Research article Special Issues

Research on a lightweight electronic component detection method based on knowledge distillation


  • As an essential part of electronic component assembly, it is crucial to rapidly and accurately detect electronic components. Therefore, a lightweight electronic component detection method based on knowledge distillation is proposed in this study. First, a lightweight student model was constructed. Then, we consider issues like the teacher and student's differing expressions. A knowledge distillation method based on the combination of feature and channel is proposed to learn the teacher's rich class-related and inter-class difference features. Finally, comparative experiments were analyzed for the dataset. The results show that the student model Params (13.32 M) are reduced by 55%, and FLOPs (28.7 GMac) are reduced by 35% compared to the teacher model. The knowledge distillation method based on the combination of feature and channel improves the student model's mAP by 3.91% and 1.13% on the Pascal VOC and electronic components detection datasets, respectively. As a result of the knowledge distillation, the constructed student model strikes a superior balance between model precision and complexity, allowing for fast and accurate detection of electronic components with a detection precision (mAP) of 97.81% and a speed of 79 FPS.

    Citation: Zilin Xia, Jinan Gu, Wenbo Wang, Zedong Huang. Research on a lightweight electronic component detection method based on knowledge distillation[J]. Mathematical Biosciences and Engineering, 2023, 20(12): 20971-20994. doi: 10.3934/mbe.2023928

    Related Papers:

    [1] Zhiqin Zhu, Shaowen Wang, Shuangshuang Gu, Yuanyuan Li, Jiahan Li, Linhong Shuai, Guanqiu Qi . Driver distraction detection based on lightweight networks and tiny object detection. Mathematical Biosciences and Engineering, 2023, 20(10): 18248-18266. doi: 10.3934/mbe.2023811
    [2] Venkat Anil Adibhatla, Huan-Chuang Chih, Chi-Chang Hsu, Joseph Cheng, Maysam F. Abbod, Jiann-Shing Shieh . Applying deep learning to defect detection in printed circuit boards via a newest model of you-only-look-once. Mathematical Biosciences and Engineering, 2021, 18(4): 4411-4428. doi: 10.3934/mbe.2021223
    [3] Peng Ying, Zhongnian Li, Renke Sun, Xinzheng Xu . Complementary label learning based on knowledge distillation. Mathematical Biosciences and Engineering, 2023, 20(10): 17905-17918. doi: 10.3934/mbe.2023796
    [4] Jianyuan Wang, Huanqiang Xu, Xinrui Hu, Biao Leng . IFKD: Implicit field knowledge distillation for single view reconstruction. Mathematical Biosciences and Engineering, 2023, 20(8): 13864-13880. doi: 10.3934/mbe.2023617
    [5] Hongyang Chang, Hongying Zan, Shuai Zhang, Bingfei Zhao, Kunli Zhang . Construction of cardiovascular information extraction corpus based on electronic medical records. Mathematical Biosciences and Engineering, 2023, 20(7): 13379-13397. doi: 10.3934/mbe.2023596
    [6] Xin Zhou, Jingnan Guo, Liling Jiang, Bo Ning, Yanhao Wang . A lightweight CNN-based knowledge graph embedding model with channel attention for link prediction. Mathematical Biosciences and Engineering, 2023, 20(6): 9607-9624. doi: 10.3934/mbe.2023421
    [7] Auwalu Saleh Mubarak, Zubaida Said Ameen, Fadi Al-Turjman . Effect of Gaussian filtered images on Mask RCNN in detection and segmentation of potholes in smart cities. Mathematical Biosciences and Engineering, 2023, 20(1): 283-295. doi: 10.3934/mbe.2023013
    [8] Xiao Jian Tan, Nazahah Mustafa, Mohd Yusoff Mashor, Khairul Shakir Ab Rahman . Automated knowledge-assisted mitosis cells detection framework in breast histopathology images. Mathematical Biosciences and Engineering, 2022, 19(2): 1721-1745. doi: 10.3934/mbe.2022081
    [9] Lei Yang, Guowu Yuan, Hao Wu, Wenhua Qian . An ultra-lightweight detector with high accuracy and speed for aerial images. Mathematical Biosciences and Engineering, 2023, 20(8): 13947-13973. doi: 10.3934/mbe.2023621
    [10] Chen Chen, Guowu Yuan, Hao Zhou, Yi Ma . Improved YOLOv5s model for key components detection of power transmission lines. Mathematical Biosciences and Engineering, 2023, 20(5): 7738-7760. doi: 10.3934/mbe.2023334
  • As an essential part of electronic component assembly, it is crucial to rapidly and accurately detect electronic components. Therefore, a lightweight electronic component detection method based on knowledge distillation is proposed in this study. First, a lightweight student model was constructed. Then, we consider issues like the teacher and student's differing expressions. A knowledge distillation method based on the combination of feature and channel is proposed to learn the teacher's rich class-related and inter-class difference features. Finally, comparative experiments were analyzed for the dataset. The results show that the student model Params (13.32 M) are reduced by 55%, and FLOPs (28.7 GMac) are reduced by 35% compared to the teacher model. The knowledge distillation method based on the combination of feature and channel improves the student model's mAP by 3.91% and 1.13% on the Pascal VOC and electronic components detection datasets, respectively. As a result of the knowledge distillation, the constructed student model strikes a superior balance between model precision and complexity, allowing for fast and accurate detection of electronic components with a detection precision (mAP) of 97.81% and a speed of 79 FPS.





    [1] W. Wang, Y. Zhang, J. Gu, J. Wang, A proactive manufacturing resources assignment method based on production performance prediction for the smart factory, IEEE Trans. Ind. Inf., 18 (2018), 46–55. https://doi.org/10.1109/TII.2021.3073404 doi: 10.1109/TII.2021.3073404
    [2] W. Wang, T. Hu, J. Gu, Edge-cloud cooperation driven self-adaptive exception control method for the smart factory, Adv. Eng. Inf., 51 (2022), 101493. https://doi.org/10.1016/j.aei.2021.101493 doi: 10.1016/j.aei.2021.101493
    [3] Z. Zou, K. Chen, Z. Shi, Y. Guo, J. Ye, Object detection in 20 years: A survey, Proc. IEEE, 111 (2023), 257–276. https://doi.org/10.1109/JPROC.2023.3238524 doi: 10.1109/JPROC.2023.3238524
    [4] Y. Xu, G. Yu, X. Wu, Y. Wang, Y. Ma, An enhanced Viola-Jones vehicle detection method from unmanned aerial vehicles imagery, IEEE Trans. Intell. Transp. Syst., 18 (2016), 1845–1856. https://doi.org/10.1109/TITS.2016.2617202 doi: 10.1109/TITS.2016.2617202
    [5] L. Liu, J. Liang, J. Wang, P. Hu, L. Wan, Q. Zheng, An improved YOLOv5-based approach to soybean phenotype information perception, Comput. Electr. Eng., 106 (2023), 108582. https://doi.org/10.1016/j.compeleceng.2023.108582 doi: 10.1016/j.compeleceng.2023.108582
    [6] A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet classification with deep convolutional neural networks, Commun. ACM, 60 (2017), 84–90. https://doi.org/10.1145/3065386 doi: 10.1145/3065386
    [7] R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (2014), 580–587. https://doi.org/10.1109/CVPR.2014.81
    [8] R. Girshick, Fast R-CNN, in Proceedings of the IEEE International Conference on Computer Vision, (2015), 1440–1448. http://dx.doi.org/10.1109/ICCV.2015.169
    [9] S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards real-time object detection with region proposal networks, IEEE Trans. Pattern Anal. Mach. Intell., 39 (2017), 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031 doi: 10.1109/TPAMI.2016.2577031
    [10] F. Zeng, Y. Liu, Y. Ye, J. Zhou, X. Liu, A detection method of edge coherent mode based on improved SSD, Fusion Eng. Design, 179 (2022), 113141. https://doi.org/10.1016/j.fusengdes.2022.113141 doi: 10.1016/j.fusengdes.2022.113141
    [11] J. Redmon, A. Farhadi, YOLO9000: Better, faster, stronger, in Proceedings of 30th IEEE Conference on Computer Vision and Pattern Recognition, (2017), 7263–7271. https://doi.org/10.1109/CVPR.2017.690
    [12] J. Redmon, A. Farhadi, YOLOv3: An incremental improvement, preprint, arXiv: 1804.02767.
    [13] A. Bochkovskiy, C. Y. Wang, H. Y. M. Liao, YOLOv4: Optimal speed and accuracy of object detection, preprint, arXiv: 2004.10934
    [14] T. Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, (2017), 2117–2125. https://doi.org/10.1109/CVPR.2017.106
    [15] T. Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal loss for dense object detection, IEEE Trans. Pattern Anal. Mach. Intell., 42 (2020), 318–327. https://doi.org/10.1109/TPAMI.2018.2858826 doi: 10.1109/TPAMI.2018.2858826
    [16] X. Sun, J. Gu, R. Huang, A modified SSD method for electronic components fast recognition, Optik, 205 (20200), 163767. https://doi.org/10.1016/j.ijleo.2019.163767 doi: 10.1016/j.ijleo.2019.163767
    [17] R. Huang, J. Gu, X. Sun, Y. Hou, S. Uddin, A rapid recognition method for electronic components based on the improved YOLOv3 network, Electronics, 8 (2019), 825. https://doi.org/10.3390/electronics8080825 doi: 10.3390/electronics8080825
    [18] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L. C. Chen, MobileNetV2: Inverted residuals and linear bottlenecks, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (2018), 4510–4520. https://doi.org/10.1109/CVPR.2018.00474
    [19] Z. Yang, R. Dong, H. Xu, J. Gu, Instance segmentation method based on improved mask R-CNN for the stacked electronic components, Electronics, 9 (2020), 886. https://doi.org/10.3390/electronics9060886 doi: 10.3390/electronics9060886
    [20] K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask R-CNN, IEEE Trans. Pattern Anal. Mach. Intell., 42 (2020), 386–397. http://dx.doi.org/10.1109/TPAMI.2018.2844175 doi: 10.1109/TPAMI.2018.2844175
    [21] J. Li, J. Gu, Z. Huang, J. Wen, Application research of improved YOLOv3 algorithm in PCB electronic component detection, Appl. Sci., 9 (2019), 3750. https://doi.org/10.3390/app9183750 doi: 10.3390/app9183750
    [22] Z. Xia, J. Gu, K. Zhang, W. Wang, J. Li, Research on Multi-scene electronic component detection algorithm with anchor assignment based on K-means, Electronics, 11 (2022), 514. https://doi.org/10.3390/electronics11040514 doi: 10.3390/electronics11040514
    [23] L. Yang, G. Yuan, H. Zhou, H. Liu, J. Chen, H. Wu, RS-YOLOx: A high-precision detector for object detection in satellite remote sensing images, Appl. Sci., 12 (2022), 8707. https://doi.org/10.3390/app12178707 doi: 10.3390/app12178707
    [24] L. Yang, G. Yuan, H. Wu, W. Qian, An ultra-lightweight detector with high accuracy and speed for aerial images, Math. Biosci. Eng., 20 (2023), 13947–13973. https://doi.org/10.3934/mbe.2023621 doi: 10.3934/mbe.2023621
    [25] W. Wang, Z. Han, T. R. Gadekallu, S. Raza, J. Tanveer, C. Su, Lightweight blockchain-enhanced mutual authentication protocol for UAVs, IEEE Internet Things J., 2023 (2023). https://doi.org/10.1109/JIOT.2023.3324543 doi: 10.1109/JIOT.2023.3324543
    [26] J. Zong, C. Wang, J. Shen, C. Su, W. Wang, ReLAC: Revocable and lightweight access control with blockchain for smart consumer electronics, IEEE Trans. Consum. Electron., 2023 (2023). https://doi.org/10.1109/TCE.2023.3279652 doi: 10.1109/TCE.2023.3279652
    [27] L. Zhao, H. Huang, W. Wang, Z. Zheng, An accurate approach of device-free localization with attention empowered residual network, Appl. Soft Comput., 137 (2023), 110164. https://doi.org/10.1016/j.asoc.2023.110164 doi: 10.1016/j.asoc.2023.110164
    [28] J. Chen, Y. Liu, J. Hou, A lightweight deep learning network based on knowledge distillation for applications of efficient crack segmentation on embedded devices, Struct. Health Monit., 2023 (2023), 107200. https://doi.org/10.1177/14759217221139730 doi: 10.1177/14759217221139730
    [29] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, Y. Bengio, Fitnets: Hints for thin deep nets, preprint, arXiv: 1412.6550.
    [30] Y. Liu, K. Chen, C. Liu, Z. Qin, Z. Luo, J. Wang, Structured knowledge distillation for semantic segmentation, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (2019), 2604–2613. https://doi.org/10.1109/CVPR.2019.00271
    [31] Z. Zhou, C. Zhuge, X. Guan, W. Liu, Channel distillation: Channel-wise attention for knowledge distillation, preprint, arXiv: 2006.01683.
    [32] G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network, preprint, arXiv: 1503.02531.
    [33] Q. Li, S. Jin, J. Yan, Mimicking very efficient network for object detection, in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, (2017), 6356–6364. https://doi.org/10.1109/CVPR.2017.776
    [34] Y. Liu, C. Shu, J. Wang, C. Shen, Structured knowledge distillation for dense prediction, IEEE Trans. Pattern Anal. Mach. Intell., 45 (2023), 7035–7049. https://doi.org/10.1109/TPAMI.2020.3001940 doi: 10.1109/TPAMI.2020.3001940
    [35] Y. Wang, W. Zhou, T. Jiang, X. Bai, Y. Xu, Intra-class feature variation distillation for semantic segmentation, in European Conference on Computer Vision, (2020), 346–362. https://doi.org/10.1007/978-3-030-58571-6_21
    [36] C. Shu, Y. Liu, J. Gao, Z. Yan, C. Shen, Channel-wise knowledge distillation for dense prediction, in Proceedings of the IEEE International Conference on Computer Vision, (2021), 5311–5320. https://doi.org/10.1109/ICCV48922.2021.00526
    [37] M. Tan, Q. Le, Efficientnetv2: Smaller models and faster training, in International Conference on Machine Learning, (2021), 10096–10106
    [38] Y. Tang, K. Han, J. Guo, C. Xu, C. Xu, Y. Wang, GhostNetv2: enhance cheap operation with long-range attention, in Advances in Neural Information Processing Systems, 35 (2022), 9969–9982.
    [39] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, C. Xu, GhostNet: More features from cheap operations, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (2020), 1580–1589. https://doi.org/10.1109/CVPR42600.2020.00165
    [40] Z. Tian, C. Shen, H. Chen, T. He, FCOS: Fully convolutional one-stage object detection, in Proceedings of the IEEE International Conference on Computer Vision, (2019), 9627–9636. https://doi.org/10.1109/ICCV.2019.00972
    [41] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, A. Zisserman, The pascal visual object classes (VOC) challenge, Int. J. Comput. Vis., 88 (2010), 303–338. https://doi.org/10.1007/s11263-009-0275-4 doi: 10.1007/s11263-009-0275-4
  • This article has been cited by:

    1. Yongxin Wang, He Jiang, Yutong Sun, Longqi Xu, A Static Sign Language Recognition Method Enhanced with Self-Attention Mechanisms, 2024, 24, 1424-8220, 6921, 10.3390/s24216921
    2. Seyed Mohamad Javidan, Yiannis Ampatzidis, Ahmad Banakar, Keyvan Asefpour Vakilian, Kamran Rahnama, Tomato Fungal Disease Diagnosis Using Few-Shot Learning Based on Deep Feature Extraction and Cosine Similarity, 2024, 6, 2624-7402, 4233, 10.3390/agriengineering6040238
    3. Wu Zeng, Zheng-ying Xiao, MinoritySalMix and adaptive semantic weight compensation for long-tailed classification, 2024, 152, 02628856, 105307, 10.1016/j.imavis.2024.105307
    4. Gabriela Laura Sălăgean, Monica Leba, Andreea Cristina Ionica, Leveraging Symmetry and Addressing Asymmetry Challenges for Improved Convolutional Neural Network-Based Facial Emotion Recognition, 2025, 17, 2073-8994, 397, 10.3390/sym17030397
    5. Rayene Doghmane, Karima Boukari, Enhanced U-Net model for accurate aerial road segmentation, 2024, 33, 2720-250X, 71, 10.22630/MGV.2024.33.3.4
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1522) PDF downloads(74) Cited by(2)

Article outline

Figures and Tables

Figures(10)  /  Tables(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog