJ, et al. (2003) Measuring inconsistency in meta-analyses. Bmj 327: 557-560. doi: 10.1136/bmj.327.7414.557
    [29] Gautham M, Shyamprasad KM, Singh R, et al. (2014) Informal rural healthcare providers in North and South India. Health Policy Plan 29 Suppl 1: i20-29.
    [30] Ravindran RD, Vashist P, Gupta SK, et al. (2011) Prevalence and risk factors for vitamin C deficiency in north and south India: a two centre population based study in people aged 60 years and over. PLoS One 6: e28588. doi: 10.1371/journal.pone.0028588
    [31] Ioannidis JP, Trikalinos TA (2007) The appropriateness of asymmetry tests for publication bias in meta-analyses: a large survey. Cmaj 176: 1091-1096. doi: 10.1503/cmaj.060410
    [32] Gadgil MaG, R. (1992) The fissure land: An ecological history of India; Press OU, editor. New Delhi: Oxford University Press.
    [33] He XF, Wei W, Liu ZZ, et al. (2014) Association between the CYP1A1 T3801C polymorphism and risk of cancer: evidence from 268 case-control studies. Gene 534: 324-344. doi: 10.1016/j.gene.2013.10.025
    [34] Wacholder S, Chanock S, Garcia-Closas M, et al. (2004) Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 96: 434-442. doi: 10.1093/jnci/djh075
    [35] Thakkinstian A, McElduff P, D'Este C, et al. (2005) A method for meta-analysis of molecular association studies. Stat Med 24: 1291-1306. doi: 10.1002/sim.2010
  • This article has been cited by:

    1. Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Artion Kashuri, Hassen Aydi, Eskandar Ameer, Ostrowski-type inequalities pertaining to Atangana–Baleanu fractional operators and applications containing special functions, 2022, 2022, 1029-242X, 10.1186/s13660-022-02899-6
    2. Peng Xu, Saad Ihsan Butt, Saba Yousaf, Adnan Aslam, Tariq Javed Zia, Generalized Fractal Jensen–Mercer and Hermite–Mercer type inequalities via h-convex functions involving Mittag–Leffler kernel, 2022, 61, 11100168, 4837, 10.1016/j.aej.2021.10.033
    3. Ravi Kumar Jain, Alok Bhargava, Mohd. Rizwanullah, Certain New Integrals Including Generalized Bessel-Maitland Function and M-Series, 2022, 8, 2349-5103, 10.1007/s40819-021-01202-3
    4. Wedad Saleh, Abdelghani Lakhdari, Adem Kiliçman, Assia Frioui, Badreddine Meftah, Some new fractional Hermite-Hadamard type inequalities for functions with co-ordinated extended s,m-prequasiinvex mixed partial derivatives, 2023, 72, 11100168, 261, 10.1016/j.aej.2023.03.080
    5. Anupam Das, Mohsen Rabbani, Bipan Hazarika, An iterative algorithm to approximate the solution of a weighted fractional integral equation, 2023, 1793-5571, 10.1142/S1793557123502418
    6. Yong Tang, Ghulam Farid, M. Y. Youssif, Zakieldeen Aboabuda, Amna E. Elhag, Kahkashan Mahreen, Çetin Yildiz, Refinements of Various Types of Fractional Inequalities via Generalized Convexity, 2024, 2024, 2314-4629, 10.1155/2024/4082683
    7. Saad Ihsan Butt, Praveen Agarwal, Juan J. Nieto, New Hadamard–Mercer Inequalities Pertaining Atangana–Baleanu Operator in Katugampola Sense with Applications, 2024, 21, 1660-5446, 10.1007/s00009-023-02547-3
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5291) PDF downloads(1289) Cited by(2)

Figures and Tables

Figures(2)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog