Research article Special Issues

New soliton wave structure and modulation instability analysis for nonlinear Schrödinger equation with cubic, quintic, septic, and nonic nonlinearities

  • Received: 21 July 2024 Revised: 14 August 2024 Accepted: 30 August 2024 Published: 10 September 2024
  • MSC : 35B35, 35C07, 35C08, 35C09

  • We have introduced various novel soliton waves and other analytic wave solutions for nonlinear Schrödinger equation with cubic, quintic, septic, and nonic nonlinearities. The modified extended direct algebraic method governs the transmission of various solitons with different effects. The combination of this system enables the obtaining of analytical soliton solutions with some unique behaviors, including bright, dark, and mixed dark-bright soliton solutions; singular soliton solutions; singular periodic, exponential, rational wave solutions; and Jacobi elliptic function solutions. These results realize the stability of the nonlinear waves' propagation in a high-nonlinear-dispersion medium that is illustrated using 2D and 3D visuals and contour graphical diagrams of the output solutions. This research focused on determining exact soliton solutions under certain parameter conditions and evaluating the stability and reliability of the soliton solutions based on the used modified extended direct algebraic method. This will be useful for many various domains in technology and physics, such as biology, optics, and plasma physical science. At the end, we use modulation instability analysis to assess the stability of the wave solutions obtained.

    Citation: Abeer S. Khalifa, Hamdy M. Ahmed, Niveen M. Badra, Wafaa B. Rabie, Farah M. Al-Askar, Wael W. Mohammed. New soliton wave structure and modulation instability analysis for nonlinear Schrödinger equation with cubic, quintic, septic, and nonic nonlinearities[J]. AIMS Mathematics, 2024, 9(9): 26166-26181. doi: 10.3934/math.20241278

    Related Papers:

    [1] Muhammad Farman, Ali Akgül, J. Alberto Conejero, Aamir Shehzad, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Analytical study of a Hepatitis B epidemic model using a discrete generalized nonsingular kernel. AIMS Mathematics, 2024, 9(7): 16966-16997. doi: 10.3934/math.2024824
    [2] Weam G. Alharbi, Abdullah F. Shater, Abdelhalim Ebaid, Carlo Cattani, Mounirah Areshi, Mohammed M. Jalal, Mohammed K. Alharbi . Communicable disease model in view of fractional calculus. AIMS Mathematics, 2023, 8(5): 10033-10048. doi: 10.3934/math.2023508
    [3] Ashish Awasthi, Riyasudheen TK . An accurate solution for the generalized Black-Scholes equations governing option pricing. AIMS Mathematics, 2020, 5(3): 2226-2243. doi: 10.3934/math.2020147
    [4] Hui Han, Chaoyu Yang, Xianya Geng . Research on the impact of green finance on the high quality development of the sports industry based on statistical models. AIMS Mathematics, 2023, 8(11): 27589-27604. doi: 10.3934/math.20231411
    [5] Badr Aloraini, Abdulaziz S. Alghamdi, Mohammad Zaid Alaskar, Maryam Ibrahim Habadi . Development of a new statistical distribution with insights into mathematical properties and applications in industrial data in KSA. AIMS Mathematics, 2025, 10(3): 7463-7488. doi: 10.3934/math.2025343
    [6] Ahmad Bin Azim, Ahmad ALoqaily, Asad Ali, Sumbal Ali, Nabil Mlaiki . Industry 4.0 project prioritization by using q-spherical fuzzy rough analytic hierarchy process. AIMS Mathematics, 2023, 8(8): 18809-18832. doi: 10.3934/math.2023957
    [7] Mohamed S. Elhadidy, Waleed S. Abdalla, Alaa A. Abdelrahman, S. Elnaggar, Mostafa Elhosseini . Assessing the accuracy and efficiency of kinematic analysis tools for six-DOF industrial manipulators: The KUKA robot case study. AIMS Mathematics, 2024, 9(6): 13944-13979. doi: 10.3934/math.2024678
    [8] Maryam Amin, Muhammad Farman, Ali Akgül, Mohammad Partohaghighi, Fahd Jarad . Computational analysis of COVID-19 model outbreak with singular and nonlocal operator. AIMS Mathematics, 2022, 7(9): 16741-16759. doi: 10.3934/math.2022919
    [9] Geoffrey McGregor, Jennifer Tippett, Andy T.S. Wan, Mengxiao Wang, Samuel W.K. Wong . Comparing regional and provincial-wide COVID-19 models with physical distancing in British Columbia. AIMS Mathematics, 2022, 7(4): 6743-6778. doi: 10.3934/math.2022376
    [10] Massoumeh Nazari, Mahmoud Dehghan Nayeri, Kiamars Fathi Hafshjani . Developing mathematical models and intelligent sustainable supply chains by uncertain parameters and algorithms. AIMS Mathematics, 2024, 9(3): 5204-5233. doi: 10.3934/math.2024252
  • We have introduced various novel soliton waves and other analytic wave solutions for nonlinear Schrödinger equation with cubic, quintic, septic, and nonic nonlinearities. The modified extended direct algebraic method governs the transmission of various solitons with different effects. The combination of this system enables the obtaining of analytical soliton solutions with some unique behaviors, including bright, dark, and mixed dark-bright soliton solutions; singular soliton solutions; singular periodic, exponential, rational wave solutions; and Jacobi elliptic function solutions. These results realize the stability of the nonlinear waves' propagation in a high-nonlinear-dispersion medium that is illustrated using 2D and 3D visuals and contour graphical diagrams of the output solutions. This research focused on determining exact soliton solutions under certain parameter conditions and evaluating the stability and reliability of the soliton solutions based on the used modified extended direct algebraic method. This will be useful for many various domains in technology and physics, such as biology, optics, and plasma physical science. At the end, we use modulation instability analysis to assess the stability of the wave solutions obtained.



    Since its initiation in 1979, the Canadian Applied and Industrial Mathematics Society — Société Canadienne de Mathématiques Appliquées et Industrielles (CAIMS–SCMAI) has gained a growing presence in industrial, mathematical, scientific, and technological circles within and outside of Canada. Its members contribute to state-of-the-art research in industry, natural sciences, medicine and health, finance, physics, engineering, and more. The annual meetings are a highlight of the year. CAIMS–SCMAI is an active member society of the International Council for Industrial and Applied Mathematics, which hosts the prestigious ICIAM Congresses every four years.

    Canadian Applied and Industrial Mathematics is at the forefront of scientific and technological development. We use advanced mathematics to tackle real-world problems in science and industry and develop new theories to analyse structures that arise from the modelling of real-world problems.

    Applied Mathematics has evolved from traditional applications in areas such as fluids, mechanics, and physics, to modern topics such as medicine, health, biology, data science, finance, nano-tech, etc. Its growing importance in all aspects of life, health, and management increases the need for publication venues for high-level applied and industrial mathematics. Hence CAIMS–SCMAI decided to start a scientific journal called Mathematics in Science and Industry (MSI) to add value to the discussion of applied and industrial mathematics worldwide.

    Submissions to MSI in all areas of applied and industrial mathematics are welcome (https://caims.ca/mathematics_in_science_and_industry/). We offer a timely and high-quality review process, and papers are published online as open access, with the publication fee being covered by CAIMS for the first five years.

    MSI is honored that leading experts in industrial and applied mathematics have offered their support as editors:

    Editors in Chief:

    ● Thomas Hillen (University of Alberta, thillen@ualberta.ca)

    ● Ray Spiteri (University of Saskatchewan, spiteri@cs.usask.ca)

    Associate Editors:

    ● Lia Bronsard (McMaster University)

    ● Richard Craster (Imperial College of London, UK)

    ● David Earn (McMaster University)

    ● Ronald Haynes (Memorial University)

    ● Jane Heffernan (York University)

    ● Nicholas Kevlahan (McMaster University)

    ● Yong-Jung Kim (KAIST, Korea)

    ● Mark Lewis (University of Alberta)

    ● Kevin J. Painter (Heriot-Watt University, UK)

    ● Vakhtang Putkaradze (ATCO)

    ● Katrin Rohlf (Ryerson University)

    ● John Stockie (Simon Fraser University)

    ● Jie Sun (Huawei, Hong Kong)

    ● Justin Wan (University of Waterloo)

    ● Michael Ward (University of British Columbia)

    ● Tony Ware (University of Calgary)

    ● Brian Wetton (University of British Columbia)

    The first eight papers of MSI, presented here, are published as special issue in AIMS Mathematics. They showcase a broad representation of applied mathematics that touches the interests of Canadian researchers and our many collaborators around the world. The science that we present here is not exclusively "Canadian", but we hope that through the new journal MSI, we can contribute to scientific dissemination of knowledge and add Canadian values to the scientific discussion.

    The next issue of MSI is planned for the fall of 2020 and is expected to appear again as a special issue of AIMS Mathematics.



    [1] Y. Q. Chen, Z. T. Wu, P. Y. Xiao, W. D. Xiao, W. J. Liu, Application of femtosecond mode-locked SnTe thin films and generation of bound-state solitons, Opt. Lett., 49 (2024), 2437–2440. http://dx.doi.org/10.1364/OL.519940 doi: 10.1364/OL.519940
    [2] K. K. Ahmed, H. M. Ahmed, N. M. Badra, W. B. Rabie, Optical solitons retrieval for an extension of novel dual-mode of a dispersive non-linear Schrödinger equation, Optik, 307 (2024), 171835. http://dx.doi.org/10.1016/j.ijleo.2024.171835 doi: 10.1016/j.ijleo.2024.171835
    [3] K. L. Geng, B. W. Zhu, Q. H. Cao, C. Q. Dai, Y. Y. Wang, Nondegenerate soliton dynamics of nonlocal nonlinear Schrödinger equation, Nonlinear Dyn., 111 (2023), 16483–16496. http://dx.doi.org/10.1007/s11071-023-08719-w doi: 10.1007/s11071-023-08719-w
    [4] K. K. Ahmed, N. M. Badra, H. M. Ahmed, W. B. Rabie, Unveiling optical solitons and other solutions for fourth-order (2+1)-dimensional nonlinear Schrödinger equation by modified extended direct algebraic method, J. Opt., 2024, 1–13. http://dx.doi.org/10.1007/s12596-024-01690-8 doi: 10.1007/s12596-024-01690-8
    [5] E. M. E. Zayed, K. A. E. Alurrfi, A. H. Arnous, M. S. Hashemi, M. Bayram, Effects of high dispersion and generalized non-local laws on optical soliton perturbations in magneto-optic waveguides with sextic-power law refractive index, Nonlinear Dyn., 112 (2024), 8507–8525. http://dx.doi.org/10.1007/s11071-024-09518-7 doi: 10.1007/s11071-024-09518-7
    [6] W. B. Rabie, K. K. Ahmed, N. M. Badra, H. M. Ahmed, M. Mirzazadeh, M. Eslami, New solitons and other exact wave solutions for coupled system of perturbed highly dispersive CGLE in birefringent fibers with polynomial nonlinearity law, Opt. Quantum Electron., 56 (2024), 1–22. http://dx.doi.org/10.1007/s11082-024-06644-9 doi: 10.1007/s11082-024-06644-9
    [7] K. K. Ahmed, N. M. Badra, H. M. Ahmed, W. B. Rabie, M. Mirzazadeh, M. Eslami, et al., Investigation of solitons in magneto-optic waveguides with Kudryashov's law nonlinear refractive index for coupled system of generalized nonlinear Schrödinger's equations using modified extended mapping method, Nonlinear Anal. Model. Control, 29 (2024), 205–223. http://dx.doi.org/10.15388/namc.2024.29.34070 doi: 10.15388/namc.2024.29.34070
    [8] A. S. Khalifa, N. M. Badra, H. M. Ahmed, W. B. Rabie, Retrieval of optical solitons in fiber Bragg gratings for high-order coupled system with arbitrary refractive index, Optik, 287 (2023), 171116. http://dx.doi.org/10.1016/j.ijleo.2023.171116 doi: 10.1016/j.ijleo.2023.171116
    [9] H. Zhang, M. Gong, J. S. He, B. Malomed, Two-dimensional vector solitons in Bose-Einstein-condensate mixtures, Appl. Math. Comput., 469 (2024), 128536. http://dx.doi.org/10.1016/j.amc.2024.128536 doi: 10.1016/j.amc.2024.128536
    [10] F. Y. Liu, S. Y. Xu, H. Triki, A. Choudhuri, Q. Zhou, Spatiotemporal modulated solitons in a quasi-one-dimensional spin-1 Bose-Einstein condensates, Chaos Solitons Fract., 183 (2024), 114947. http://dx.doi.org/10.1016/j.chaos.2024.114947 doi: 10.1016/j.chaos.2024.114947
    [11] A. M. Dikandé, Using dark solitons from a Bose-Einstein condensate necklace to imprint soliton states in the spectral memory of a free boson gas, New J. Phys., 25 (2023), 103017. http://dx.doi.org/10.1088/1367-2630/acfcd5 doi: 10.1088/1367-2630/acfcd5
    [12] P. Gao, J. Liu, Quantum scattering treatment on the time-domain diffraction of a matter-wave soliton, Phys. Rev. A, 109 (2024), 013323. http://dx.doi.org/10.1103/PhysRevA.109.013323 doi: 10.1103/PhysRevA.109.013323
    [13] L. W. Zeng, J. C. Shi, M. R. Belić, D. Mihalache, J. B. Chen, J. W. Li, et al., Surface gap solitons in the Schrödinger equation with quintic nonlinearity and a lattice potential, Opt. Express, 31 (2023), 35471–35483. http://dx.doi.org/10.1364/OE.497973 doi: 10.1364/OE.497973
    [14] S. K. Sarkar, T. Mishra, P. Muruganandam, P. K. Mishra, Quench-induced chaotic dynamics of Anderson-localized interacting Bose-Einstein condensates in one dimension, Phys. Rev. A, 107 (2023), 053320. http://dx.doi.org/10.1103/PhysRevA.107.053320 doi: 10.1103/PhysRevA.107.053320
    [15] M. Alquran, Optical bidirectional wave-solutions to new two-mode extension of the coupled KdV-Schrodinger equations, Opt. Quantum Electron., 53 (2021), 588. http://dx.doi.org/10.1007/s11082-021-03245-8 doi: 10.1007/s11082-021-03245-8
    [16] E. G. Çelik, N. Antar, Stabilization of self-steepening optical solitons in a periodic PT-symmetric potential, Chaos Solitons Fract., 185 (2024), 115125. http://dx.doi.org/10.1016/j.chaos.2024.115125 doi: 10.1016/j.chaos.2024.115125
    [17] A. S. Khalifa, W. B. Rabie, N. M. Badra, H. M. Ahmed, M. Mirzazadeh, M. Hashemi, et al., Discovering novel optical solitons of two CNLSEs with coherent and incoherent nonlinear coupling in birefringent optical fibers, Opt. Quantum Electron., 56 (2024), 1340. http://dx.doi.org/10.1007/s11082-024-07237-2 doi: 10.1007/s11082-024-07237-2
    [18] A. R. Seadawy, N. Cheemaa, S. Althobaiti, S. Sayed, A. Biswas, Optical soliton perturbation with fractional temporal evolution by extended modified auxiliary equation mapping, Rev. Mex. Fís., 67 (2021), 403–414. http://dx.doi.org/10.31349/RevMexFis.67.403 doi: 10.31349/RevMexFis.67.403
    [19] S. U. Rehman, M. Bilal, J. Ahmad, Dynamics of soliton solutions in saturated ferromagnetic materials by a novel mathematical method, J. Magn. Magn. Mater., 538 (2021), 168245. http://dx.doi.org/10.1016/j.jmmm.2021.168245 doi: 10.1016/j.jmmm.2021.168245
    [20] M. Ozisik, A. Secer, M. Bayram, On solitary wave solutions for the extended nonlinear Schrödinger equation via the modified F-expansion method, Opt. Quantum Electron., 55 (2023), 215. https://doi.org/10.1007/s11082-022-04476-z doi: 10.1007/s11082-022-04476-z
    [21] H. H. Yi, Y. L. Yao, X. Zhang, G. L. Ma, High-order effect on the transmission of two optical solitons, Chinese Phys. B, 32 (2023), 100509. http://dx.doi.org/10.1088/1674-1056/aceeec doi: 10.1088/1674-1056/aceeec
    [22] L. Tang, Dynamical behavior and multiple optical solitons for the fractional Ginzburg-Landau equation with -derivative in optical fibers, Opt. Quantum Electron., 56 (2024), 175. https://doi.org/10.1007/s11082-023-05761-1 doi: 10.1007/s11082-023-05761-1
    [23] M. I. Khan, A. Farooq, K. S. Nisar, N. A. Shah, Unveiling new exact solutions of the unstable nonlinear Schrödinger equation using the improved modified Sardar sub-equation method, Results Phys., 59 (2024), 107593. http://dx.doi.org/10.1016/j.rinp.2024.107593 doi: 10.1016/j.rinp.2024.107593
    [24] Y. Zhong, H. Triki, Q. Zhou, Bright and kink solitons of time-modulated cubic-quintic-septic-nonic nonlinear Schrödinger equation under space-time rotated PT-symmetric potentials, Nonlinear Dyn., 112 (2024), 1349–1364. http://dx.doi.org/10.1007/s11071-023-09116-z doi: 10.1007/s11071-023-09116-z
    [25] M. M. Al-Sawalha, H. Yasmin, R. Shah, A. H. Ganie, K. Moaddy, Unraveling the dynamics of singular stochastic solitons in stochastic fractional Kuramoto-Sivashinsky equation, Fractal Fract., 7 (2023), 1–24. http://dx.doi.org/10.3390/fractalfract7100753 doi: 10.3390/fractalfract7100753
    [26] L. A. Al-Essa, M. ur Rahman, Novel stochastic multi breather type, a-periodic, hybrid periodic and other type of waves of the Shrödinger-Hirota model with Wiener process, Opt. Quantum Electron., 56 (2024), 1141. http://dx.doi.org/10.1007/s11082-024-07042-x doi: 10.1007/s11082-024-07042-x
    [27] H. A. Alkhidhr, Characteristics of stochastic solutions for the chiral NLSE through Brownian motion process, AIP Adv., 13 (2023), 115320. http://dx.doi.org/10.1063/5.0180435 doi: 10.1063/5.0180435
    [28] W. W. Mohammed, C. Cesarano, N. I. Alqsair, R. Sidaoui, The impact of Brownian motion on the optical solutions of the stochastic ultra-short pulses mathematical model, Alex. Eng. J., 101 (2024), 186–192. http://dx.doi.org/10.1016/j.aej.2024.05.054 doi: 10.1016/j.aej.2024.05.054
    [29] S. Loomba, R. Pal, C. N. Kumar, Bright solitons of the nonautonomous cubic-quintic nonlinear Schrödinger equation with sign-reversal nonlinearity, Phys. Rev. A, 92 (2015), 033811. http://dx.doi.org/10.1103/PhysRevA.92.033811 doi: 10.1103/PhysRevA.92.033811
    [30] H. Triki, A. Choudhuri, Q. Zhou, A. Biswas, A. S. Alshomrani, Nonautonomous matter wave bright solitons in a quasi-1D Bose-Einstein condensate system with contact repulsion and dipole-dipole attraction, Appl. Math. Comput., 371 (2020), 124951. http://dx.doi.org/10.1016/j.amc.2019.124951 doi: 10.1016/j.amc.2019.124951
    [31] A. S. Khalifa, H. M. Ahmed, N. M. Badra, W. B. Rabie, Exploring solitons in optical twin-core couplers with Kerr law of nonlinear refractive index using the modified extended direct algebraic method, Opt. Quantum Electron., 56 (2024), 1060. http://dx.doi.org/10.1007/s11082-024-06882-x doi: 10.1007/s11082-024-06882-x
    [32] A. H. Arnous, A. Biswas, Y. Yildirim, A. S. Alshomrani, Optical solitons with dispersive concatenation model having multiplicative white noise by the enhanced direct algebraic method, Contemp. Math., 5 (2024), 1122–1136. http://dx.doi.org/10.37256/cm.5220244123 doi: 10.37256/cm.5220244123
    [33] M. M. Roshid, M. M. Rahman, Bifurcation analysis, modulation instability and optical soliton solutions and their wave propagation insights to the variable coefficient nonlinear Schrödinger equation with Kerr law nonlinearity, Nonlinear Dyn., 112 (2024), 16355–16377. http://dx.doi.org/10.1007/s11071-024-09872-6 doi: 10.1007/s11071-024-09872-6
    [34] H. U. Rehman, A. U. Awan, A. M. Hassan, S. Razzaq, Analytical soliton solutions and wave profiles of the (3+1)-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation, Results Phys., 52 (2023), 106769. http://dx.doi.org/10.1016/j.rinp.2023.106769 doi: 10.1016/j.rinp.2023.106769
    [35] C. Y. Ma, B. Gao, G. Wu, T. Zhang, X. J. Tian, Observation of dissipative bright soliton and dark soliton in an all‐normal dispersion fiber, Int. J. Opt., 2016 (2016), 3946525. http://dx.doi.org/10.1155/2016/3946525 doi: 10.1155/2016/3946525
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(965) PDF downloads(55) Cited by(1)

Article outline

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog