Conditions | E0 | E1 | E∗ |
R10<1 and R20<1 | Yes (GAS) | No | No |
R10<1 and R20>1 | Yes (Unstable) | Yes (GAS) | No |
R10>1 and R20<1 | Yes (Unstable) | No | Yes (GAS) |
R10>1 and R20>1 | Yes (Unstable) | Yes (Unstable) | Yes (GAS) |
With the rapid development and application of Internet technology in recent years, the issue of information security has received more and more attention. Digital steganography is used as a means of secure communication to hide information by modifying the carrier. However, steganography can also be used for illegal acts, so it is of great significance to study steganalysis techniques. The steganalysis technology can be used to solve the illegal steganography problem of computer vision and engineering applications technology. Most of the images in the Internet are color images, and steganalysis for color images is a very critical problem in the field of steganalysis at this stage. Currently proposed algorithms for steganalysis of color images mainly rely on the manual design of steganographic features, and the steganographic features do not fully consider the internal connection between the three channels of color images. In recent years, advanced steganography techniques for color images have been proposed, which brings more serious challenges to color image steganalysis. Quaternions are a good tool to represent color images, and the transformation of quaternions can fully exploit the correlation among color image channels. In this paper, we propose a color image steganalysis algorithm based on quaternion discrete cosine transform, firstly, the image is represented by quaternion, then the quaternion discrete cosine transform is applied to it, and the coefficients obtained from the transformation are extracted to design features of the coeval matrix. The experimental results show that the proposed algorithm works better than the typical color image steganalysis algorithm.
Citation: Meng Xu, Xiangyang Luo, Jinwei Wang, Hao Wang. Color image steganalysis based on quaternion discrete cosine transform[J]. Electronic Research Archive, 2023, 31(7): 4102-4118. doi: 10.3934/era.2023209
[1] | Yan’e Wang , Zhiguo Wang, Chengxia Lei . Asymptotic profile of endemic equilibrium to a diffusive epidemic model with saturated incidence rate. Mathematical Biosciences and Engineering, 2019, 16(5): 3885-3913. doi: 10.3934/mbe.2019192 |
[2] | Yoichi Enatsu, Yukihiko Nakata . Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate. Mathematical Biosciences and Engineering, 2014, 11(4): 785-805. doi: 10.3934/mbe.2014.11.785 |
[3] | Pan Yang, Jianwen Feng, Xinchu Fu . Cluster collective behaviors via feedback pinning control induced by epidemic spread in a patchy population with dispersal. Mathematical Biosciences and Engineering, 2020, 17(5): 4718-4746. doi: 10.3934/mbe.2020259 |
[4] | Jummy F. David, Sarafa A. Iyaniwura, Michael J. Ward, Fred Brauer . A novel approach to modelling the spatial spread of airborne diseases: an epidemic model with indirect transmission. Mathematical Biosciences and Engineering, 2020, 17(4): 3294-3328. doi: 10.3934/mbe.2020188 |
[5] | Chang-Yuan Cheng, Shyan-Shiou Chen, Xingfu Zou . On an age structured population model with density-dependent dispersals between two patches. Mathematical Biosciences and Engineering, 2019, 16(5): 4976-4998. doi: 10.3934/mbe.2019251 |
[6] | Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409 |
[7] | Zongwei Ma, Hongying Shu . Viral infection dynamics in a spatial heterogeneous environment with cell-free and cell-to-cell transmissions. Mathematical Biosciences and Engineering, 2020, 17(3): 2569-2591. doi: 10.3934/mbe.2020141 |
[8] | Yujie Sheng, Jing-An Cui, Songbai Guo . The modeling and analysis of the COVID-19 pandemic with vaccination and isolation: a case study of Italy. Mathematical Biosciences and Engineering, 2023, 20(3): 5966-5992. doi: 10.3934/mbe.2023258 |
[9] | Zhen Jin, Guiquan Sun, Huaiping Zhu . Epidemic models for complex networks with demographics. Mathematical Biosciences and Engineering, 2014, 11(6): 1295-1317. doi: 10.3934/mbe.2014.11.1295 |
[10] | Qian Yan, Xianning Liu . Dynamics of an epidemic model with general incidence rate dependent on a class of disease-related contact functions. Mathematical Biosciences and Engineering, 2023, 20(12): 20795-20808. doi: 10.3934/mbe.2023920 |
With the rapid development and application of Internet technology in recent years, the issue of information security has received more and more attention. Digital steganography is used as a means of secure communication to hide information by modifying the carrier. However, steganography can also be used for illegal acts, so it is of great significance to study steganalysis techniques. The steganalysis technology can be used to solve the illegal steganography problem of computer vision and engineering applications technology. Most of the images in the Internet are color images, and steganalysis for color images is a very critical problem in the field of steganalysis at this stage. Currently proposed algorithms for steganalysis of color images mainly rely on the manual design of steganographic features, and the steganographic features do not fully consider the internal connection between the three channels of color images. In recent years, advanced steganography techniques for color images have been proposed, which brings more serious challenges to color image steganalysis. Quaternions are a good tool to represent color images, and the transformation of quaternions can fully exploit the correlation among color image channels. In this paper, we propose a color image steganalysis algorithm based on quaternion discrete cosine transform, firstly, the image is represented by quaternion, then the quaternion discrete cosine transform is applied to it, and the coefficients obtained from the transformation are extracted to design features of the coeval matrix. The experimental results show that the proposed algorithm works better than the typical color image steganalysis algorithm.
Population migration is a common phenomenon. With the migration of population, infectious diseases can easily spread from one area to another, so it is meaningful to consider population migration when studying the spread of infectious diseases [1,2,3,4,5,6,7].
Wang and Mulone [2] established an SIS infectious disease model with standard incidence based on two patches. It is proved that the basic reproduction number is the threshold of the uniform persistence and disappearance of the disease. The dispersal rate of the population will make the infectious disease persist or disappear in all patches. There will be no the phenomena that infectious diseases persists in one patch but disappears in the other.
Sun et al. [3] put forward an SIS epidemic model with media effect in a two patches setting. Under the assumption that the migration matrix is irreducible, it is proved that if the basic reproduction number is greater than 1 then the system persists and solutions converge to an endemic equilibrium and that if the basic reproduction number is less than 1 then solutions tend to an equilibrium without disease.
Gao et al. [5,6] studied an SIS multi-patch model with variable transmission coefficients. Their results show that the basic reproduction number R0 is a threshold parameter of the disease dynamics.
All the patch models referenced above assume that the migration matrix is irreducible. The studies in which the migration matrix is reducible are few. Therefore, based on the case of two patches, we consider that the individuals can only migrate from one patch to the other. In this case, the migration matrix is reducible. It can characterize the phenomenon that individuals migrate in one direction between two regions, such as, from the rural patch to the urban one [8] and from a small community hospital to a large teaching hospital [4].
It is well known that the incidence rate plays an important role in the modeling of infectious disease. Considering the saturation phenomenon for numerous infected individuals, Capasso and Serio [9] first introduce a nonlinear bounded function g(I) to form the interaction term g(I)S in 1978. It can characterize the behavioral changes of individuals, such as wearing masks or reducing their social activities and direct contact with others with the increase of infectious individuals. After that, the saturation incidence rate has attracted much attention and various nonlinear types of incidence rate are employed. The most commonly used types are Holling type Ⅱ λSI1+αI [10,11,12] and βSI1+αS [13], Monod-Haldane type λSI1+αI2 [14], Beddington-DeAngelis type λSI1+αS+βI [15,16,17] and Crowley-Martin type λSI(1+αS)(1+βI) [18,19].
In this paper, we consider infectious disease transmission models with saturation incidence rate. The rest of this paper is organized as follows: In Section 2, we establish a two-patch SIS model with saturating contact rate and one-directing population dispersal. We discuss the existence of disease-free equilibrium, boundary equilibrium and endemic equilibrium and prove the global asymptotic stability of the equilibriums in Section 3. In Section 4, we perform simulations to illustrate the results and analyze the effect of the contact rate and population migration on epidemic transmission. Finally, we discuss in Section 5.
In the two patches, the population is divided into two states: susceptible and infective. Thus we can establish a two-patch SIS model with saturating contact rate and one-directing population dispersal
{dS1(t)dt=A1−d1S1−β1S1I11+α1I1−mS1+γ1I1,dS2(t)dt=A2−d2S2−β2S2I21+α2I2+mS1+γ2I2,dI1(t)dt=β1S1I11+α1I1−d1I1−mI1−γ1I1,dI2(t)dt=β2S2I21+α2I2−d2I2+mI1−γ2I2, | (2.1) |
where Si is the number of susceptible population in patch i (i=1,2), Ii is the number of infective population in patch i (i=1,2), Ai is the recruitment into patch i (i=1,2), di is the natural mortality rate, γi is the recovery rate of an infective individual in patch i (i=1,2), m is the migration rate form patch 1 to patch 2. Since the individuals can migrate from the first patch to the second, patch 1 is the source patch and patch 2 is the sink patch. The initial conditions is
Si(0)>0, Ii(0)≥0, i=1,2, I1(0)+I2(0)>0. | (2.2) |
Denote the population in patch i by Ni. Then Ni=Si+Ii. From system (2.1), the differential equations governing the evolution of N1 and N2 are
{dN1(t)dt=A1−(d1+m)N1,dN2(t)dt=A2−d2N2+mN1. | (2.3) |
Obviously, system (2.3) has a unique equilibrium (N∗1,N∗2)=(A1d1+m,A2d2+mA1d2(d1+m)) which is globally asymptotically stable for (2.3). So (2.1) is equivalent the following system
{dN1(t)dt=A1−(d1+−m)N1,dN2(t)dt=A2−d2N2+mN1,dI1(t)dt=β1(N1−I1)I11+α1I1−d1I1−mI1−γ1I1,dI2(t)dt=β2(N2−I2)I21+α2I2−d2I2+mI1−γ2I2. | (2.4) |
Because limt→∞Ni(t)→N∗i (i=1,2), system (2.4) leads to the following limit system
{dI1(t)dt=β1(N∗1−I1)I11+α1I1−d1I1−mI1−γ1I1,dI2(t)dt=β2(N∗2−I2)I21+α2I2−d2I2+mI1−γ2I2. | (2.5) |
Let Ω={(I1,I2)|0≤I1≤N∗1,0≤I2≤N∗2}. Then Ω is invariant region for system (2.5).
Define the basic reproduction number in the two patches respectively by R10=β1A1(d1+γ1+m)2=β1d1+γ1+mN∗1, R20=β2(d2+γ2)N∗2. The basic reproduction number R10 gives the expected secondary infections in the source patch produced by a primary infected individual in the source patch when the population is supposed to be in the disease-free equilibrium. The basic reproduction number R20 gives the expected secondary infections in the sink patch produced by a primary infected individual in the sink patch when the population is supposed to be in the disease-free equilibrium. Then we have the following theorem.
Theorem 3.1. For the system (2.5), we have
(i) The disease-free equilibrium E0:=(0,0) always exists;
(ii) The boundary equilibrium E1:=(0,β2N∗2−d2−γ2(d2+γ2)α2+β2) exists if R20>1;
(iii) There is a unique epidemic equilibrium E∗ if R10>1.
Proof. (ⅰ) can be easily proved.
Let
β1(N∗1−I1)I11+α1I1−d1I1−mI1−γ1I1=0, | (3.1) |
β2(N∗2−I2)I21+α2I2−d2I2+mI1−γ2I2=0. | (3.2) |
From Eq (3.1), we can have I1=0 always satisfies Eq (3.1). When I1=0, from Eq (3.2), we have
I2=β2N∗2−d2−γ2(d2+γ2)α2+β2. |
If R20>1, then I2=β2N∗2−d2−γ2(d2+γ2)α2+β2>0. So The boundary equilibrium E1:=(0,β2N∗2−d2−γ2(d2+γ2)α2+β2) exists if R20>1. The conclusion (ⅱ) is proved.
If R10>1, Eq (3.1) has a positive solution I∗1=β1N∗1−(d1+m+γ1)(d1+m+γ1)α1+β1. Solve Eq (3.2), we have
I2=(β2N∗2−d2−γ2+mα2I1)±√(β2N∗2−d2−γ2+mα2I1)2+4[(d2+γ2)α2+β2]mI12[(d2+γ2)α2+β2]. | (3.3) |
Substituting I∗1 into Eq (3.3), we have
I∗2=(β2N∗2−d2−γ2+mα2I∗1)±√(β2N∗2−d2−γ2+mα2I∗1)2+4[(d2+γ2)α2+β2]mI∗12[(d2+γ2)α2+β2]. |
Since I∗2≥0 is meaning only, we take
I∗2=(β2N∗2−d2−γ2+mα2I∗1)+√(β2N∗2−d2−γ2+mα2I∗1)2+4[(d2+γ2)α2+β2]mI∗12[(d2+γ2)α2+β2]. |
So if R10>1, there is a unique epidemic equilibrium E∗=(I∗1,I∗2), where I∗1=β1N∗1−(d1+m+γ1)(d1+m+γ1)α1+β1 and I∗2=(β2N∗2−d2−γ2+mα2I∗1)+√(β2N∗2−d2−γ2+mα2I∗1)2+4[(d2+γ2)α2+β2]mI∗12[(d2+γ2)α2+β2]. The conclusion (ⅲ) is proved.
This completes the proof of the theorem.
From the above analysis, we have the following theorem.
Theorem 3.2. For the system (2.5), we have
(i) If R10<1 and R20<1, there is the disease-free equilibrium E0 only;
(ii) If R10<1 and R20>1, there are the disease-free equilibrium E0 and the boundary equilibrium E1;
(iii) If R10>1 and R20<1, there are the disease-free equilibrium E0 and the epidemic equilibrium E∗;
(iv) If R10>1 and R20>1, there are the disease-free equilibrium E0, the boundary equilibrium E1 and the epidemic equilibrium E∗.
Remark 3.1. Define the basic reproduction number R0 of the system (2.5) by the spectral radius of the next generation matrix [20], we have
R0=ρ(β1d1+γ1+mN∗10−mβ2N∗2(d2+γ2)(d1+γ1+m)β2(d2+γ2)N∗2), |
where ρ(A) denotes the spectral radius of a matrix A. So from the above analysis, we know that R0=max{R10,R20}.
The next, we shall discuss the local stability of the disease-free equilibrium firstly. Then we discuss the global asymptotical stability.
Theorem 3.3. For the system (2.5), we have
(i) If R10<1 and R20<1, the disease-free equilibrium E0 is locally asymptotically stable;
(ii) If R10>1 or R20>1, the disease-free equilibrium E0 is unstable.
Proof. The linearized system of (2.5) at the equilibrium E0 is
{dI1(t)dt=(β1N∗1−d1−m−γ1)I1,dI2(t)dt=(β2N∗2−d2−γ2)I2+mI1. | (3.4) |
The associated characteristic equation of the linearized system of (3.4) at the equilibrium E0 is
F(λ)=|λ−(β1N∗1−(d1+m+γ1))0−mλ−(β2N∗2−d2−γ2)|=0 | (3.5) |
It is easy to see that the two eigenvalues of characteristic Eq (3.5) are
λ1=β1N∗1−(d1+m+γ1)=(R10−1)(d1+m+γ1) |
and
λ2=β2N∗2−d2−γ2=(R20−1)(d2+γ2). |
So, when R10<1 and R20<1, the disease-free equilibrium E0 is locally asymptotically stable; However, if R10>1 or R20>1, the disease-free equilibrium E0 is unstable.
Remark 3.2. From Theorem 3.3, we know that for the system (2.5), if R0<1 the disease-free equilibrium E0 is locally asymptotically stable; if R0>1, the disease-free equilibrium E0 is unstable.
Theorem 3.4. For the system (2.5), if R10<1 and R20<1, the disease-free equilibrium E0 is globally asymptotically stable.
Proof. Since Ii1+αiIi≤Ii for i=1,2, from system (2.5), we can obtain that
{dI1(t)dt≤(β1N∗1−d1−m−γ1)I1,dI2(t)dt≤(β2N∗2−d2−γ2)I2+mI1. | (3.6) |
Define an auxiliary linear system using the right hand side of (3.6) as follows
{dI1(t)dt=(β1N∗1−d1−m−γ1)I1,dI2(t)dt=(β2N∗2−d2−γ2)I2+mI1. |
It can be rewritten as
(I1I2)′=(β1N∗1−d1−m−γ10mβ2N∗2−d2−γ2)(I1I2). | (3.7) |
if R10<1 and R20<1, we can solve (3.7) and know that limt→∞I1(t)=0 and limt→∞I2(t)=0. By the comparison principle [21], we can conclude that when R10<1 and R20<1, all non-negative solutions of (2.5) satisfy limt→∞Ii(t)=0 for i=1,2. So the disease-free equilibrium E0 is globally asymptotically stable.
In this subsection, we will discuss the local stability of the boundary equilibrium firstly. Then discuss the global asymptotical stability.
Theorem 3.5. For the system (2.5), if R10<1 and R20>1, the boundary equilibrium E1 is globally asymptotically stable.
Proof. The Jacobian matrix at the boundary equilibrium E1 of system (2.5) is
J=(β1N∗1−d1−m−γ10m(d2+γ2)(1−R20)−(β2α2+α22)((d2+γ2)(R20−1)(d2+γ2)α2+β2)2(1+α2(d2+γ2)(R20−1)(d2+γ2)α2+β2)2). |
The two eigenvalues of the Jacobian matrix are
λ1=β1N∗1−(d1+m+γ1)=(R01−1)(d1+m+γ1) |
and
λ2=(d2+γ2)(1−R02)−(β2α2+α22)((d2+γ2)(R2−1)(d2+γ2)α2+β2)2(1+α2(d2+γ2)(R2−1)(d2+γ2)α2+β2)2. |
So, when R10<1 and R20>1, λ1<0 and λ2<0. That is the boundary equilibrium E1 is locally asymptotically stable.
For every (I1(0),I2(0))∈Ω, assume the solution of the system (2.5) with initial value (I1(0),I2(0)) is (I1(t),I2(t)). Since
dI1(t)dt=(β1+(d1+γ1)α1+mα1)(β1N∗1−d1−m−γ1β1+(d1+γ1)α1+mα1−I1)I11+α1I1, |
if R10<1, dI1(t)dt<0, then I1(t) is positive and decreasing and limt→∞I1(t)=0. So for sufficiently small positive number ϵ1, there exists a T, such that I1(T)=ϵ1 and I1(t)<ϵ1 when t>T.
The following, we prove that for any ϵ>0, there exists a T∗>T such that |I2(T∗)−β2N∗2−d2−γ2β2+(d2+γ2)α2|<ϵ. And because E1=(0,β2N∗2−d2−γ2β2+(d2+γ2)α2) is locally asymptotically stable, we have E1 is globally asymptotically stable.
Since
dI2(t)dt=(β2+(d2+γ2)α2)(β2N∗2−d2−γ2β2+(d2+γ2)α2−I2)I21+α2I2+mI1, |
if I2(T)<β2N∗2−d2−γ2β2+(d2+γ2)α2, then dI2(t)dt>0 for t>T. So I2(t) is increasing and there exists T∗1 such that |I2(T∗1)−β2N∗2−d2−γ2β2+(d2+γ2)α2|<ϵ;
if I2(T)>β2N∗2−d2−γ2β2+(d2+γ2)α2, there are two cases:
ⅰ) I2(t) is decreasing for t>T. In this case, there exists T∗2>T, such that |I2(T∗2)−β2N∗2−d2−γ2β2+(d2+γ2)α2|<ϵ;
ⅱ) There exists T1>T, such that dI2(T1)dt>0. That is
(β2+(d2+γ2)α2)(β2N∗2−d2−γ2β2+(d2+γ2)α2−I2(T1))I2(T1)1+α2I2(T1)+mI1(T1)>0. |
Since I1(t)<ϵ1 for t>T, we have
(β2+(d2+γ2)α2)(β2N∗2−d2−γ2β2+(d2+γ2)α2−I2(T1))I2(T1)1+α2I2(T1)+mϵ1>0. |
Since I2(T)>β2N∗2−d2−γ2β2+(d2+γ2)α2, we have
(β2+(d2+γ2)α2)(β2N∗2−d2−γ2β2+(d2+γ2)α2−I2(T1))α2+β2+(d2+γ2)α2β2N∗2−d2−γ2+mϵ1>0. |
So
I2(T1)−β2N∗2−d2−γ2β2+(d2+γ2)α2<α2+β2+(d2+γ2)α2β2N∗2−d2−γ2(d2+γ2)α2+β2mϵ1. |
If only ϵ1<(d2+γ2)α2+β2(α2+β2+(d2+γ2)α2β2N∗2−d2−γ2)mϵ, then |I2(T∗2)−β2N∗2−d2−γ2β2+(d2+γ2)α2|<ϵ. It is completed.
In this subsection, we will discuss the local stability of the epidemic equilibrium firstly and then discuss the global asymptotical stability.
Theorem 3.6. For the system (2.5), if R10>1, the epidemic equilibrium E∗ is locally asymptotically stable.
Proof. The Jacobian matrix at the epidemic equilibrium E∗ of system (2.5) is
J=(−β1I1∗1+α1I∗1+β1(N∗1−I∗1)(1+α1I∗1)2−d1−m−γ10mβ2N∗2−2β2I∗2−2β2α2I∗22−(d2+γ2)(1+α2I∗2)2(1+α2I∗2)2)=((d1+m+γ1)1−R10−(β1α1d1+m+γ1+α21)I∗21(1+α1I∗1)20mβ2N∗2−2β2I∗2−2β2α2I∗22−(d2+γ2)(1+α2I∗2)2(1+α2I∗2)2). |
The two eigenvalues of the Jacobian matrix are
λ1=(d1+m+γ1)1−R10−(β1α1d1+m+γ1+α21)I∗21(1+α1I∗1)2 |
and
λ2=β2N∗2−2β2I∗2−2β2α2I∗22−(d2+γ2)(1+α2I∗2)2(1+α2I∗2)2. |
It is easy to see that if R10>1, λ1<0. The next, we need only prove the second eigenvalue λ2<0 if R10>1. Since (1+α2I∗2)2>0, we need only prove β2N∗2−2β2I∗2−2β2α2I∗22−(d2+γ2)(1+α2I∗2)2<0. Let
G(I∗2)=β2N∗2−2β2I∗2−2β2α2I∗22−(d2+γ2)(1+α2I∗2)2. |
Since I∗2≥(β2N∗2−d2−γ2+mα1I∗1)(d2+γ2)α2+β2, so
G(I∗2)=β2N∗2−2β2I∗2−2β2α2I∗22−(d2+γ2)(1+α2I∗2)2≤β2N∗2−(β2+(d2+γ2)α2)(β2N∗2−d2−γ2+mα1I∗1)(d2+γ2)α2+β2−d2−γ2=−mα1I∗1<0. |
This completes the proof.
Theorem 3.7. For the systeml (2.5), if R10>1, the epidemic equilibrium E∗ is globally asymptotically stable.
Proof. Since E∗ is stable when R10>1, we need only prove E∗ is globally attractive.
Consider the equation
dI1(t)dt=I1(β1(N∗1−I1)1+α1I1−d1−m−γ1). |
Let
f1(I1)=β1(N∗1−I1)1+α1I1−d1−m−γ1. |
Then f′1(I1)=β1−1−N∗1α1(1+α1I1)2<0. So f1(I1) is a monotonic decreasing function for all I1>0. Furthermore, f1(0)>0, f1(N∗1)<0 and f1(I∗1)=0 when R10>1. That means if I1∈(0,I∗1), f1(I1)>0 and dI1(t)dt>0; if I1∈(I∗1,N∗1), f1(I1)<0 and dI1(t)dt<0. Hence limt→∞I1(t)=I∗1. By Eq (3.3), limt→∞I2(t)=I∗2. Thus E∗ is globally asymptotically stable.
The results about the existence and stability of equilibria are summarized in Table 1.
Conditions | E0 | E1 | E∗ |
R10<1 and R20<1 | Yes (GAS) | No | No |
R10<1 and R20>1 | Yes (Unstable) | Yes (GAS) | No |
R10>1 and R20<1 | Yes (Unstable) | No | Yes (GAS) |
R10>1 and R20>1 | Yes (Unstable) | Yes (Unstable) | Yes (GAS) |
Remark 3.3. From Theorems 3.5 and 3.7, we know that for the system (2.5), if R0>1, the infectious disease is uniformly persistent. However, the infectious disease is not always uniformly persistent in every patch. If R0>1, but R10<1, the disease is uniformly persistent in the sink patch, but is extinct in the source patch. If R10>1, the disease is always uniformly persistent in every patch. This is a different conclusion resulted by the reducible migration matrix.
Remark 3.4. From Theorem 3.5, in the case that R10<1 and R20>1, the infection does not persist in the source patch but is able to persist in the sink patch. So, in the early stage of the spread of infectious disease, the sink patch should assess the reproduction number R20 reasonably and take control measures timely to prevent the epidemic.
In this section, we carry on numerical simulations to verify the theoretical conclusions, reveal the influence of the migration rate form patch 1 to patch 2 on the basic reproduction number, the transmission scale and transmission speed, and discuss the influence of the parameters α1 and α2 that measure the inhibitory effect on the basic reproduction number, the transmission scale and transmission speed.
To numerically illustrate the theoretical results, we need to choose some parameter values (see Table 2).
Parameter | Description | Value |
A1 | the recruitment rate of the population in patch 1 | 0.018 (Figures 1 and 2) |
0.03 (Figure 3) | ||
A2 | the recruitment rate of the population in patch 2 | 0.0005 (Figure 1) |
0.004 (Figures 2 and 3) | ||
β1 | the transmission rate in patch 1 | 0.00001 |
β2 | the transmission rate in patch 2 | 0.00005 |
α1 | the parameter that measure the inhibitory effect in patch 1 | 0.02 |
α2 | the parameter that measure the inhibitory effect in patch 1 | 0.02 |
d1 | the death rate in patch 1 | 0.0003 |
d2 | the death rate in patch 2 | 0.0003 |
γ1 | the death rate in patch 1 | 0.0001 |
γ2 | the death rate in patch 2 | 0.0001 |
m | the migration rate form the patch 1 to the patch 2 | 0.00005 |
We verify the theoretical conclusions firstly. Denote the density of the infective individuals in patch 1 by i1(t)=I1(t)N∗1. Denote the density of the infective individuals in patch 2 by i2(t)=I2(t)N∗2. Figure 1 shows the evolution of the density of infective individuals in the two patches when R10=0.8889 and R20=0.7500. As predicted by the analytic calculation, the infectious disease in the two patches will disappear eventually. Figure 2 shows the evolution of the density of infective individuals in the two patches when R10=0.8889 and R20=1.8750. We can see the infectious disease will be endemic in patch 2 and the infectious disease in patch 1 will disappear eventually. Figure 3 shows the evolution of the density of infective individuals in the two patches when R10=1.4815 and R20=2.2917. We can see the infectious disease will be endemic in the two patches. And we can see the infectious disease will be endemic in the two patches if R10>1 from the subfigures (c) and (d) of Figure 4.
Second, we reveal the influence of the migration rate m on the transmission in Figure 5. With the increasing of m, the density of infective individuals in patch 1 i1 is decreasing, however the density of infective individuals in patch 2 i2 is increasing.
Third, we reveal the parameters α1 and α2 on the transmission scale and transmission speed. We can see that when α1 is increasing, the density of infective individuals in patch 1 i1 is decreasing from Figure 6 and When α2 is increasing, the density of infective individuals in patch 2 i1 is decreasing from Figure 7.
Many scholars have studied infectious disease transmission with population migration [1,2,3,4,5,6,7], assuming that the migration matrix is irreducible, and found that the propagation dynamics of infectious diseases is determined by the basic reproduction number of the system. When the basic reproduction number is less than 1, the infectious disease eventually becomes extinct; when the basic reproduction number is larger than 1, the infectious disease is epidemic eventually. Since the migration matrix is irreducible, all patches are a connected whole. In all patches, infectious diseases are either extinct or epidemic. That is there is not the phenomenon that infectious diseases are extinct in some patches but epidemic in the others.
Because the studies about the spread of infectious diseases with reducible migration matrix are rare, in this paper, we proposed a two-patch SIS model with saturating contact rate and one-directing population dispersal, discussed the global asymptotic stability of the disease-free equilibrium, the boundary equilibrium and the endemic equilibrium respectively, and revealed the influence of saturating contact rate and migration rate on basic reproduction number and the transmission scale. We have the following main conclusions:
1) If R10>1 then the system tends to a global endemic equilibrium in which infected individuals are present in both patches provided initially there were infected individuals in the source patch; If R10<1 and R20>1 then the system converges to an equilibrium with infected individuals only in the sink patch; If R10<1 and R20<1 then the system converges to the disease-free equilibrium.
2) When migration rate is increasing, the density of infective individuals in the source patch is decreasing; but the density of infective individuals in the sink patch is increasing;
3) With the increasing of the parameter αi (i=1,2) in saturating contact rate, the density of infective individuals in patch i (i=1,2) is decreasing.
The similar conclusions can be obtained for the two patch SI model
{dS1(t)dt=A1−d1S1−β1S1I11+α1I1−mS1,dS2(t)dt=A2−d2S2−β2S2I21+α2I2+mS1,dI1(t)dt=β1S1I11+α1I1−d1I1−mI1,dI2(t)dt=β2S2I21+α2I2−d2I2+mI1. |
We can generalize the current model in many aspects to increase realism. For instance, the infection rate can be given by β(I)SI. We can give the properties on function β(I) such that β(I) is decreasing and tends to 0 when I tends to infinity. The mortality rates of the susceptible and infected individuals are the same in the current model. In fact, the disease-induced death rate can not be neglected sometimes. So the disease-induced death rate can be considered. It is also significant to consider heterogeneous number of contacts for each individual on complex network. There are many paper on this topic [22,23]. One can investigate the multi-patch epidemic model with reducible migration matrix.
This work is supported by the National Natural Sciences Foundation of China (Nos.12001501, 12071445, 11571324, 61603351), Shanxi Province Science Foundation for Youths (201901D211216), the Fund for Shanxi '1331KIRT'.
All authors declare no conflicts of interest in this paper.
[1] | I. Cox, M. Miller, J. Bloom, J. Fridrich, T. Kalker, Digital Watermarking and Steganography, Morgan Kaufmann, 2007. https://doi.org/10.1016/B978-0-12-372585-1.X5001-3 |
[2] |
W. Luo, F. Huang, J. Huang, Edge adaptive image steganography based on LSB matching revisited, IEEE Trans. Inf. Forensics Secur., 5 (2010), 201-214. https://doi.org/10.1109/TIFS.2010.2041812 doi: 10.1109/TIFS.2010.2041812
![]() |
[3] | E. Kawaguchi, R. O. Eason, Principles and applications of BPCS steganography, in Proceedings of the Photonics East (ISAM, VVDC, IEMB), International Society for Optics and Photonics, 3528 (1999), 464-473. https://doi.org/10.1117/12.337436 |
[4] | V. K. Sharma, V. Shrivastava, A steganography algorithm for hiding image in image by improved LSB substitution by minimize detection, J. Theor. Appl. Inf. Technol., 36 (2012), 1-8. Available from: http://www.jatit.org/volumes/Vol36No1/1Vol36No1.pdf. |
[5] | B. C. Nguyen, S. M. Yoon, H. K. Lee, Multi bit plane image steganography, in Digital Watermarking, Springer, (2006), 61-70. https://doi.org/10.1007/11922841_6 |
[6] |
M. Omoomi, S. Samavi, S. Dumitrescu, An efficient high payload ±1 data embedding scheme, Multimedia Tools Appl., 54 (2011), 201-218. https://doi.org/10.1007/s11042-010-0517-z doi: 10.1007/s11042-010-0517-z
![]() |
[7] | D. Upham, Jpeg-jsteg-v4, 2008. Available from: http://www.funet.fi/pub/crypt/steganography/jpeg-jsteg-v4.diff.gz. |
[8] |
F. A. Petitcolas, R. J. Anderson, M. G. Kuhn, Information hiding-a survey, Proc. IEEE, 87 (1999), 1062-1078. https://doi.org/10.1109/5.771065 doi: 10.1109/5.771065
![]() |
[9] | N. Provos, Defending against statistical steganalysis, in Proceedings of the Usenix Security Symposium, 10 (2001), 323-336. https://dl.acm.org/doi/10.5555/1251327.1251351 |
[10] | P. Sallee, Model-based steganography, in Digital Watermarking, Springer, (2004), 154-167. https://doi.org/10.1007/978-3-540-24624-4_12 |
[11] | T. Pevný, T. Filler, P. Bas, Using high-dimensional image models to perform highly undetectable steganography, in International Workshop on Information Hiding, 6387 (2010), 161-177. https://doi.org/10.1007/978-3-642-16435-4_13 |
[12] |
J. Fridrich, M. Goljan, D. Soukal, Perturbed quantization steganography, Multimedia Syst., 11 (2005), 98-107. https://doi.org/10.1007/s00530-005-0194-3 doi: 10.1007/s00530-005-0194-3
![]() |
[13] | X. Song, F. Liu, C. Yang, X. Luo, Y. Zhang, Steganalysis of adaptive JPEG steganography using 2D gabor filters, in Proceedings of the 3rd ACM Workshop on Information Hiding and Multimedia Security, (2015), 15-23. https://doi.org/10.1145/2756601.2756608 |
[14] | A. Westfeld, A. Pfitzmann, Attacks on steganographic systems, in International Workshop on Information Hiding, Springer, Berlin, Heidelberg, (2000), 61-76. https://doi.org/10.1007/10719724_5 |
[15] | J. Fridrich, M. Goljan, D. Rui, Reliable detection of LSB steganography in color and grayscale images, in Proceedings of the 2001 Workshop on Multimedia and Security: New Challenges, 2002. https://doi.org/10.1145/1232454.1232466 |
[16] |
S. Dumitrescu, X. Wu, W. Zhe, Detection of LSB steganography via sample pair analysis, IEEE Trans. Signal Process., 51 (2002), 1995-2007. https://doi.org/10.1109/TSP.2003.812753 doi: 10.1109/TSP.2003.812753
![]() |
[17] | J. Fridrich, M. Goljan, On estimation of secret message length in LSB steganography in spatial domain, in Security, Steganography, and Watermarking of Multimedia Contents VI, San Jose, California, USA, 2004. https://doi.org/10.1117/12.521350 |
[18] | J. Fridrich, M. Long, Steganalysis of LSB encoding in color images, in Proceedings of IEEE International Conference on Multimedia and Expo, (2000), 1279-1282. https://doi.org/10.1109/ICME.2000.871000 |
[19] |
W. You, H. Zhang, X. Zhao, A siamese CNN for image steganalysis, IEEE Trans. Inf. Forensics Secur., 16 (2020), 291-306. https://doi.org/10.1109/TIFS.2020.3013204 doi: 10.1109/TIFS.2020.3013204
![]() |
[20] |
K. Wei, W. Luo, S. Tan, J. Huang, Universal deep network for steganalysis of color image based on channel representation, IEEE Trans. Inf. Forensics Secur., 17 (2022), 3022-3036. https://doi.org/10.1109/TIFS.2022.3196265 doi: 10.1109/TIFS.2022.3196265
![]() |
[21] | G. Su, H. Lu, H. Fang, B. Yang, A steganalysis algorithm based on statistic characteristics of the color images, in Proceedings of International Conference on Computer Science and Network Technology, (2011), 2294-2297. https://doi.org/10.1109/ICCSNT.2011.6182432 |
[22] |
H. Abdulrahman, M. Chaumont, P. Montesinos, B. Magnier, Color images steganalysis using RGB channel geometric transformation measures, Secur. Commun. Netw., 9 (2016), 2945-2956. https://doi.org/10.1002/sec.1427 doi: 10.1002/sec.1427
![]() |
[23] | M. Goljan, J. Fridrich, R. Cogranne, Rich model for steganalysis of color images, in Proceedings of IEEE International Workshop on Information Forensics and Security, (2014), 185-190. https://doi.org/10.1109/WIFS.2014.7084325 |
[24] | M. Goljan, J. Fridrich, CFA-aware features for steganalysis of color images, in Proceedings of SPIE 9409, Media Watermarking, Security, and Forensics, (2015), 1-13. https://doi.org/10.1117/12.2078399 |
[25] |
X. Liao, G. Chen, J. Yin, Content-adaptive steganalysis for color images, Secur. Commun. Netw., 9 (2016), 5756-5763. https://doi.org/10.1002/sec.1734 doi: 10.1002/sec.1734
![]() |
[26] | S. Lyu, H. Farid, Steganalysis using color wavelet statistics and one-class support vector machines, in Proceedings of SPIE 5306, Security, Steganography, and Watermarking of Multimedia Contents VI, (2004), 35-45. https://doi.org/10.1117/12.526012 |
[27] | Q. Liu, A. H. Sung, J. Xu, B. M. Ribeiro, Image complexity and feature extraction for steganalysis of LSB matching steganography, in Proceedings of the 18th International Conference on Pattern Recognition, (2006), 267-270. https://doi.org/10.1109/ICPR.2006.684 |
[28] |
F. Y. Li, X. P. Zhang, J. Yu, Steganalysis for color JPEG images based on ensemble proportion training, J. Electron. Inf. Technol., 36 (2014), 114-120. https://doi.org/10.3724/SP.J.1146.2013.00443 doi: 10.3724/SP.J.1146.2013.00443
![]() |
[29] | H. Abdulrahman, M. Chaumont, P. Montesinos, B. Magnier, Color image steganalysis based on steerable gaussian filters bank, in Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security, (2016), 109-114. https://doi.org/10.1145/2909827.2930799 |
[30] | Y. Kang, F. Liu, C. Yang, L. Xiang, X. Luo, P. Wang, Color image steganalysis based on channel gradient correlation, Int. J. Distrib. Sens. Netw., 15 (2019). https://doi.org/10.1177/1550147719852031 |
[31] |
C. Qin, Y. Chen, K. Chen, X. Dong, W. Zhang, Y. He, et al., Feature fusion based adversarial example detection against second-round adversarial attacks, IEEE Trans. Artif. Intell., 2022 (2022), 1-12. https://doi.org/10.1109/TAI.2022.3190816 doi: 10.1109/TAI.2022.3190816
![]() |
[32] |
J. Zeng, S. Tan, G. Liu, B. Li, J. Huang, WISERNet: wider separate-then-reunion network for steganalysis of color images, IEEE Trans. Inf. Forensics Secur., 14 (2019), 2735-2748. https://doi.org/10.1109/TIFS.2019.2904413 doi: 10.1109/TIFS.2019.2904413
![]() |
[33] |
T. Wu, W. Ren, D. Li, L. Wang, J. Jia, JPEG steganalysis based on denoising network and attention module, Int. J. Intell. Syst., 37 (2021), 5011-5030. https://doi.org/10.1002/int.22749 doi: 10.1002/int.22749
![]() |
[34] | J. Kodovsky, J. Fridrich, Steganalysis of JPEG images using rich models, in Proceedings of SPIE - Media Watermarking, Security, and Forensics, 2012. https://doi.org/10.1117/12.907495 |
[35] | W. Feng, B. Hu, Quaternion discrete cosine transform and its application in color template matching, in Congress on Image and Signal Processing, Sanya, (2008), 252-256. https://doi.org/10.1109/CISP.2008.61 |
[36] | V. Holub, J. Fridrich, Designing steganographic distortion using directional filters, in 2012 IEEE International Workshop on Information Forensics and Security (WIFS), (2012), 234-239. https://doi.org/10.1109/WIFS.2012.6412655 |
Conditions | E0 | E1 | E∗ |
R10<1 and R20<1 | Yes (GAS) | No | No |
R10<1 and R20>1 | Yes (Unstable) | Yes (GAS) | No |
R10>1 and R20<1 | Yes (Unstable) | No | Yes (GAS) |
R10>1 and R20>1 | Yes (Unstable) | Yes (Unstable) | Yes (GAS) |
Parameter | Description | Value |
A1 | the recruitment rate of the population in patch 1 | 0.018 (Figures 1 and 2) |
0.03 (Figure 3) | ||
A2 | the recruitment rate of the population in patch 2 | 0.0005 (Figure 1) |
0.004 (Figures 2 and 3) | ||
β1 | the transmission rate in patch 1 | 0.00001 |
β2 | the transmission rate in patch 2 | 0.00005 |
α1 | the parameter that measure the inhibitory effect in patch 1 | 0.02 |
α2 | the parameter that measure the inhibitory effect in patch 1 | 0.02 |
d1 | the death rate in patch 1 | 0.0003 |
d2 | the death rate in patch 2 | 0.0003 |
γ1 | the death rate in patch 1 | 0.0001 |
γ2 | the death rate in patch 2 | 0.0001 |
m | the migration rate form the patch 1 to the patch 2 | 0.00005 |
Conditions | E0 | E1 | E∗ |
R10<1 and R20<1 | Yes (GAS) | No | No |
R10<1 and R20>1 | Yes (Unstable) | Yes (GAS) | No |
R10>1 and R20<1 | Yes (Unstable) | No | Yes (GAS) |
R10>1 and R20>1 | Yes (Unstable) | Yes (Unstable) | Yes (GAS) |
Parameter | Description | Value |
A1 | the recruitment rate of the population in patch 1 | 0.018 (Figures 1 and 2) |
0.03 (Figure 3) | ||
A2 | the recruitment rate of the population in patch 2 | 0.0005 (Figure 1) |
0.004 (Figures 2 and 3) | ||
β1 | the transmission rate in patch 1 | 0.00001 |
β2 | the transmission rate in patch 2 | 0.00005 |
α1 | the parameter that measure the inhibitory effect in patch 1 | 0.02 |
α2 | the parameter that measure the inhibitory effect in patch 1 | 0.02 |
d1 | the death rate in patch 1 | 0.0003 |
d2 | the death rate in patch 2 | 0.0003 |
γ1 | the death rate in patch 1 | 0.0001 |
γ2 | the death rate in patch 2 | 0.0001 |
m | the migration rate form the patch 1 to the patch 2 | 0.00005 |