This article focused on investigating the spatial behavior of the quasi-static biharmonic conduction equation within the framework of type Ⅲ of the second gradient in a two-dimensional cylindrical domain. The results of growth or decay estimates were established by using a second-order differential inequality. When the distance tends to infinity, the energy either grows exponentially or decays exponentially. The results showed that the Saint-Venant principle was also valid for the quasi-static biharmonic conduction equation.
Citation: Jincheng Shi, Shuman Li, Cuntao Xiao, Yan Liu. Spatial behavior for the quasi-static heat conduction within the second gradient of type Ⅲ[J]. Electronic Research Archive, 2024, 32(11): 6235-6257. doi: 10.3934/era.2024290
[1] | Naiqiao Qing, Jincheng Shi, Yan Liu, Yunfeng Wen . Spatial decay estimates for a coupled system of wave-plate type. Electronic Research Archive, 2025, 33(2): 1144-1159. doi: 10.3934/era.2025051 |
[2] | Haolei Wang, Lei Zhang . Energy minimization and preconditioning in the simulation of athermal granular materials in two dimensions. Electronic Research Archive, 2020, 28(1): 405-421. doi: 10.3934/era.2020023 |
[3] | Shuguan Ji, Yanshuo Li . Quasi-periodic solutions for the incompressible Navier-Stokes equations with nonlocal diffusion. Electronic Research Archive, 2023, 31(12): 7182-7194. doi: 10.3934/era.2023363 |
[4] | Xuerong Hu, Yuxiang Han, Junyan Lu, Linxiang Wang . Modeling and experimental investigation of quasi-zero stiffness vibration isolator using shape memory alloy springs. Electronic Research Archive, 2025, 33(2): 768-790. doi: 10.3934/era.2025035 |
[5] | Hong Yang, Yiliang He . The Ill-posedness and Fourier regularization for the backward heat conduction equation with uncertainty. Electronic Research Archive, 2025, 33(4): 1998-2031. doi: 10.3934/era.2025089 |
[6] | Changjia Wang, Yuxi Duan . Well-posedness for heat conducting non-Newtonian micropolar fluid equations. Electronic Research Archive, 2024, 32(2): 897-914. doi: 10.3934/era.2024043 |
[7] | Dandan Song, Xiaokui Zhao . Large time behavior of strong solution to the magnetohydrodynamics system with temperature-dependent viscosity, heat-conductivity, and resistivity. Electronic Research Archive, 2025, 33(2): 938-972. doi: 10.3934/era.2025043 |
[8] |
Guochun Wu, Han Wang, Yinghui Zhang .
Optimal time-decay rates of the compressible Navier–Stokes–Poisson system in |
[9] | Dongtao Wang, Ping Xu, Chengxing Yang, Shuguang Yao, Zhen Liu . Crashworthiness performance of gradient energy-absorbing structure for subway vehicles under quasi-static loading. Electronic Research Archive, 2023, 31(6): 3568-3593. doi: 10.3934/era.2023181 |
[10] | Jianxia He, Qingyan Li . On the global well-posedness and exponential stability of 3D heat conducting incompressible Navier-Stokes equations with temperature-dependent coefficients and vacuum. Electronic Research Archive, 2024, 32(9): 5451-5477. doi: 10.3934/era.2024253 |
This article focused on investigating the spatial behavior of the quasi-static biharmonic conduction equation within the framework of type Ⅲ of the second gradient in a two-dimensional cylindrical domain. The results of growth or decay estimates were established by using a second-order differential inequality. When the distance tends to infinity, the energy either grows exponentially or decays exponentially. The results showed that the Saint-Venant principle was also valid for the quasi-static biharmonic conduction equation.
In [1], the authors studied a higher the order problem under the theory of the second gradient of type Ⅲ. The thermal displacement θ satisfies ˙u=θ. The evolution equation reads (also see [2])
c¨u+du=μ0Δu+μ1Δ˙u−d0Δ2u−d1Δ2˙u, | (1.1) |
where c is the inertia coefficient, μ0 is the elastic coefficient, μ1 is the time-dependent elastic coefficient, d0 is the diffusion coefficient, d1 is the time-dependent diffusion coefficient, and d is the damping coefficient. Δ represents the harmonic operator, and Δ2 represents the biharmonic operator. They obtained the spatial decay estimates result for the energy in a semi-infinite cylinder. An a priori decay assumption for the solution was imposed at infinity. In [2], a uniqueness result for the basic boundary-initial-value problem is presented and an existence theorem is established for the boundary value problem.
In the present paper, we also study the spatial property for this type of equation. We delete the a priori decay assumptions for solution at infinity. We consider the quasi-static version of (1.1). It can be derived if we assume that the changes in the temperature are so slow that we can neglect the second-order time derivatives. In this case, the equation would become
Δu+Δ˙u−Δ2u−Δ2˙u=u. | (1.2) |
In recent years, the biharmonic equation has been used to describe the behavior of two-dimensional physical fields within a plane. It can represent many different physical phenomenas, including sound waves, electric fields, and magnetic fields. Many important applications are studied in applied mathematics and mechanics. The Saint-Venant principle is a fundamental concept in solid mechanics that has significant implications for the analysis and design of structures. The principle states that, for a sufficiently large distance from a localized load or boundary condition, the exact form and distribution of the load or condition become unimportant, and the stress and strain fields are governed only by the remote boundary conditions and the gross geometry of the body. In essence, Saint-Venant's principle allows engineers to simplify complex loading conditions and focus on the overall behavior of the structure, rather than the detailed nature of the loading. In order to obtain the Saint-Venant type results for the biharmonic equations, many studies and various methods have been proposed for researching the spatial behaviour for the solutions of the biharmonic equations in a semi-infinite strip in R2. We mention the studies by Knowles [3,4], Flavin [5], Flavin and Knops [6], and Horgan [7]. We note that some time-dependent problems concerning the biharmonic operator are considered in the literature. We mention the papers by Lin [8], Knops and Lupoli [9] in connection with the spatial behaviour of solutions for a fourth-order transformed problem associated with the slow flow of an incompressible viscous fluid along a semi-infinite strip. Then, Song in his paper [10,11] improved the results obtained by Lin in [8] for the time-dependent Stokes flow.
Some papers have studied the Phragmén-Lindelöf type alternative results for various types of equations: Liu and Lin [12] studied the Phragmén-Lindelöf type alternative results for the time dependent flow. Lin and Payne [13] studied the Phragmén-Lindelöf results for the general heat equation. In [14], the authors studied the Phragmén-Lindelöf results for the harmonic functions. Some new Phragmén-Lindelöf results may be found in [15,16]. Other results for the Saint-Venant principle may be found in [17].
We consider the problem on an unbounded region Ω0 defined by
Ω0:={(x1,x2)∣x1>0,0≤x2≤h}, |
where h is a fixed constant, and we introduce the notation
Lz={(x1,x2)∣x1=z≥0,0≤x2≤h}. |
For the fourth-order differential equations, it is common to specify both Dirichlet and Neumann boundary conditions to give the value of the solution and the behavior of the normal derivative of the solution at the boundaries of the domain.
The initial boundary conditions are
u(x1,0,t)=0x1>0,t>0, | (1.3) |
u(x1,h,t)=0x1>0,t>0, | (1.4) |
u(0,x2,t)=g1(x2,t)0≤x2≤h,t>0, | (1.5) |
u,1(0,x2,t)=g2(x2,t)0≤x2≤h,t>0, | (1.6) |
and
u(x1,x2,0)=00≤x2≤h,x1>0, | (1.7) |
where g1(x2,t) and g2(x2,t) are given functions.
In this paper, the spatial behavior of solutions of quasi-static heat conduction within the second gradient of type Ⅲ is studied. Apart from paper [1], we have not found any research on the Saint-Venant principle in the context of quasi-static heat conduction with the biharmonic operator. Due to the complexity of deriving second-order differential inequalities, there is a scarcity of existing literature that utilizes this method to obtain Phragmén-Lindelöf type theorem. The results of growth or decay estimates are established associating some appropriate cross-sectional lines and area integral measures. Since the a priori decay assumptions may not always hold true in practical applications, we eliminate these assumptions in order to allow for a broader range of solutions that more accurately reflect the physical and mathematical complexities of the system being studied. The main difficulty in this paper is how to construct the energy expression without the assumption that the solution tends to zero at infinity. What is more, it is difficult to obtain the result that the energy expression can be bounded by its second-order differentiation. The method of the proof is based on a second-order differential inequality leading to an alternative of Phragmén-Lindelöf type in terms of an area measure of the amplitude in question. The Phragmén-Lindelöf theorem is particularly useful in the study of partial differential equations that arise in physics and engineering. For instance, in potential theory, it can be employed to derive bounds on solutions of Laplace's equation, which is fundamental in electrostatics and fluid dynamics. These bounds help in understanding the behavior of electric and magnetic fields, as well as fluid flow patterns. The estimation of spatial decay of solutions plays an important role in mathematics and physics, especially when analyzing solutions to partial differential equations. This estimation can help us understand the behavior of solutions at different spatial positions, especially the properties of solutions that are far from certain specific points or regions. The exponential growth of the solution tells us that at this point, the solution has great instability and may blow up. These results provide the theoretical bases for further in-depth research on the stability of solutions and numerical simulations.
In the present paper, we are concerned with the Phragmén-Lindelöf alternative for quasi-static heat conduction within the second gradient of type Ⅲ in a semi-infinite channel. We formulate the energy expressions and derive a second order differential inequality, which is useful in deriving our main result in Section 2. In Section 3, we obtain the Phragmén-Lindelöf alternative results for the solution which can be seen as a version of Saint-Venant principle. The comma is used to indicate partial differentiation, and the differentiation with respect to the direction xk is denoted as ,k, thus u,α denotes ∂u∂xα, and u,t denotes ∂u∂t. The usual summation convection is employed with repeated Greek subscripts α summed from 1 to 2. Hence, u,αα=2∑α=1∂2u∂x2α.
In this part, we will derive some energy expressions that are useful in deriving our results. The definitions of the energy functions can be divided into the following lemmas. In the following discussions, ω is an arbitrary positive constant, and we will give some restriction later. A is an area element on x1−x2 plane. dA=dx2dξ.
Lemma 2.1: Let u be the classical solution of Eq (1.2) and satisfy the initial boundary value problems (1.3)–(1.7), we define a function
E1(z,t)=12∫t0∫Lzexp(−ωη)u2,ηdx2dη−∫t0∫Lzexp(−ωη)u,ηu,11dx2dη+∫t0∫Lzexp(−ωη)u,αηu,αηdx2dη−∫t0∫Lzexp(−ωη)u,ηu,11ηdx2dη. | (2.1) |
E(z,t) can also be expressed as
E1(z,t)=ω2∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,αu,αdAdη+12∫z0∫Lξexp(−ωt)u,αu,αdA+∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,αηu,αηdAdη+ω2∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,αβu,αβdAdη+12∫z0∫Lξexp(−ωt)(z−ξ)u,αβu,αβdA+∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,αβηu,αβηdAdη−2∫t0∫z0∫Lξexp(−ωη)u,αηu,1αdAdη−∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,ηudAdη−∫t0∫z0∫Lξexp(−ωη)u,ηu,1dAdη+f1(z,t), | (2.2) |
where f1(z,t) will be defined later.
Proof: From (1.2), we have the equality
0=∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,η(u,αα+˙u,αα−u,ααββ−˙u,ααββ−u)dAdη. | (2.3) |
We now begin to deal with items on the right side of (2.3). Integrating by parts and using the initial-boundary conditions (1.3)–(1.7), we can obtain
∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,ηu,ααdAdη=−∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,αηu,αdAdη+∫t0∫z0∫Lξexp(−ωη)u,ηu,1dAdη−z∫t0∫L0exp(−ωη)u,ηu,1dx2dη=−ω2∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,αu,αdAdη−12∫z0∫Lξexp(−ωt)(z−ξ)u,αu,αdA+∫t0∫z0∫Lξexp(−ωη)u,ηu,1dAdη−z∫t0∫L0exp(−ωη)u,ηu,1dx2dη. | (2.4) |
The second term on the right side of (2.3) can be expressed as
∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,ηu,ααηdAdη=−∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,αηu,αηdAdη+∫t0∫z0∫Lξexp(−ωη)u,ηu,1ηdAdη−z∫t0∫L0exp(−ωη)u,ηu,1ηdx2dη=−∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,αηu,αηdAdη+12∫t0∫Lzexp(−ωη)u2,ηdx2dη−12∫t0∫L0exp(−ωη)u2,ηdx2dη−z∫t0∫L0exp(−ωη)u,ηu,1ηdx2dη. | (2.5) |
The third term on the right side of (2.3) can be expressed as
−∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,ηu,ααββdAdη=∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,αηu,αββdAdη−∫t0∫z0∫Lξexp(−ωη)u,ηu,1ββdAdη+z∫t0∫L0exp(−ωη)u,ηu,1ββdx2dη=−∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,αβηu,αβdAdη+∫t0∫z0∫Lξexp(−ωη)u,αηu,1αdAdη−z∫t0∫L0exp(−ωη))u,αηu,1αdx2dη+∫t0∫z0∫Lξexp(−ωη))u,βηu,1βdAdη−∫t0∫Lzexp(−ωη)u,ηu,11dx2dη+∫t0∫L0exp(−ωη)u,ηu,11dx2dη+z∫t0∫L0exp(−ωη)u,ηu,1ββdx2dη=−ω2∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,αβu,αβdAdη−12∫z0∫Lξexp(−ωt)(z−ξ)u,αβu,αβdA+2∫t0∫z0∫Lξexp(−ωη)u,αηu,1αdAdη−z∫t0∫L0exp(−ωη)u,αηu,1αdx2dη−∫t0∫Lzexp(−ωη)u,ηu,11dx2dη+∫t0∫L0exp(−ωη)u,ηu,11dx2dη+z∫t0∫L0exp(−ωη)u,ηu,1ββdx2dη. | (2.6) |
The fourth term on the right side of (2.3) can be expressed as
−∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,ηu,ααββηdAdη=∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,αηu,αββηdAdη−∫t0∫z0∫Lξexp(−ωη)u,ηu,1ββηdAdη+z∫t0∫L0exp(−ωη)u,ηu,1ββηdx2dη=−∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,αβηu,αβηdAdη+∫t0∫z0∫Lξexp(−ωη)u,αηu,1αηdAdη−z∫t0∫L0exp(−ωη)u,αηu,1αηdx2dη+∫t0∫z0∫Lξexp(−ωη)u,βηu,1βηdAdη−∫t0∫Lzexp(−ωη)u,ηu,11ηdx2dη+∫t0∫L0exp(−ωη)u,ηu,11ηdx2dη+z∫t0∫L0exp(−ωη)u,ηu,1ββηdx2dη=−∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,αβηu,αβηdAdη+12∫t0∫Lzexp(−ωη)u,αηu,αηdx2dη−12∫t0∫L0exp(−ωη)u,αηu,αηdx2dη−z∫t0∫L0exp(−ωη)u,αηu,1αηdx2dη+12∫t0∫Lzexp(−ωη)u,βηu,βηdx2dη−12∫t0∫L0exp(−ωη)u,βηu,βηdx2dη−∫t0∫Lzexp(−ωη)u,ηu,11ηdx2dη+∫t0∫L0exp(−ωη)u,ηu,11ηdx2dη+z∫t0∫L0exp(−ωη)u,ηu,1ββηdx2dη. | (2.7) |
If we define new expressions E1(z,t) and f1(z,t) as
E1(z,t)=ω2∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,αu,αdAdη+12∫z0∫Lξexp(−ωt)u,αu,αdA+∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,αηu,αηdAdη+ω2∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,αβu,αβdAdη+12∫z0∫Lξexp(−ωt)(z−ξ)u,αβu,αβdA+∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,αβηu,αβηdAdη−2∫t0∫z0∫Lξexp(−ωη)u,αηu,1αdAdη−∫t0∫z0∫Lξexp(−ωη)u,ηu,1dAdη−∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,ηudAdη+f1(z,t), | (2.8) |
and
f1(z,t)=z∫t0∫L0exp(−ωη)u,ηu,1dx2dη+12∫t0∫L0exp(−ωη)u2,ηdx2dη−z∫t0∫L0exp(−ωη)u,ηu,1ηdx2dη+z∫t0∫L0exp(−ωη)u,αηu,1αdx2dη−∫t0∫L0exp(−ωη)u,ηu,11dx2dη−z∫t0∫L0exp(−ωη)u,ηu,1ββdx2dη+∫t0∫L0exp(−ωη)u,αηu,αηdx2dη+z∫t0∫L0exp(−ωη)u,αηu,αηdx2dη−∫t0∫L0exp(−ωη)u,ηu,11ηdx2dη−z∫t0∫L0exp(−ωη)u,ηu,1ββηdx2dη. | (2.9) |
A combination of (2.3)–(2.9) gives
E1(z,t)=12∫t0∫Lzexp(−ωη)u2,ηdx2dη−∫t0∫Lzexp(−ωη)u,ηu,11dx2dη+∫t0∫Lzexp(−ωη)u,αηu,αηdx2dη−∫t0∫Lzexp(−ωη)u,ηu,11ηdx2dη. | (2.10) |
Lemma 2.2: Let u be the classical solution of Eq (1.2) and satisfy the initial boundary value problems (1.3)–(1.7), we define a function
E2(z,t)=12∫t0∫Lzexp(−ωη)u,αu,αdx2dη−12∫t0∫Lzexp(−ωη)u2,1dx2dη+(12+ω2)∫t0∫Lzexp(−ωη)u,1αu,1αdx2dη+(12+ω2)∫t0∫Lzexp(−ωη)u,αβu,αβdx2dη−(ω+1)∫t0∫Lzexp(−ωη)u,1αu,1αdx2dη−(12+ω2)∫t0∫Lzexp(−ωη)u,1βu,1βdx2dη+(ω+1)∫t0∫Lzexp(−ωη)u2,11dx2dη+ω2∫Lzexp(−ωt)u,1αu,1αdx2+ω2∫Lzexp(−ωt)u,αβu,αβdx2−ω∫Lzexp(−ωt)u,1αu,1αdx2−ω2∫Lzexp(−ωt)u,1βu,1βdx2+ω∫Lzexp(−ωt)u2,11dx2+∫t0∫Lzexp(−ωη)u,αηu,αdx2dη−∫t0∫Lzexp(−ωη)u,1ηu,1dx2dη+12∫t0∫Lzexp(−ωη)u,αηu,αηdx2dη−12∫t0∫Lzexp(−ωη)u2,1ηdx2dη+12∫t0∫Lzexp(−ωη)u,1αηu,1αηdx2dη+12∫t0∫Lzexp(−ωη)u,αβηu,αβηdx2dη−∫t0∫Lzexp(−ωη)u,1αηu,1αηdx2dη−12∫t0∫Lzexp(−ωη)u,1αηu,1αηdx2dη−12∫t0∫Lzexp(−ωη)u,1βηu,1βηdx2dη+∫t0∫Lzexp(−ωη)u2,11ηdx2dη. | (2.11) |
E(z,t) can also be expressed as
E2(z,t)=∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,1αu,1αdAdη+12∫z0∫Lξexp(−ωt)(z−ξ)u,1αu,1αdAdη+(ω+1)∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,1αβu,1αβdAdη+ω∫z0∫Lξexp(−ωt)u,1αβu,1αβdA+ω2∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,1αu,1αdAdη+12∫z0∫Lξexp(−ωt)u,1αu,1αdA+∫t0∫z0∫Lξexp(−ωη)u,1αηu,1αηdAdη+∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,1αβηu,1αβηdAdη−∫t0∫z0∫Lξexp(−ωη)u,12u,2ηdAdη+∫t0∫z0∫Lξexp(−ωη)u,αηu,1αdAdη−∫t0∫z0∫Lξexp(−ωη)u,1ηu,11dAdη−∫t0∫z0∫Lξexp(−ωη)u,11udAdη−∫t0∫z0∫Lξexp(−ωη)u,11ηudAdη+f2(z,t), | (2.12) |
where f2(z,t) will be defined later.
Proof: From (1.2), we have the equality
∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,11(u,αα+u,ααη−u,ααββ−u,ααββη−u)dAdη=0. | (2.13) |
The first term on the right side of (2.13) can be expressed as
∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,11u,ααdAdη=−∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,11αu,αdAdη+∫t0∫z0∫Lξexp(−ωη)u,11u,1dAdη−z∫t0∫L0exp(−ωη)u,11u,1dx2dη=∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,1αu,1αdAdη−∫t0∫z0∫Lξexp(−ωη)u,1αu,αdAdη+z∫t0∫L0exp(−ωη)u,1αu,αdx2dη+∫t0∫z0∫Lξexp(−ωη)u,11u,1dAdη−z∫t0∫L0exp(−ωη)u,11u,1dx2dη=∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,1αu,1αdAdη−12∫t0∫Lzexp(−ωη)u,αu,αdx2dη+12∫t0∫Lzexp(−ωη)u2,1dx2dη+12∫t0∫L0exp(−ωη)u,αu,αdx2dη−12∫t0∫L0exp(−ωη)u2,1dx2dη+z∫t0∫L0exp(−ωη)u,αu,αdx2dη−z∫t0∫L0exp(−ωη)u,11u,1dx2dη. | (2.14) |
The second term on the right side of (2.13) can be expressed as
∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,11u,ααηdAdη=−∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,11αu,αηdAdη+∫t0∫z0∫Lξexp(−ωη)u,11u,1ηdAdη−z∫t0∫L0exp(−ωη)u,11u,1ηdx2dη=∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,1αu,1αηdAdη−∫t0∫z0∫Lξexp(−ωη)u,1αu,αηdAdη+z∫t0∫L0exp(−ωη)u,1αu,αηdx2dη+∫t0∫z0∫Lξexp(−ωη)u,11u,1ηdAdη−z∫t0∫L0exp(−ωη)u,11u,1ηdx2dη=12∫z0∫Lξexp(−ωt)(z−ξ)u,1αu,1αdA−∫t0∫z0∫Lξexp(−ωη)u,12u,2ηdAdη+z∫t0∫L0exp(−ωη)u,12u,2ηdx2dη. | (2.15) |
The third term on the right side of (2.13) can be expressed as
−∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,11u,ααββdAdη=∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,11αu,αββdAdη−∫t0∫z0∫Lξexp(−ωη)u,11u,1ββdAdη+z∫t0∫L0exp(−ωη)u,11u,1ββdx2dη=−∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,1αu,1αββdAdη+∫t0∫z0∫Lξexp(−ωη)u,1αu,αββdAdη−z∫t0∫L0exp(−ωη)u,1αu,αββdx2dη+∫t0∫z0∫Lξexp(−ωη)u,1β1u,1βdAdη−∫t0∫Lzexp(−ωη)u,11u,11dx2dη+∫t0∫L0exp(−ωη)u2,11dx2dη+z∫t0∫L0exp(−ωη)u,11u,1ββdx2dη=∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,1αβu,1αβdAdη−∫t0∫z0∫Lξexp(−ωη)u,1αu,1α1dAdη+z∫t0∫L0exp(−ωη)u,1αu,1α1dx2dη−∫t0∫z0∫Lξexp(−ωη)u,1αβu,αβdAdη+∫t0∫Lzexp(−ωη)u,1αu,1αdx2dη−∫t0∫L0exp(−ωη)u,1αu,1αdx2dη−z∫t0∫L0exp(−ωη)u,1αu,αββdx2dη+12∫t0∫Lzexp(−ωη)u,1βu,1βdx2dη−12∫t0∫L0exp(−ωη)u,1βu,1βdx2dη−∫t0∫Lzexp(−ωη)u,11u,11dx2dη+∫t0∫L0exp(−ωη)u2,11dx2dη+z∫t0∫L0exp(−ωη)u,11u,1ββdx2dη=∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,1αβu,1αβdAdη−12∫t0∫Lzexp(−ωη)u,1αu,1αdx2dη+12∫t0∫L0exp(−ωη)u,1αu,1αdx2dη−12∫t0∫Lzexp(−ωη)u,αβu,αβdx2dη+12∫t0∫L0exp(−ωη)u,αβu,αβdx2dη+∫t0∫Lzexp(−ωη)u,1αu,1αdx2dη−∫t0∫L0exp(−ωη)u,1αu,1αdx2dη+12∫t0∫Lzexp(−ωη)u,1βu,1βdx2dη−12∫t0∫L0exp(−ωη)u,1βu,1βdx2dη−∫t0∫Lzexp(−ωη)u2,11dx2dη+∫t0∫L0exp(−ωη)u2,11dx2dη+z∫t0∫L0exp(−ωη)u,1αu,1α1dx2dη−z∫t0∫L0exp(−ωη)u,1αu,αββdx2dη+z∫t0∫L0exp(−ωη)u,11u,1ββdx2dη. | (2.16) |
The fourth term on the right side of (2.13) can be expressed as
−∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,11u,ααββηdAdη=∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,11ηu,ααββdAdη−ω∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,11u,ααββdAdη−∫z0∫Lξexp(−ωt)(z−ξ)u,11u,ααββdA. | (2.17) |
From (1.2), we also have the equality
∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,11η(u,αα+u,ααη−u,ααββ−u,ααββη−u)dAdη=0. | (2.18) |
The first term on the right side of (2.18) can be expressed as
∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,11ηu,ααdAdη=−∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,11αηu,αdAdη+∫t0∫z0∫Lξexp(−ωη)u,11ηu,1dAdη+z∫t0∫L0exp(−ωη)(z−ξ)u,11ηu,1dx2dη=∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,1αηu,1αdAdη−∫t0∫z0∫Lξexp(−ωη)u,1αηu,αdAdη+z∫t0∫L0exp(−ωη)u,1αηu,1dx2dη−∫t0∫z0∫Lξexp(−ωη)u,1ηu,11dAdη+∫t0∫Lzexp(−ωη)u,1ηu,1dx2dη−∫t0∫L0exp(−ωη)u,1ηu,1dx2dη+z∫t0∫L0exp(−ωη)(z−ξ)u,11ηu,1dx2dη=ω2∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,1αu,1αdAdη+12∫z0∫Lξexp(−ωt)(z−ξ)u,1αu,1αdA+∫t0∫z0∫Lξexp(−ωη)u,αηu,1αdAdη−∫t0∫Lzexp(−ωη)u,αηu,αdx2dη+∫t0∫L0exp(−ωη)u,αηu,αdx2dη+z∫t0∫L0exp(−ωη)u,1αηu,1dx2dη−∫t0∫z0∫Lξexp(−ωη)u,1ηu,11dAdη+∫t0∫Lzexp(−ωη)u,1ηu,1dx2dη−∫t0∫L0exp(−ωη)u,1ηu,1dx2dη+z∫t0∫L0exp(−ωη)u,11ηu,1dx2dη. | (2.19) |
The second term on the right side of (2.18) can be expressed as
∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,11ηu,ααηdAdη=−∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,11αηu,αηdAdη+∫t0∫z0∫Lξexp(−ωη)u,11ηu,1ηdAdη−z∫t0∫L0exp(−ωη)u,11ηu,1ηdx2dη=∫t0∫z0∫Lξexp(−ωη)u,1αηu,1αηdAdη−∫t0∫z0∫Lξexp(−ωη)u,1αηu,αηdAdη+z∫t0∫L0exp(−ωη)u,1αηu,αηdx2dη+12∫t0∫Lzexp(−ωη)u2,1ηdx2dη−12∫t0∫L0exp(−ωη)u2,1ηdx2dη−z∫t0∫L0exp(−ωη)u,11ηu,1ηdx2dη=∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,1αηu,1αηdAdη−12∫t0∫Lzu,αηu,αηdx2dη+12∫t0∫L0exp(−ωη)u,αηu,αηdx2dη+z∫t0∫L0exp(−ωη)u,1αηu,αηdx2dη+12∫t0∫Lzexp(−ωη)u2,1ηdx2dη−12∫t0∫L0exp(−ωη)u2,1ηdx2dη−z∫t0∫L0exp(−ωη)u,11ηu,1ηdx2dη. | (2.20) |
The third term on the right side of (2.18) can be expressed as
−∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,11ηu,ααββηdAdη=∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,1αβηu,1αβηdAdη−12∫t0∫Lzexp(−ωη)u,1αηu,1αηdx2dη+12∫t0∫L0exp(−ωη)u,1αηu,1αηdx2dη−12∫t0∫Lzexp(−ωη)u,αβηu,αβηdx2dη+12∫t0∫L0exp(−ωη)u,αβηu,αβηdx2dη+∫t0∫Lzexp(−ωη)u,1αηu,1αηdx2dη−∫t0∫L0exp(−ωη)u,αηu,1αηdx2dη+12∫t0∫Lzexp(−ωη)u,1βηu,1βηdx2dη−12∫t0∫L0exp(−ωη)u,1βηu,1βηdx2dη−∫t0∫Lzexp(−ωη)u2,11ηdx2dη+∫t0∫L0exp(−ωη)u2,11ηdx2dη+z∫t0∫L0exp(−ωη)u,1αηu,1α1ηdx2dη−z∫t0∫L0exp(−ωη)u,1αηu,αββηdx2dη+z∫t0∫L0exp(−ωη)u,11ηu,1ββηdx2dη. | (2.21) |
We define a new function E2(z,t) as
E2(z,t)=12∫t0∫Lzexp(−ωη)u,αu,αdx2dη−12∫t0∫Lzexp(−ωη)u2,1dx2dη+(12+ω2)∫t0∫Lzexp(−ωη)u,1αu,1αdx2dη+(12+ω2)∫t0∫Lzexp(−ωη)u,αβu,αβdx2dη−(ω+1)∫t0∫Lzexp(−ωη)u,1αu,1αdx2dη−(12+ω2)∫t0∫Lzexp(−ωη)u,1βu,1βdx2dη+(ω+1)∫t0∫Lzexp(−ωη)u2,11dx2dη+ω2∫Lzexp(−ωt)u,1αu,1αdx2+ω2∫Lzexp(−ωt)u,αβu,αβdx2−ω∫Lzexp(−ωt)u,1αu,1αdx2−ω2∫Lzexp(−ωt)u,1βu,1βdx2+ω∫Lzexp(−ωt)u2,11dx2+∫t0∫Lzexp(−ωη)u,αηu,αdx2dη−∫t0∫Lzexp(−ωη)u,1ηu,1dx2dη+12∫t0∫Lzexp(−ωη)u,αηu,αηdx2dη−12∫t0∫Lzexp(−ωη)u2,1ηdx2dη+12∫t0∫Lzexp(−ωη)u,1αηu,1αηdx2dη+12∫t0∫Lzexp(−ωη)u,αβηu,αβηdx2dη−∫t0∫Lzexp(−ωη)u,1αηu,1αηdx2dη−12∫t0∫Lzexp(−ωη)u,1αηu,1αηdx2dη−12∫t0∫Lzexp(−ωη)u,1βηu,1βηdx2dη+∫t0∫Lzexp(−ωη)u2,11ηdx2dη. | (2.22) |
A combination of (2.13)–(2.22) gives
E2(z,t)=∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,1αu,1αdAdη+12∫z0∫Lξexp(−ωt)(z−ξ)u,1αu,1αdAdη+(ω+1)∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,1αβu,1αβdAdη+ω∫z0∫Lξexp(−ωt)u,1αβu,1αβdA+ω2∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,1αu,1αdAdη+12∫z0∫Lξexp(−ωt)u,1αu,1αdA+∫t0∫z0∫Lξexp(−ωη)u,1αηu,1αηdAdη+∫t0∫z0∫Lξexp(−ωη)(z−ξ)u,1αβηu,1αβηdAdη−∫t0∫z0∫Lξexp(−ωη)u,12u,2ηdAdη+∫t0∫z0∫Lξexp(−ωη)u,αηu,1αdAdη−∫t0∫z0∫Lξexp(−ωη)u,1ηu,11dAdη−∫t0∫z0∫Lξexp(−ωη)u,11udAdη−∫t0∫z0∫Lξexp(−ωη)u,11ηudAdη+f2(z,t), | (2.23) |
with
f2(z,t)=12∫t0∫L0exp(−ωη)u,αu,αdx2dη−12∫t0∫L0exp(−ωη)u2,1dx2dη+z∫t0∫L0exp(−ωη)u,αu,αdx2dη−z∫t0∫L0exp(−ωη)u,11u,1dx2dη+z∫t0∫L0exp(−ωη)u,12u,2ηdx2dη+(12+ω2)∫t0∫L0exp(−ωη)u,1αu,1αdx2dη+(12+ω2)∫t0∫L0exp(−ωη)u,αβu,αβdx2dη−(ω+1)∫t0∫L0exp(−ωη)u,1αu,1αdx2dη−(12+ω2)∫t0∫L0exp(−ωη)u,1βu,1βdx2dη+(ω+1)∫t0∫L0exp(−ωη)u2,11dx2dη+(ω+1)z∫t0∫L0exp(−ωη)u,1αu,1α1dx2dη+(ω+1)z∫t0∫L0exp(−ωη)u,1αu,αββdx2dη+(ω+1)z∫t0∫L0exp(−ωη)u,11u,1ββdx2dη+12∫L0exp(−ωt)u,1αu,1αdx2+12∫L0exp(−ωt)u,αβu,αβdx2−∫L0exp(−ωt)u,1αu,1αdx2+12∫L0exp(−ωt)u,1βu,1βdx2−∫L0exp(−ωt)u2,11dx2+z∫L0exp(−ωt)u,1αu,1α1dx2+z∫L0exp(−ωt)u,1αu,αββdx2+z∫L0exp(−ωt)u,11u,1ββdx2. | (2.24) |
We define a new function
E(z,t)=E1(z,t)+E2(z,t). | (2.25) |
From (2.2), we have
∂2E1(z,t)∂z2=ω2∫t0∫Lzexp(−ωη)u,αu,αdx2dη+12∫Lzexp(−ωt)u,αu,αdx2+∫t0∫Lzexp(−ωη)u,αηu,αηdx2dη+ω2∫t0∫Lzexp(−ωη)u,αβu,αβdx2dη+12∫Lzexp(−ωt)u,αβu,αβdx2+∫t0∫Lzexp(−ωη)u,αβηu,αβηdx2dη−2∫t0∫Lzexp(−ωη)u,1αηu,1αdx2dη−2∫t0∫Lzexp(−ωη)u,1α1u,αηdx2dη−∫t0∫Lzexp(−ωη)u,1ηu,1dx2dη−∫t0∫Lzexp(−ωη)u,ηu,11dx2dη−∫t0∫Lzexp(−ωη)u,ηudx2dη. | (2.26) |
From (2.12), we obtain
∂2E2(z,t)∂z2=∫t0∫Lzexp(−ωη)u,1αu,1αdx2dη+12∫Lzexp(−ωt)u,1αu,1αdx2+(ω+1)∫t0∫Lzexp(−ωη)u,1αβu,1αβdx2dη+ω∫Lzexp(−ωη)u,1αβu,1αβdx2+ω2∫t0∫Lzexp(−ωη)u,1αu,1αdx2dη+12∫Lzexp(−ωη)u,1αu,1αdx2+∫t0∫Lzexp(−ωη)u,1αηu,1αηdx2dη+∫t0∫Lzexp(−ωη)u,1αβηu,1αβηdx2dη−∫t0∫Lzexp(−ωη)u,112u,2ηdx2dη−∫t0∫Lzexp(−ωη)u,12u,12ηdx2dη+∫t0∫Lzexp(−ωη)u,1αηu,1αdx2dη+∫t0∫Lzexp(−ωη)u,αηu,1α1dx2dη−∫t0∫Lzexp(−ωη)u,11ηu,11dx2dη−∫t0∫Lzexp(−ωη)u,1ηu,111dx2dη−∫t0∫Lzexp(−ωη)uu,11dx2dη−∫t0∫Lzexp(−ωη)u,11ηudx2dη. | (2.27) |
In the following discussions, we will use the following well-known Wirtinger-type inequality (see (3.1) in [12])
∫t0∫Lzexp(−ωη)u2dx2dη≤h2π2∫t0∫Lzexp(−ωη)u,αu,αdx2dη, | (2.28) |
and the Schwarz inequality
∫t0∫Lzabdx2dη≤ϵ2∫t0∫Lza2dx2dη+12ϵ∫t0∫Lzb2dx2dη, | (2.29) |
with ϵ an arbitrary positive constant.
We now begin to bound terms in (2.27). Using the Wirtinger-type inequality (2.28) and Schwarz inequality (2.29), we can obtain the following estimates:
|2∫t0∫Lzexp(−ωη)u,1αηu,1αdx2dη|≤ϵ1∫t0∫Lzexp(−ωη)u,1αηu,1αηdx2dη+1ϵ1∫t0∫Lzexp(−ωη)u,1αu,1αdx2dη, |
|2∫t0∫Lzexp(−ωη)u,1α1u,αηdx2dη|≤ϵ2∫t0∫Lzexp(−ωη)u,1α1u,1α1dx2dη+1ϵ2∫t0∫Lzexp(−ωη)u,αηu,αηdx2dη, |
|∫t0∫Lzexp(−ωη)u,1ηu,1dx2dη|≤ϵ3∫t0∫Lzexp(−ωη)u,1ηu,1ηdx2dη+12ϵ3∫t0∫Lzexp(−ωη)u2,1dx2dη, |
|∫t0∫Lzexp(−ωη)u,ηu,11dx2dη|≤ϵ42∫t0∫Lzexp(−ωη)u2,ηdx2dη+12ϵ4∫t0∫Lzexp(−ωη)u2,11dx2dη≤ϵ42λ1∫t0∫Lzexp(−ωη)u,αηu,αηdx2dη+12ϵ4∫t0∫Lzexp(−ωη)u2,11dx2dη, |
|∫t0∫Lzexp(−ωη)u,112u,2ηdx2dη|≤ϵ52∫t0∫Lzexp(−ωη)u2,112dx2dη+12ϵ5∫t0∫Lzexp(−ωη)u2,2ηdx2dη, |
|∫t0∫Lzexp(−ωη)u,11u,11ηdx2dη|≤ϵ62∫t0∫Lzexp(−ωη)u2,11dx2dη+12ϵ6∫t0∫Lzexp(−ωη)u2,11ηdx2dη, |
|∫t0∫Lzexp(−ωη)u,2ηu,121dx2dη|≤ϵ72∫t0∫Lzexp(−ωη)u2,2ηdx2dη+12ϵ7∫t0∫Lzexp(−ωη)u2,121dx2dη, |
|∫t0∫Lzexp(−ωη)u,1ηu,111dx2dη|≤ϵ82∫t0∫Lzexp(−ωη)u2,1ηdx2dη+12ϵ8∫t0∫Lzexp(−ωη)u2,111dx2dη, |
where ϵ1, ϵ2, ϵ3, ϵ4, ϵ5, ϵ6, ϵ7, and ϵ8 are arbitrary positive constants; we will define them later. λ1=πh.
Using the Schwarz inequality (2.29) and the Wirtinger-type inequality (2.28) again, we can obtain
|∫t0∫Lzexp(−ωη)u,11udx2dη|≤12∫t0∫Lzexp(−ωη)u,αβu,αβdx2dη+12∫t0∫Lzexp(−ωη)u2dx2dη≤12∫t0∫Lzexp(−ωη)u,αβu,αβdx2dη+12h2π2∫t0∫Lzexp(−ωη)u,αu,αdx2dη, |
|∫t0∫Lzexp(−ωη)u,11ηudx2dη|≤12∫t0∫Lzexp(−ωη)u,1αηu,1αηdx2dη+12∫t0∫Lzexp(−ωη)u2dx2dη≤12∫t0∫Lzexp(−ωη)u,1αηu,1αηdx2dη+12h2π2∫t0∫Lzexp(−ωη)u,αu,αdx2dη, |
|∫t0∫Lzexp(−ωη)u,ηudx2dη|≤π24h2∫t0∫Lzexp(−ωη)u2,ηdx2dη+h2π2∫t0∫Lzexp(−ωη)u2dx2dη≤14∫t0∫Lzexp(−ωη)u,αηu,αηdx2dη+h4π4∫t0∫Lzexp(−ωη)u,αu,αdx2dη. |
If we choose ϵ1=14,ϵ2=4,ϵ3=14,ϵ4=λ16,ϵ5=6,ϵ6=2,ϵ7=16,ϵ8=14, we have
∂2E(z,t)∂z2≥(ω2−3λ1−112)∫t0∫Lzexp(−ωη)u,αβu,αβdx2dη+(ω2−2−h2π2−h4π4)∫t0∫Lzexp(−ωη)u,αu,αdx2dη+12∫Lzexp(−ωt)u,αu,αdx2+14∫t0∫Lzexp(−ωη)u,αηu,αηdx2dη+12∫Lzexp(−ωt)u,αβu,αβdx2+12∫t0∫Lzexp(−ωη)u,αβηu,αβηdx2dη+∫t0∫Lzexp(−ωη)u,1αu,1αdx2dη+12∫Lzexp(−ωt)u,1αu,1αdx2+(ω−11)∫t0∫Lzexp(−ωη)u,1αβu,1αβdx2dη+ω∫Lzexp(−ωt)u,1αβu,1αβdx2+ω2∫t0∫Lzexp(−ωη)u,1αu,1αdx2dη+12∫Lzexp(−ωt)u,1αu,1αdx2+12∫t0∫Lzexp(−ωη)u,1αηu,1αηdx2dη+∫t0∫Lzexp(−ωη)u,1αβηu,1αβηdx2dη. | (2.30) |
We choose ω large enough, we have
∂2E(z,t)∂z2≥ω4∫t0∫Lzexp(−ωη)u,αβu,αβdx2dη+ω4∫t0∫Lzexp(−ωη)u,αu,αdx2dη+12∫Lzexp(−ωt)u,αu,αdx2+14∫t0∫Lzexp(−ωη)u,αηu,αηdx2dη+12∫Lzexp(−ωt)u,αβu,αβdx2+12∫t0∫Lzexp(−ωη)u,αβηu,αβηdx2dη+∫t0∫Lzexp(−ωη)u,1αu,1αdx2dη+12∫Lzexp(−ωt)u,1αu,1αdx2+ω2∫t0∫Lzexp(−ωη)u,1αβu,1αβdx2dη+ω∫Lzexp(−ωt)u,1αβu,1αβdx2+ω2∫t0∫Lzexp(−ωη)u,1αu,1αdx2dη+12∫Lzexp(−ωt)u,1αu,1αdx2+12∫t0∫Lzexp(−ωη)u,1αηu,1αηdx2dη+∫t0∫Lzexp(−ωη)u,1αβηu,1αβηdx2dη. | (2.31) |
Using the similar procedure, we can also obtain
∂2E(z,t)∂z2≤ω∫t0∫Lzexp(−ωη)u,αβu,αβdx2dη+ω∫t0∫Lzexp(−ωη)u,αu,αdx2dη+12∫Lzexp(−ωt)u,αu,αdx2+32∫t0∫Lzexp(−ωη)u,αηu,αηdx2dη+12∫Lzexp(−ωt)u,αβu,αβdx2+32∫t0∫Lzexp(−ωη)u,αβηu,αβηdx2dη+∫t0∫Lzexp(−ωη)u,1αu,1αdx2dη+12∫Lzexp(−ωt)u,1αu,1αdx2+3ω2∫t0∫Lzexp(−ωη)u,1αβu,1αβdx2dη+ω∫Lzexp(−ωt)u,1αβu,1αβdx2+ω2∫t0∫Lzexp(−ωη)u,1αu,1αdx2dη+12∫Lzexp(−ωt)u,1αu,1αdx2+∫t0∫Lzexp(−ωη)u,1αηu,1αηdx2dη+∫t0∫Lzexp(−ωη)u,1αβηu,1αβηdx2dη. | (2.32) |
Combining (2.1), (2.11), (2.25), and (2.31), we easily obtain
|E(z,t)|≤k∂2E(z,t)∂z2, | (2.33) |
with k is a computable positive constant.
In this section, we will derive the Phragmén-Lindelöf alternative results. We will discuss the two cases for ∂∂zE(z,t)>0 or ∂∂zE(z,t)≤0.
Case1: For any fixed ˉt, we suggest that there exists a z0≥0 such that ∂∂zE(z0,ˉt)>0.
From (2.31), we have ∂2∂z2E(z,t0)≥0. We thus obtain the result
∂∂zE(z,ˉt)≥∂∂zE(z0,ˉt)>0, | (3.1) |
for each z≥z0.
We can also obtain
E(z,ˉt)≥E(z0,ˉt)+∂∂zE(z0,ˉt)(z−z0), | (3.2) |
for all z≥z0.
From (3.2), we can obtain the result that E(z,ˉt) must eventually become positive.
Combining (3.1) and (3.2), we have the result that there must exist a z1≥z0 such that ∂∂zE(z1,ˉt)>0 and E(z1,ˉt)>0.
Inequality (2.33) can be rewritten as
{e−ˉkz[∂∂zE(z,ˉt)+ˉkE(z,ˉt)]}′≥0, | (3.3) |
or
{eˉkz[∂∂zE(z,ˉt)−ˉkE(z,ˉt)]}′≥0, | (3.4) |
with ˉk=1√k.
Integrating (3.3) and (3.4), we have the following results:
∂∂zE(z,ˉt)+ˉkE(z,ˉt)≥eˉk(z−z0)[∂∂z1E(z1,ˉt)+ˉkE(z1,ˉt)], | (3.5) |
∂∂zE(z,ˉt)−ˉkE(z,ˉt)≥e−ˉk(z−z0)[∂∂zE(z1,ˉt)−ˉkE(z1,ˉt)]. | (3.6) |
We obtain for any z≥z1
∂∂zE(z,ˉt)≥∂∂zE(z1,ˉt)eˉk(z−z1)+e−ˉk(z−z1)2+ˉkE(z1,ˉt)eˉk(z−z1)−e−ˉk(z−z1)2. | (3.7) |
Integrating (2.32) from z1 to z, we have
∂E(z,t)∂z−∂E(z1,t)∂z≤ω∫t0∫zz1∫Lξexp(−ωη)u,αβu,αβdAdη+ω∫t0∫zz1∫Lξexp(−ωη)u,αu,αdAdη+12∫zz1∫Lξexp(−ωt)u,αu,αdA+32∫t0∫zz1∫Lξexp(−ωη)u,αηu,αηdAdη+12∫zz1∫Lξexp(−ωt)u,αβu,αβdA+32∫t0∫zz1∫Lξexp(−ωη)u,αβηu,αβηdAdη+∫t0∫zz1∫Lξexp(−ωη)u,1αu,1αdAdη+12∫zz1∫Lξexp(−ωt)u,1αu,1αdA+3ω2∫t0∫zz1∫Lξexp(−ωη)u,1αβu,1αβdAdη+ω∫zz1∫Lξexp(−ωt)u,1αβu,1αβdA+ω2∫t0∫zz1∫Lξexp(−ωη)u,1αu,1αdAdη+12∫zz1∫Lξexp(−ωt)u,1αu,1αdA+∫t0∫zz1∫Lξexp(−ωη)u,1αηu,1αηdAdη+∫t0∫zz1∫Lξexp(−ωη)u,1αβηu,1αβηdAdη=F(z,t). | (3.8) |
Inserting (3.8) into (3.7), we obtain
limz→∞{e−ˉkzF(z,ˉt)}≥C1(ˉt), | (3.9) |
where C1(ˉt)=12e−ˉkz1[∂∂zE(z1,ˉt)+ˉkE(z1,ˉt)].
Case2: For every z≥0, ∂∂zE(z,ˉt)≤0, we suggest there exists a z0>0, such that E(z0,ˉt)≤0.
Since ∂∂zE(z,ˉt)≤0, we obtain
E(z,ˉt)≤E(z0,ˉt), | (3.10) |
for all z≥z0.
Form (2.33), we have
∂∂zE(z,ˉt)−∂∂zE(z0,ˉt)≥−1kE(z0,ˉt)(z−z0). | (3.11) |
For z large enough, we have ∂E∂zE(z,ˉt) can not remain nonposotive, this is a contradict to ∂∂zE(z,ˉt)≤0.
We thus have the following result:
If∂∂zE(z,ˉt)≤0,thenE(z,ˉt)≥0,forallz≥0. | (3.12) |
We now integrating (3.6) from 0 to z,
−∂∂zE(z,ˉt)+ˉkE(z,ˉt)≤C2(ˉt)e−ˉkz, | (3.13) |
where C2(ˉt)=−∂∂zE(0,ˉt)+ˉkE(0,ˉt).
Since ∂∂zE(z,ˉt)≥0 and E(z,ˉt)≥0 for all z≥0, we have
E(z,ˉt)and−∂E∂zE(z,ˉt)decayexponentiallyasz→∞. |
From (2.31), we have
−∂∂zE(z,ˉt)≥ω4∫t0∫∞z∫Lξexp(−ωη)u,αβu,αβdAdη+ω4∫t0∫∞z∫Lξexp(−ωη)u,αu,αdAdη+12∫∞z∫Lξexp(−ωt)u,αu,αdA+14∫t0∫∞z∫Lξexp(−ωη)u,αηu,αηdAdη+12∫∞z∫Lξexp(−ωt)u,αβu,αβdA+12∫t0∫∞z∫Lξexp(−ωη)u,αβηu,αβηdAdη+∫t0∫∞z∫Lξexp(−ωη)u,1αu,1αdAdη+12∫∞z∫Lξexp(−ωt)u,1αu,1αdA+ω2∫t0∫∞z∫Lξexp(−ωη)u,1αβu,1αβdAdη+ω∫∞z∫Lξexp(−ωt)u,1αβu,1αβdA+ω2∫t0∫∞z∫Lξexp(−ωη)u,1αu,1αdAdη+12∫∞z∫Lξexp(−ωt)u,1αu,1αdA+12∫t0∫∞z∫Lξexp(−ωη)u,1αηu,1αηdAdη+∫t0∫∞z∫Lξexp(−ωη)u,1αβηu,1αβηdAdη=G(z,t). | (3.14) |
Inserting (3.14) into (3.13), we have
G(z,ˉt)≤C2(ˉt)e−ˉkz. | (3.15) |
Summarizing all the above results, we get the following results.
Theorem: If u is the classical solution of the initial boundary value problem (1.2)–(1.7), we can obtain the following results: either the energy function F(z,t) defined in (3.8) satisfies
limz→∞{e−ˉkzF(z,ˉt)}≥C1(ˉt), | (3.16) |
or the energy function G(z,t) defined in (3.14) satisfies
G(z,ˉt)≤C2(ˉt)e−ˉkz. | (3.17) |
Our work presents significant results concerning the spatial growth and decay estimates of solutions to a particular equation, captured by inequalities (3.16) and (3.17), respectively. Inequality (3.16) demonstrates that the solution can grow exponentially as the distance from the entry section tends to infinity, while inequality (3.17) reveals that the solution can decay exponentially under the same conditions. These findings are analogous to the Saint-Venant principle and provide valuable insights into the behavior of solutions in the context of our study. A key contribution of this work is the establishment of these spatial growth and decay estimates, which are crucial for understanding the behavior of solutions in unbounded domains. These estimates have potential applications in various fields, such as engineering, physics, and beyond, where understanding the behavior of solutions to partial differential equations is essential. When exploring the quasi-static version of Eq (1.1), our primary focus is on the behavior of the equation under static or nearly static conditions. However, when considering the second-order derivative term of time, i.e., when the equation becomes dynamic, its complexity and difficulty in solving increase significantly. This is because, compared to the first-order derivative (typically representing velocity or rate of change), the second-order derivative (representing acceleration or the rate of change of the rate of change) introduces more dynamic characteristics and potential oscillatory behavior. In physics and engineering, controlling energy through second-order derivatives is indeed a challenge. Traditional energy methods often rely on first or lower-order derivatives to define and solve problems. Therefore, when the equation includes a second-order derivative term, we need to seek new mathematical tools and methods to effectively handle this dynamic behavior. The method of differential-integral inequalities provides us with a possible solution. This method combines the ideas of differentiation and integration, and considers inequality constraints, thereby enabling more flexible handling of complex equations containing higher-order derivatives. Through this method, we may be able to capture the dynamic behavior in the equation and find solutions that meet our needs. To further illustrate our findings, we will present a numerical simulation of the solution to this equation. This simulation will provide a visual representation of the solution and its behavior as the distance from the entry section varies. In addition to our current results, there are several promising directions for future research. One area of interest is the structural stability of the equation in an unbounded domain. Understanding the stability of solutions to this equation is crucial for developing robust and reliable numerical methods and for ensuring the accuracy of solutions in practical applications. We plan to investigate this topic in a subsequent paper, leveraging the insights and methods developed in our current work.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The work was supported by Guangdong Natural Science foundation (Grant #2023A1515012044), Scientific research Foundation of Guangzhou Huashang College (Grant #2024HSTS09).
The authors declare there is no conflicts of interest.
[1] |
J. R. Fernández, R. Quintanilla, Analysis of a higher order problem within the second gradient theory, Appl. Math. Lett., 154 (2024), 109086. https://doi.org/10.1016/j.aml.2024.109086 doi: 10.1016/j.aml.2024.109086
![]() |
[2] |
D. Iesan, R. Quintanilla, A second gradient theory of thermoelasticity, J. Elasticity, 154 (2023), 629–643. https://doi.org/10.1007/s10659-023-10020-1 doi: 10.1007/s10659-023-10020-1
![]() |
[3] |
J. K. Knowles, On Saint-Venant's principle in the two dimensional linear theory of elasticity, Arch. Rational Mech. Anal., 21 (1966), 1–22. https://doi.org/10.1007/BF00253046 doi: 10.1007/BF00253046
![]() |
[4] | J. K. Knowles, An energy estimate for the biharmonic equation and its application to saint-venant's principle in plane elastostatics, Indian J. Pure Appl. Math., 14 (1983), 791–805. |
[5] |
J. N. Flavin, On Knowles' version of Saint-Venant's principle in two-dimensional elastostatics, Arch. Rational Mech. Anal., 53 (1974), 366–375. https://doi.org/10.1007/BF00281492 doi: 10.1007/BF00281492
![]() |
[6] |
J. N. Flavin, R. J. Knops, Some convexity considerations for a two-dimensional traction problem, Z. Angew. Math. Phys., 39 (1988), 166–176. https://doi.org/10.1007/BF00945763 doi: 10.1007/BF00945763
![]() |
[7] | C. O. Horgan, Decay estimates for the biharmonic equation with applications to saint-venant principles in plane elasticity and stokes flows, Q. Appl. Math., 42 (1989), 147–157. |
[8] | C. Lin, Spatial decay estimates and energy bounds for the stokes flow equation, SAACM, 2 (1992), 249–262. |
[9] |
R. J. Knops, C. Lupoli, End effects for plane Stokes flow along a semi-infinite strip, Z. Angew. Math. Phys., 48 (1997), 905–920. https://doi.org/10.1007/s000330050072 doi: 10.1007/s000330050072
![]() |
[10] |
J. C. Song, Improved decay estimates in time-dependent Stokes flow, J. Math. Anal. Appl., 288 (2003), 505–517. https://doi.org/10.1016/j.jmaa.2003.09.007 doi: 10.1016/j.jmaa.2003.09.007
![]() |
[11] |
J. C. Song, Improved spatial decay bounds in the plane Stokes flow, Appl. Math. Mech., 30 (2009), 833–838. https://doi.org/10.1007/s10483-009-0703-z doi: 10.1007/s10483-009-0703-z
![]() |
[12] | Y. Liu, C. Lin, Phragmén-Lindelöf type alternative results for the stokes flow equation, Math. Inequal. Appl., 9 (2006), 671–694. |
[13] |
C. H. Lin, L. E. Payne, A Phragmén-Lindelöf alternative for a class of quasilinear second order parabolic problems, Differ. Integral Equations, 8 (1995), 539–551. https://doi.org/10.57262/die/1369316504 doi: 10.57262/die/1369316504
![]() |
[14] |
C. O. Horgan, L. E. Payne, Phragmén-lindelöf type results for harmonic functions with nonlinear boundary conditions, Arch. Rational Mech. Anal., 122 (1993), 123–144. https://doi.org/10.1007/BF00378164 doi: 10.1007/BF00378164
![]() |
[15] |
Y. Li, X. Chen, Phragmén-Lindelöf alternative results and structural stability for Brinkman fluid in porous media in a semi-infinite cylinder, Open Math., 20 (2022), 1665–1684. https://doi.org/10.1515/math-2022-0531 doi: 10.1515/math-2022-0531
![]() |
[16] |
P. Zeng, D. Li, Y. Li, The growth or decay estimates for nonlinear wave equations with damping and source terms, Math. Biosci. Eng., 20 (2023), 13989–14004. https://doi.org/10.3934/mbe.2023623 doi: 10.3934/mbe.2023623
![]() |
[17] |
J. Jiménez-Garrido, J. Sanz, G. Schindl, A Phragmén-Lindelöf theorem via proxi-mate orders, and the propagation of asymptotics, J. Geom. Anal., 30 (2020), 3458–3483. https://doi.org/10.1007/s12220-019-00203-5 doi: 10.1007/s12220-019-00203-5
![]() |