Processing math: 100%
Research article Topical Sections

Exploration of cassava clones for the development of biocomposite films

  • Received: 23 July 2021 Revised: 11 November 2021 Accepted: 26 November 2021 Published: 30 December 2021
  • Due to the growing interest in developing bioplastic films from renewable sources, the performance of biocomposite films produced of native starch from cassava clones reinforced with cassava bagasse was explored. The biocomposites were prepared from the starch of cassava clones MMEXV5, MMEXV40, and MMEXCH23, reinforced with bagasse at 1%, 5%, and 15%. Their structural, mechanical, and thermal properties were subsequently assessed. When analyzing the starch, differences in the intensities of the Raman spectra exhibit a possible variation in the amylose-amylopectin ratio. In the biocomposites, the bagasse was efficiently incorporated into polymeric matrixes and their thermogravimetric analysis revealed the compatibility of the matrix-reinforcement. The starch films from the MMEXV40 clone showed better tension (2.53 MPa) and elastic modulus (60.49 MPa). The assessed mechanical properties were also affected by bagasse concentration. Because of the above, the MMEXV40 cassava clone showed potential to develop polymeric materials, given its tuberous roots high yield, starch extraction, and good performance in its mechanical properties. At the same time, the starch source (clone) and the bagasse concentration interfere with the final properties of the biocomposites.

    Citation: José Luis Del Rosario-Arellano, Gloria Ivette Bolio-López, Alex Valadez-González, Luis Zamora-Peredo, Noé Aguilar-Rivera, Isaac Meneses-Márquez, Pablo Andrés-Meza, Otto Raúl Leyva-Ovalle. Exploration of cassava clones for the development of biocomposite films[J]. AIMS Materials Science, 2022, 9(1): 85-104. doi: 10.3934/matersci.2022006

    Related Papers:

    [1] Jiankang Wang, Zhefeng Xu, Minmin Jia . Distribution of values of Hardy sums over Chebyshev polynomials. AIMS Mathematics, 2024, 9(2): 3788-3797. doi: 10.3934/math.2024186
    [2] Zhenjiang Pan, Zhengang Wu . The inverses of tails of the generalized Riemann zeta function within the range of integers. AIMS Mathematics, 2023, 8(12): 28558-28568. doi: 10.3934/math.20231461
    [3] Taekyun Kim, Dae San Kim, Dmitry V. Dolgy, Jongkyum Kwon . Sums of finite products of Chebyshev polynomials of two different types. AIMS Mathematics, 2021, 6(11): 12528-12542. doi: 10.3934/math.2021722
    [4] Utkal Keshari Dutta, Prasanta Kumar Ray . On the finite reciprocal sums of Fibonacci and Lucas polynomials. AIMS Mathematics, 2019, 4(6): 1569-1581. doi: 10.3934/math.2019.6.1569
    [5] S. Akansha, Aditya Subramaniam . Exploring Chebyshev polynomial approximations: Error estimates for functions of bounded variation. AIMS Mathematics, 2025, 10(4): 8688-8706. doi: 10.3934/math.2025398
    [6] Jin Li . Barycentric rational collocation method for semi-infinite domain problems. AIMS Mathematics, 2023, 8(4): 8756-8771. doi: 10.3934/math.2023439
    [7] Muhammad Uzair Awan, Nousheen Akhtar, Artion Kashuri, Muhammad Aslam Noor, Yu-Ming Chu . 2D approximately reciprocal ρ-convex functions and associated integral inequalities. AIMS Mathematics, 2020, 5(5): 4662-4680. doi: 10.3934/math.2020299
    [8] Tingting Du, Zhengang Wu . Some identities involving the bi-periodic Fibonacci and Lucas polynomials. AIMS Mathematics, 2023, 8(3): 5838-5846. doi: 10.3934/math.2023294
    [9] Xiao Jiang, Shaofang Hong . On the denseness of certain reciprocal power sums. AIMS Mathematics, 2019, 4(3): 412-419. doi: 10.3934/math.2019.3.412
    [10] Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori, Ahmed Gamal Atta . A collocation procedure for the numerical treatment of FitzHugh–Nagumo equation using a kind of Chebyshev polynomials. AIMS Mathematics, 2025, 10(1): 1201-1223. doi: 10.3934/math.2025057
  • Due to the growing interest in developing bioplastic films from renewable sources, the performance of biocomposite films produced of native starch from cassava clones reinforced with cassava bagasse was explored. The biocomposites were prepared from the starch of cassava clones MMEXV5, MMEXV40, and MMEXCH23, reinforced with bagasse at 1%, 5%, and 15%. Their structural, mechanical, and thermal properties were subsequently assessed. When analyzing the starch, differences in the intensities of the Raman spectra exhibit a possible variation in the amylose-amylopectin ratio. In the biocomposites, the bagasse was efficiently incorporated into polymeric matrixes and their thermogravimetric analysis revealed the compatibility of the matrix-reinforcement. The starch films from the MMEXV40 clone showed better tension (2.53 MPa) and elastic modulus (60.49 MPa). The assessed mechanical properties were also affected by bagasse concentration. Because of the above, the MMEXV40 cassava clone showed potential to develop polymeric materials, given its tuberous roots high yield, starch extraction, and good performance in its mechanical properties. At the same time, the starch source (clone) and the bagasse concentration interfere with the final properties of the biocomposites.



    The properties of orthogonal polynomials and recursive sequences are popular in number theory. They are important in theoretical research and application. The famous Chebyshev polynomials and Fibonacci polynomials are widely used in the field of function, approximation theory and difference equation. They also promote the development of both the branch of mathematics such as cryptography, combinatorics and application of discipline such as intelligent sensing, satellite positioning. Furthermore, they are close to the Fibonacci numbers and Lucas numbers. Therefore, a large number of scholars have investigated them and get many properties and identities.

    In the aspect of sums of reciprocals, Millin [1] originally studied the infinite sums of reciprocal Fibonacci series where the subscript is 2n. Based on the initial achievement, Good [2] further studied this issue and proved

    n=01F2n=752.

    Afterwards, Ohtsuka and Nakamura [3] deduced the infinite sum of reciprocal Fibonacci series

    (k=n1Fk)1={FnFn1,if n is even and n2 ,FnFn11,if n is odd and n1;

    and the infinite sum of reciprocal square Fibonacci series

    (k=n1F2k)1={FnFn11,if n is even and n2 ,FnFn1,if n is odd and n1;

    Similar properties were investigated in several different ways, see reference [4,5]. Falcón and Plaza [6,7,8] used Fibonacci polynomials to study Fibonacci numbers and get a lot of identities. For example,

    n1k=1Fk(x)Fnk(x)=(n1)xFn(x)+2nFn1(x)x2+4,
    nk=1Fk(x)=Fn+1(x)+Fn(x)1x

    where n and k are positive integers. This fact allows them to invest some integer sequences in a new and direct way. With these fundamental achievements, Wu and Zhang[9] proceeded generation and deduced the the infinite sum of reciprocal Fibonacci polynomials

    (k=n1Fk(x))1={Fn(x)Fn1(x),if n is even and n2 ,Fn(x)Fn1(x)1,if n is odd and n1;

    and the the infinite sum of reciprocal square Fibonacci polynomials

    (k=n1F2k(x))1={xFn(x)Fn1(x)1,if n is even and n2 ,xFn(x)Fn1(x),if n is odd and n1;

    where x is any positive integer. besides, Panda et al.[10] did some research about bounds for reciprocal sums in terms of balancing and Lucas-balancing sequences. Also, Dutta and Ray[11] found some identities about finite reciprocal sums of Fibonacci and Lucas polynomials.

    As we know, the first and the second kind of Chebyshev polynomials are usually defined as follows: Tn+2(x)=2xTn+1(x)Tn(x), n0, with the initial values T0(x)=1, T1(x)=x; Un+2(x)=2xUn+1(x)Un(x), n0, with the initial values U0(x)=1, U1(x)=2x; Then from the second-order linear recurrence sequences we have

    Tn(x)=12[(x+x21)n+(xx21)n],Un(x)=12x21[(x+x21)n+1(xx21)n+1].

    Based on these sequences, many scholars used these polynomials to study the Fibonacci sequences and the Lucas sequences and have investigated them and got many properties of Fn and Ln. For example, Zhang[12] used the Chebyshev polynomials and has obtain the general formulas involving Fn and Ln

    a1+a2++ak+1=nFm(a1+1)Fm(a2+1)Fm(ak+1+1)=(i)mnFk+1m2kk!U(k)n+k(imLm2).
    a1+a2++ak+1=n+k+1Lm(a1+1)Lm(a2+1)Lm(ak+1+1)
    =(i)m(n+k+1)2k!k+1h=0(im+2Lm2)h(k+1)!h!(k+1h)!U(k)n+2k+1h(imLm2),

    where k, m are any positive integers, a1, a2, ak+1 are nonnegative integers and i is the square root of 1. Wu and Yang[13] also studied Chebyshev polynomials and got a lot of properties. Besides, Dilcher and Stolarsky[14] established several related results involving resultants and discriminants about Chebyshev polynomials. Furthermore, bounds about the discriminant of the Chebyshev polynomials were given by Filipovski[15].

    A variety of sums about Chebyshev polynomials are hot issues in the number theory all the time. For example, Cesarano [16] gained several conclusions about the generating function of Chebyshev polynomials

    n=0ξnTn+l(x)=(1ξx)Tl(x)ξ(1x2)Ul112ξx+ξ2

    and the identical equation

    n=0ξnUn1+l(x)=ξTl(x)(1ξx)Ul112ξx+ξ2

    In this, ξ is a real number and 1<ξ<1. Furthermore, Knopfmacher et al.[17] did some research and got the result as follows:

    1Um(x)=1m+1mj=1(1)j+1sin2θjxcosθj

    and the identical equation

    1+Um1(x)Um(x)=1m+1mj=1[1+(1)j+1]sin2θjxcosθj,

    where θj=jπm+1, m is a positive integer.

    In this paper, we combine Ohtsuka and Falcón's ideas. Then we consider the subseries of infinite sums derived from the reciprocals of the Chebyshev polynomials and prove the following:

    Theorem 1. For any positive integer n, m and x, we have the following formula

    (k=n1Tmk(x))1=Tmn(x)Tmnm(x)

    Theorem 2. For any positive integer n, and x, we have the following formula

    (k=n1Uk(x))1=Un(x)Un1(x)1.

    Theorem 3. For any positive integer n, and x, we have the following formula

    (k=n1U2k(x))1=U2n(x)U2n1(x)1.

    With Falcón's enlightening, we can apply similar method into deduction of partial sums of Chebyshev polynomials. For convenient expression, we firstly set

    Gn(x)=Un1(x)Un(x)+Un1(x)Un+1(x)
    Mn(x)=Un2(x)Un(x)+Un1(x)Un(x)

    and obtain:

    Theorem 4. For any positive integer n,

    2n+1k=0k2Uk(x)=12(2n+1)U2n+1(x)Gn(x)+1+(n+1)U2n+2(x)+Mn(x).

    Theorem 5. For any positive integer n,

    2nk=0k2Tk(x)=12(2n+1)2U2n1(x)U2n(x)+2(n+1)2U2n+2(x)U2n+1(x).

    Theorem 6. For any positive integer n,

    2nk=0k3Tk(x)=4(n+1)3U2n+2(x)+12(2n+1)3U2n+1(x)Gn(x)(3n+32)U2n1(x)3nU2n(x)+3Mn(x)1.

    In order to prove the results of the infinite sums of reciprocal Chebyshev polynomials, several lemmas are needed.

    Let α=x+x21 and β=xx21, then we have the following lemmas.

    Lemma 1. For any positive integer n, we have

    U2n(x)=1+Un1(x)Un+1(x),
    U2n(x)=4x2+Un2(x)Un+2(x).

    Proof. From the definition of Chebyshev polynomials, we have

    U2n(x)Un1(x)Un+1(x)=(αn+1βn+1)2(αnβn)(αn+2βn+2)(αβ)2=α2n+2+β2n+2+α2+β22α2n+2β2n+2(αβ)2=1.U2n(x)Un2(x)Un+2(x)=(αn+1βn+1)2(αn1βn1)(αn+3βn+3)(αβ)2=α2n+2+β2n+2+α4+β42α2n+2β2n+2(αβ)2=(α+β)2=4x2.

    Lemma 2. For any positive integer n, we have

    T2n(x)=Tn1(x)Tn+1(x)+1x2,
    T2n(x)=Tn2(x)Tn+2(x)+4x2(1x2).

    Proof. From the definition of Chebyshev polynomials, we have

    T2n(x)Tn1(x)Tn+1(x)=14[(αn+βn)2(αn1+βn1)(αn+1+βn+1)]=14[α2+β22]=14(αβ)2=1x2.T2n(x)Tn2(x)Tn+2(x)=14[(αn+βn)2(αn2+βn2)(αn+2+βn+2)]=14[α2n+β2nα4β4+2α2nβ2n]=14(α+β)2(αβ)2=4x2(1x2).

    Lemma 3. For any positive integer n and m, we have

    Tn(Tm(x))=Tnm(x),
    Un(Tm(x))=Um(n+1)1(x)Um1(x).

    Proof. See Reference [12].

    Lemma 4. For any positive integer n and x, we have

    1Tn(x)+1Tn+1(x)<1Tn(x)Tn1(x)1Tn+2(x)Tn+1(x),1Tn(x)+1Tn+1(x)>1Tn(x)Tn1(x)+11Tn+2(x)Tn+1(x)+1.

    Proof. The first inequality equivalent to

    Tn(x)+Tn+1(x)Tn(x)Tn+1(x)<Tn+2(x)Tn+1(x)Tn(x)+Tn1(x)(Tn(x)Tn1(x))(Tn+2(x)Tn+1(x)), (2.1)

    or

    [Tn(x)+Tn+1(x)](Tn(x)Tn1(x)+1)(Tn+2(x)Tn+1(x)+1)<Tn(x)Tn+1(x)[Tn+2(x)Tn+1(x)Tn(x)+Tn1(x)],

    Then we have

    T2n(x)Tn+2(x)+T2n+1(x)Tn1(x)<Tn1(x)Tn+2(x)Tn(x)+Tn1(x)Tn+2(x)Tn+1(x),

    applying Lemma 2, inequality (2.1) is equivalent to

    (1x2)[Tn1(x)+Tn+2(x)]<0. (2.2)

    For any positive x and n1, 1x2<0 and Tn1(x)+Tn+2(x)>0. Thus it is very easy to check inequality (2.2) is true. Similarly, we can consider the second inequality of Lemma 4. The second inequality is equivalent to

    Tn(x)+Tn+1(x)Tn(x)Tn+1(x)>Tn+2(x)Tn+1(x)Tn(x)+Tn1(x)(Tn(x)Tn1(x)+1)(Tn+2(x)Tn+1(x)+1), (2.3)

    or

    T2n(x)Tn+2(x)Tn1(x)Tn(x)Tn+2(x)Tn1(x)Tn+1(x)Tn+2(x)+Tn(x)Tn+2(x)+Tn+1(x)Tn+2(x)+T2n+1(x)Tn1(x)T2n+1(x)+T2n(x)Tn(x)Tn1(x)Tn+1(x)Tn1(x)+Tn(x)+Tn+1(x)>0,

    applying Lemma 2, inequality (2.3) is equivalent to

    (Tn+1(x)(x21))Tn+2(x)(Tn(x)+(x21))Tn1(x)+Tn(x)+Tn+1(x)>0. (2.4)

    For any positive x and n1,

    (Tn+1(x)(x21))Tn+2(x)(Tn(x)+(x21))Tn1(x)>0

    Thus it is very easy to check inequality (2.4) is true.

    Lemma 5. For any positive integer n and x,

    1Un(x)+1Un+1(x)>1Un(x)Un1(x)1Un+2(x)Un+1(x),1Un(x)+1Un+1(x)<1Un(x)Un1(x)11Un+2(x)Un+1(x)1.

    Prove. The first inequality is equivalent to

    Un+1(x)+Un(x)Un+1(x)Un(x)>Un+2(x)Un+1(x)Un(x)+Un1(x)(Un(x)Un1(x))(Un+2(x)Un+1(x)), (2.5)

    or

    [Un+1(x)+Un(x)](Un(x)Un1(x))(Un+2(x)Un+1(x))>Un+1(x)Un(x)[Un+2(x)Un+1(x)Un(x)+Un1(x)],

    Then we have

    U2n(x)Un+2(x)+U2n+1(x)Un1(x)>Un(x)Un+2(x)Un1(x)+Un1(x)Un+1(x)Un+2(x),

    applying Lemma 1, inequality (2.5) is equivalent to

    Un+2(x)+Un1(x)>0. (2.6)

    For any positive x and n1, it is very easy to check inequality (2.6) is true. Similarly, we can consider the second inequality of Lemma 5.

    Un+1(x)+Un(x)Un+1(x)Un(x)<Un+2(x)Un+1(x)Un(x)+Un1(x)(Un(x)Un1(x)1)(Un+2(x)Un+1(x)1), (2.7)

    or

    U2n(x)Un+2(x)Un1(x)Un(x)Un+2(x)Un1(x)Un+1(x)Un+2(x)Un(x)Un+2(x)Un+1(x)Un+2(x)+U2n+1(x)Un1(x)+U2n+1(x)U2n(x)+Un(x)Un1(x)+Un+1(x)Un1(x)+Un(x)+Un+1(x)<0,

    applying Lemma 1, inequality (2.7) equivalent to

    Un+2(x)+Un1(x)+Un(x)Un1(x)+Un(x)+Un+1(x)<Un+1(x)Un+2(x). (2.8)

    For any positive x and n1, it is very easy to check inequality (2.8) is true.

    Lemma 6. For any positive integers n and x, we have

    1U2n(x)+1U2n+1(x)>1U2n(x)U2n1(x)1U2n+2(x)U2n+1(x),1U2n(x)+1U2n+1(x)<1U2n(x)U2n1(x)11U2n+2(x)U2n+1(x)1.

    Proof. The first inequality is equivalent to

    U2n(x)+U2n+1(x)U2n(x)U2n+1(x)>U2n+2(x)U2n+1(x)U2n(x)+U2n1(x)(U2n+2(x)U2n+1(x))(U2n(x)U2n1(x)), (2.9)

    or

    [U2n(x)+U2n+1(x)](U2n+2(x)U2n+1(x))(U2n(x)U2n1(x))>U2n(x)U2n+1(x)[U2n+2(x)U2n+1(x)U2n(x)+U2n1(x)],

    Then we have

    U4n(x)U2n+2(x)U2n(x)U2n+2(x)U2n1(x)U2n+1(x)U2n+2(x)U2n1(x)+U4n+1(x)U2n1(x)>0,

    applying Lemma 1, inequality (2.9) is equivalent to

    U2n+2(x)+2Un1(x)Un+1(x)U2n+2(x)+U2n1(x)+2Un(x)Un+2(x)U2n1(x)>0. (2.10)

    For any positive x and n1, it is very easy to check inequality (2.10) is true. Similarly, we can consider the second inequality of Lemma 6. The second inequality is equivalent to

    U2n(x)+U2n+1(x)U2n(x)U2n+1(x)<U2n+2(x)U2n+1(x)U2n(x)+U2n1(x)(U2n+2(x)U2n+1(x)1)(U2n(x)U2n1(x)1), (2.11)

    or

    U4n(x)U2n+2(x)U4n(x)U2n(x)U2n+2(x)U2n1(x)U2n+1(x)U2n+2(x)U2n1(x)+U4n+1(x)U2n1(x)+U2n(x)U2n1(x)+U2n+1(x)U2n1(x)U2n(x)U2n+2(x)U2n+1(x)U2n+2(x)+U4n+1(x)+U2n(x)+U2n+1(x)<0,

    applying Lemma 1, inequality (2.11) is equivalent to

    U2n(x)U2n1(x)+U2n(x)+U2n+1(x)+U2n+2(x)+2Un1(x)Un+1(x)U2n+2(x)+U2n1(x)
    2Un(x)Un+2(x)U2n1(x)+2Un(x)Un+2(x)<U2n+1(x)U2n+2(x)+2Un1(x)Un+1(x). (2.12)

    For any positive x and n1, it is very easy to check inequality (2.12) is true.

    Aiming to prove the results of the partial sums of Chebyshev polynomials, the lemmas below are necessary.

    Lemma 7. For any positive integer n2

    Tn(x)=12Un(x)12Un2(x)nk=1Tk(x)=12Un(x)+12Un1(x)12

    Prove. The general term formula of Chebyshev polynomials is as follows

    Tn(x)=12[(x+x21)n+(xx21)n]Un(x)=12x21[(x+x21)n+1(xx21)n+1]

    For convenient proving, we set α=x+x21, β=xx21, and easily verify α+β=2x, αβ=1. Thus, according to the definition we get

    12Un(x)12Un2(x)=12(αn+1βn+1αβαn1βn1αβ)=12(αβ)[αn1(α21)βn1(β21)]=12(αβ)[αn1(α2αβ)βn1(β2αβ)]=12(αβ)[αn(αβ)+βn(αβ)]=12(αn+βn).

    This proves the first equation. And next we prove the second equation

    nk=1Tk(x)=12nk=2Uk(x)12nk=2Uk2(x)+T1(x)=12nk=2Uk(x)12n2k=0Uk(x)+T1(x)=12Un(x)+12Un1(x)T1(x)12+T1(x)=12Un(x)+12Un1(x)12.

    This proves Lemma 7.

    Lemma 8. For any positive integer n

    2nk=1Uk(x)=Un1(x)Un(x)+Un1(x)Un+1(x), (2.13)
    2n1k=1Uk(x)=Un2(x)Un(x)+Un1(x)Un(x). (2.14)

    Prove. In accordance of the general term formula of Chebyshev polynomials, it is not hard to get

    U2n+1(x)=Un(x)Un+1(x)Un(x)Un1(x),U2n+2(x)=U2n+1(x)Un+1(x)Un1(x)1,U2n+1(x)=Un+2(x)Un(x)+1.

    Easily test that when n=1, identical Eq (2.13) is right. Supposing that n=m, Eq (2.13) is right. Then when n=m+1,

    2m+2k=1Uk(x)=Um1(x)Um+1(x)+Um1(x)Um(x)+U2m+1(x)+U2m+2(x)=Um+1(x)Um(x)+U2m+11=Um(x)Um+2(x)+Um+1(x)Um(x).

    Applying mathematical induction, it is not hard to prove identical Eq (2.14). This proves Lemma 8.

    Lemma 9. For any positive integers n,

    2nk=0kTk(x)=12(2n+1)U2n1(x)+(n+1)U2n(x)Gn(x)2nk=0kUk(x)=12Un+1(x)+12Un(x)Gn(x)

    Prove. According to Lemma 7, we have

    n+1k=0Tk(x)=Un+1(x)+Un(x)+12.

    Through derivation on the left and right sides, we get

    nk=0(k+1)Uk(x)=Un+1(x)+Un(x)2.

    Applying Lemma 7 and Lemma 8, we obtain

    2nk=1kUk(x)=12U2n+1(x)+12U2n(x)2nk=1Uk(x)=12U2n+1(x)+12U2n(x)Gn(x)2nk=1kTk(x)=x+122nk=2kUk(x)122nk=2kUk2(x)=x+122nk=2kUk(x)122n2k=0(k+2)Uk(x)=(n+12)U2n1(x)+(n+1)U2n(x)2nk=1Uk(x)=(n+12)U2n1(x)+(n+1)U2n(x)Gn(x).

    This proves Lemma 9.

    In this section, we will prove our theorems. For the infinite sums of reciprocal Chebyshev polynomials, firstly we prove Theorem 1. For any positive integer n and x, using Lemma 4, we have

    k=n1Tk(x)=k=s(1T2k1(x)+1T2k(x))<k=s(1T2k1(x)T2k2(x)1T2k+1(x)T2k(x))=1Tn(x)Tn1(x)

    In the similar way, we have

    k=n1Tk(x)=k=s(1T2k1(x)+1T2k(x))>k=s(1T2k1(x)T2k2(x)+11T2k+1(x)T2k(x)+1)=1Tn(x)Tn1(x)+1.

    And then we have

    (k=n1Tk(x))1=Tn(x)Tn1(x)

    and then let x=Tm(x), according to Lemma 3, we can get

    (k=n1Tmk(x))1=Tmn(x)Tmnm(x)

    This proved Theorem 1.

    Next, Theorem 2 will be proved. For any positive integer n and x, using Lemma 5, we have

    k=n1Uk(x)=k=s(1U2k1(x)+1U2k(x))<k=s(1U2k1(x)U2k2(x)11U2k+1(x)U2k(x)1)=1Un(x)Un1(x)1.

    In the similar way, we have

    k=n1Uk(x)=k=s(1U2k1(x)+1U2k(x))>k=s(1U2k1(x)U2k2(x)1U2k+1(x)U2k(x))=1Un(x)Un1(x).

    And then we have

    Un(x)Un1(x)1<(k=n1Uk(x))1<Un(x)Un1(x).

    that is

    (k=n1Uk(x))1=Un(x)Un1(x)1.

    This proved Theorem 2.

    Then we shall prove Theorem 3. Using Lemma 6, we can get

    k=n1U2k(x)=k=s(1U22k1(x)+1U22k(x))<k=s(1U22k1(x)U22k2(x)11U22k+1(x)U22k(x)1)=1U2n(x)U2n1(x)1.

    In the similar way, we have

    k=n1U2k(x)=k=s(1U22k1(x)+1U22k(x))>k=s(1U22k1(x)U22k2(x)1U22k+1(x)U22k(x))=1U2n(x)U2n1(x)

    and then we can get

    (k=n1U2k(x))1=U2n(x)U2n1(x)1.

    This proved Theorem 3.

    For the partial sums of Chebyshev polynomials, firstly we shall prove Theorem 4. According to Lemma 9, we have

    2n+2k=0kTk(x)=12(2n+3)U2n+1(x)+(n+2)U2n+2(x)Gn+1(x)

    Through simultaneous derivation on the left and right sides, we deduce

    2n+1k=1k2Uk1(x)=12(2n+3)U2n+1(x)+(n+2)U2n+2(x)Gn(x).

    According to Lemma 8 and Lemma 9 we get

    2n+1k=0k2Uk(x)=2n+2k=1k2Uk1(x)22n+1k=1kUk(x)2n+1k=0Uk(x)=2n+2k=1k2Uk1(x)22n+1k=1(k+1)Uk(x)+2n+1k=0Uk(x)=(n+12)U2n+1(x)+(n+1)U2n+2(x)Gn(x)+Mn(x)+1.

    Applying Lemma 7 and Lemma 8, we get

    2nk=0k2Tk(x)=x+122nk=2k2Uk(x)122nk=2k2Uk2(x)=x+122nk=2k2Uk(x)122n2k=0(k+2)2Uk(x).

    Simplify the above, we have

    2nk=0k2Tk(x)=12(2n+1)2U2n1(x)+2(n+1)2U2n+2(x)U2n+1(x)U2n(x)

    This proved Theorem 4 and Theorem 5.

    Theorem 6 shall be proved below. According to Lemma 7 and Lemma 8, we have

    2nk=0k3Tk(x)=x+122nk=2k3Uk(x)122nk=2k3Uk2(x)=x+122nk=2k3Uk(x)122n2k=0(k+2)3Uk(x)=2n2k=2(3k2+6k+4)Uk(x)+12(2n+1)3Un(x)+4(n+1)3U2n+2(x)26x4=4(n+1)3U2n+2(x)+12(2n+1)3U2n+1(x)Gn(x)(3n+32)U2n1(x)3nU2n(x)+3Mn(x)1.

    This proved Theorem 6.

    In this paper, the infinite sums of reciprocals and the partial sums derived from Chebyshev polynomials are studied. For the infinite sums of reciprocals, we apply the floor function to the reciprocals of these sums to obtain Theorem 1, Theorem 2 and Theorem 3 involving the Chebyshev polynomials. Simultaneously, we get Theorem 4, Theorem 5 and Theorem 6 about the partial sums of Chebyshev polynomials by the relation of two types of Chebyshev polynomials. Our results can enrich the related research domain with respect to orthogonal polynomials and recursive sequences. Besides, the results are hoped to be applied into other branches of mathematics or other disciplines out of mathematics.

    The authors would like to thank Xi'an Shiyou University for the support of this research.

    The authors declare there is no conflicts of interest in this paper.



    [1] Ciardelli F, Bertoldo M, Bronco S, et al. (2019) Environmental impact, In: Ciardelli F, Bertoldo M, Bronco S, et al., Polymers from Fossil and Renewable Resources, 1 Ed., Cham: Springer, 161-187. https://doi.org/10.1007/978-3-319-94434-0
    [2] Aigbodion VS, Okonkwo EG, Akinlabi ET (2019) Eco-friendly polymer composite: State-of-arts, opportunities and challenge, In: Inamuddin TS, Kumar MR, Asiri A, Sustainable Polymer Composites and Nanocomposites, 1 Ed., Cham: Springer, 1233-1265. https://doi.org/10.1007/978-3-030-05399-4_42
    [3] Shankar S, Singh S, Mishra A, et al. (2019) Microbial degradation of polyethylene: Recent progress and challenges, In: Arora P, Microbial Metabolism of Xenobiotic Compounds. Microorganisms for Sustainability, 1 Ed., Singapore: Springer, 245-262. https://doi.org/10.1007/978-981-13-7462-3_12
    [4] Singh N, Duan H, Tang Y (2020) Toxicity evaluation of e-waste plastics and potential repercussions for human health. Environ Int 137: 105559. https://doi.org/10.1016/j.envint.2020.105559 doi: 10.1016/j.envint.2020.105559
    [5] Saturno J, Liboiron M, Ammendolia J, et al. (2020) Occurrence of plastics ingested by Atlantic cod (Gadus morhua) destined for human consumption (Fogo Island, Newfoundland and Labrador). Mar Pollut Bull 153: 110993. https://doi.org/10.1016/j.marpolbul.2020.110993 doi: 10.1016/j.marpolbul.2020.110993
    [6] Geyer R, Jambeck RJ, Lavender LK (2017) Production, use, and fate of all plastics ever made. Sci Adv 3: 25-29. https://doi.org/10.1126/sciadv.1700782 doi: 10.1126/sciadv.1700782
    [7] New Market Data 2019: Bioplastics Industry Continues Dynamic Grow Over the Next Five Years. European Bioplastics, 2019. Available from: https://www.european-bioplastics.org/new-market-data-2019-bioplastics-industry-continues-dynamic-grow-over-the-next-five-years/.
    [8] Babayemi JO, Nnorom IC, Osibanjo O, et al. (2019) Ensuring sustainability in plastics use in Africa: consumption, waste generation, and projections. Environ Sci Eur 31: 20. https://doi.org/10.1186/s12302-019-0254-5 doi: 10.1186/s12302-019-0254-5
    [9] Andrade JC, Acosta DL, Bucheli MA, et al. (2014) Development of an edible coating compound for the conservation of tree tomato (Cyphomandra betacea S.). Inf Tecnol 25: 57-66 (In Spanish). http://dx.doi.org/10.4067/S0718-07642014000600008 doi: 10.4067/S0718-07642014000600008
    [10] Edhirej A, Sapuan SM, Jawaid M, et al. (2015) Cassava: Its polymer, fiber, composite, and application. Polym Composite 38: 555-570. https://doi.org/10.1002/pc.23614 doi: 10.1002/pc.23614
    [11] IfBB, Biopolymers—Facts and Statistics: Production Capacities, Processing Routes, Feedstock, Land and Water Use. Institute for Bioplastics and Biocomposites, 2019. Available from: https://www.ifbb-hannover.de/en/facts-and-statistics.html.
    [12] Crops and Livestock Products. FAOSTAT, 2020. Available from: https://www.fao.org/faostat/en/#data/QCL.
    [13] World Population Prospects. United Nations, Department of Economic and Social Affairs, Population Division, 2019. Available from: https://population.un.org/wpp/.
    [14] Sharma HK, Kaushal P (2016) Introduction to tropical roots and tubers, In: Sharma HK, Njintang NY, Singhal RS, et al., Tropical Roots and Tubers: Production, Processing and Technology, 1 Ed., Hoboken: John Wiley & Sons, 1-33. https://doi.org/10.1002/9781118992739.ch1
    [15] Shigaki T (2016) Cassava: Nature and uses. In: Caballero B, Finglas P, Toldra F, Encyclopedia of Food and Health, 1 Ed., Oxford: Elsevier, 687-693. https://doi.org/10.1016/B978-0-12-384947-2.00124-0
    [16] Cock JH (2019) Cassava: New Potential for a Neglected Crop, Boca Raton: CRC Press. https://doi.org/10.1201/9780429049064
    [17] Mtunguja MK, Laswai HS, Muzanila YC, et al. (2014) Farmer's knowledge on selection and conservation of cassava (Manihot esculenta) genetic resources in Tanzania. J Biol Agric Healthc 4: 120-129.
    [18] Parmar A, Sturm B, Hensel O (2017) Crops that feed the world: Production and improvement of cassava for food, feed, and industrial uses. Food Secur 9: 907-927. https://doi.org/10.1007/s12571-017-0717-8 doi: 10.1007/s12571-017-0717-8
    [19] Alarcon F, Dufour D (1998) Sour Starch from Cassava in Colombia. Production and Recommendations, Cali: CIAT, 9-24 (In Spanish). Available from: https://www.clayuca.org/sitio/images/publicaciones/almidon_agrio_tomo_1.pdf.
    [20] Chisenga SM, Workneh TS, Bultosa G, et al. (2019) Progress in research and applications of cassava flour and starch: a review. J Food Sci Tech 56: 2799-28131. https://doi.org/10.1007/s13197-019-03814-6 doi: 10.1007/s13197-019-03814-6
    [21] Arifin B, Sugita P, Masyudi DE (2016) Chitosan and lauric acid addition to corn starch-film based effect: Physical properties and antimicrobial activity study. Int J Chem Sci 14: 529-544.
    [22] Dharmalingam K, Anandalakshmi R (2019) Polysaccharide-based films for food packaging ppplications, In: Katiyar V, Gupta R, Ghosh T, Advances in Sustainable Polymers. Materials Horizons: From Nature to Nanomaterials, 1 Ed., Singapore: Springer, 183-207. https://doi.org/10.1007/978-981-32-9804-0_9
    [23] Teodoro AP, Mali S, Romero N, et al. (2015) Cassava starch films containing acetylated starch nanoparticles as reinforcement: Physical and mechanical characterization. Carbohyd Polym 126: 9-16. https://doi.org/10.1016/j.carbpol.2015.03.021 doi: 10.1016/j.carbpol.2015.03.021
    [24] Krishnamurthy A, Amritkumar P (2019) Synthesis and characterization of eco-friendly bioplastic from low-cost plant resources. SN Appl Sci 1: 1432. https://doi.org/10.1007/s42452-019-1460-x doi: 10.1007/s42452-019-1460-x
    [25] Sagnelli D, Hebelstrup KH, Leroy E, et al. (2016) Plant-crafted starches for bioplastics production. Carbohyd Polym 152: 398-408. https://doi.org/10.1016/j.carbpol.2016.07.039 doi: 10.1016/j.carbpol.2016.07.039
    [26] Luchese CL, Spada JC, Tessaro IC (2017) Starch content affects physicochemical properties of corn and cassava starch-based films. Ind Crop Prod 109: 619-626. https://doi.org/10.1016/j.indcrop.2017.09.020 doi: 10.1016/j.indcrop.2017.09.020
    [27] Berthet AM, Angellier-Coussy H, Guillard V, et al. (2016) Vegetal fiber-based biocomposites: Which stakes for food packaging applications? J Appl Polym Sci 133: 1-18. https://doi.org/10.1002/app.42528 doi: 10.1002/app.42528
    [28] Noorjahan SE, Sekar S, Sastry TP (2008) Preparation and characterization of cellulose triacetate from Musa paradisiaca and cellulose triacetate-polyvinyl chloride blends. Curr Sci 95: 958-962.
    [29] Jonoobi M, Oladi R, Davoudpour Y, et al. (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 2: 935-969. https://doi.org/10.1007/s10570-015-0551-0 doi: 10.1007/s10570-015-0551-0
    [30] Li S, Cui Y, Zhou Y, et al. (2017) The industrial applications of cassava: Current status, opportunities and prospects. J Sci Food Agric 97: 2282-2290. https://doi.org/10.1002/jsfa.8287 doi: 10.1002/jsfa.8287
    [31] Trakulvichean S, Chaiprasert P, Otmakhova J, et al. (2017) Integrated economic and environmental assessment of biogas and bioethanol production from cassava cellulosic waste. Waste Biomass Valorization 10: 691-700. https://doi.org/10.1007/s12649-017-0076-x doi: 10.1007/s12649-017-0076-x
    [32] Anyanwu CN, Ibeto CN, Ezeoha SL, et al. (2015) Sustainability of cassava (Manihot esculenta Crantz) as industrial feedstock, energy and food crop in Nigeria. Renew Energ 81: 745-752. https://doi.org/10.1016/j.renene.2015.03.075 doi: 10.1016/j.renene.2015.03.075
    [33] Versino F (2017) Biodegradable composite materials with agronomic uses from tuberous roots [PhD's thesis]. National University of the Plata, Argentina (In Spanish). Available from: http://sedici.unlp.edu.ar/handle/10915/66038.
    [34] Versino F, García MA (2014) Cassava (Manihot esculenta) starch films reinforced with natural fibrous filler. Ind Crop Prod 58: 305-314. https://doi.org/10.1016/j.indcrop.2014.04.040 doi: 10.1016/j.indcrop.2014.04.040
    [35] Mateos-Maces L, Castillo-González F, Chávez SJL, et al. (2016) Managing and use of the agrobiodiversity in the milpa system from southeast of Mexico. Acta Agron 65: 413-421 (In Spanish). https://doi.org/10.15446/acag.v65n4.50984 doi: 10.15446/acag.v65n4.50984
    [36] Centurión-Hidalgo D, Espinosa-Moreno J, Cruz-Lázaro E, et al. (2019) Seasonality of vegetables commercialized in Tabasco's public markets. Rev Aliment Contemp Desarro Reg 29: 16 (In Spanish). https://doi.org/10.24836/es.v29i53.629 doi: 10.24836/es.v29i53.629
    [37] Meneses MI, Vázquez HA, Rosas GX, et al. (2014) Dry matter and starch content in cassava clones (Manihot esculenta Crantz). Rev Biol Agropecu Tuxpan 26: 271-274 (In Spanish). https://doi.org/10.47808/revistabioagro.v2i1.268 doi: 10.47808/revistabioagro.v2i1.268
    [38] Meneses MI, Vázquez HA, Rosas GX, et al. (2014) Collection and ex situ conservation of cassava germplasm in the state of Veracruz. XXVI Forest and Agricultural Scientific-Technological Meeting Tabasco 2014 and III International Symposium on Tropical Food Production, México: Tabasco 426-431 (In Spanish). Available from: https://www.researchgate.net/profile/Jorge-Herrera-19/publication/310828417_XXVI_Reunion_Cientifica_Tecnologica_Forestal_y_Agropecuaria_Tabasco_2014_La_Innovacion_tecnologica_para_la_seguridad_alimentaria_ISBN_978-607-606-212-8/links/583890aa08ae3d91723ddda5/XXVI-Reunion-Cientifica-Tecnologica-Forestal-y-Agropecuaria-Tabasco-2014-La-Innovacion-tecnologica-para-la-seguridad-alimentaria-ISBN-978-607-606-212-8.pdf.
    [39] García-Sánchez AS, González-Valdivia NA, Arcocha-Gómez E, et al. (2018) Accessions and varieties of cassava (Manihot esculenta Crantz.) in the Yucatan peninsula, Mexico. Rev Cent Grad Investig 33: 30-33 (In Spanish). Available from: http://www.revistadelcentrodegraduados.com/2019/05/accesiones-y-variedades-de-yuca-manihot.html.
    [40] Support for the Selective Collection of Plant Genetic Resources for Food and Agriculture. Cassava. SNICS (National Seed Inspection and Certification Service), 2020 (In Spanish). Available from: https://www.gob.mx/snics/acciones-y-programas/linea-5-apoyo-a-la-recoleccion-selectiva-de-recursos-fitogeneticos-para-la-alimentacion-y-la-agricultura.
    [41] Flores-Cruz LA, García-Salazar JA (2016) Benefits of the adoption of improved corn seed in the central region of Puebla. Rev Fitotec Mex 39: 277-283 (In Spanish). https://doi.org/10.35196/rfm.2016.3.277-283 doi: 10.35196/rfm.2016.3.277-283
    [42] OCDE/FAO, OCDE-FAO Agricultural Outlook 2019-2028. Paris/Food and Agriculture Organization of the United Nations (FAO), 2019 (In Spanish). Available from: https://www.oecd-ilibrary.org/agriculture-and-food/ocde-fao-perspectivas-agricolas-2019-2028_7b2e8ba3-es.
    [43] López OV, Viña SZ, Pachas ANA, et al. (2010) Composition and food properties of Pachyrhizus ahipa roots and starch. Int J Food Sci Technol 45: 223-233 (In Spanish). https://doi.org/10.1111/j.1365-2621.2009.02125.x doi: 10.1111/j.1365-2621.2009.02125.x
    [44] Vargas ENA, Veleva L, Rodríguez CM, et al. (2017) Cassava (Manihot esculenta), alternative for the production of bioplastics, In: Martínez SR, González HRI, Environmental and Chemical Engineering Faced with Environmental Problems in the Mexican Southeast, 1 Ed., Chiapas: University of Sciences and Arts of Chiapas, 159-174 (In Spanish). Available from: https://catalogo.altexto.mx/la-ingenieria-ambiental-y-quimica-ante-los-problemas-ambientales-en-el-sureste-mexicano-ii-7nxlt.html.
    [45] Yang D, Ying Y (2011) Applications of Raman spectroscopy in agricultural products and food analysis: A review. Appl Spectrosc Rev 46: 539-560. https://doi.org/10.1080/05704928.2011.593216 doi: 10.1080/05704928.2011.593216
    [46] Velázquez JR, Zamora-Peredo L (2018) Does a mango ripen from the bone to the skin? Mat Cienc Nanotecnol 1: 38-47 (In Spanish). Available from: https://www.researchgate.net/profile/Luis-Zamora-Peredo/publication/325732721_un_mango_se_madura_desde_el_hueso_hacia_la_cascara/links/5b20683c0f7e9b0e373ef19c/un-mango-se-madura-desde-el-hueso-hacia-la-cascara.pdf.
    [47] Zamora-Peredo L, Rodríguez-Jimenez R, García GL, et al. (2018) Study of the pericarp of habanero chili (Capsicum chínense Jacq.) by Raman spectroscopy. Chil J Agric Anim Sci 34: 68-74 (In Spanish). https://doi.org/10.4067/S0719-38902018005000103 doi: 10.4067/S0719-38902018005000103
    [48] Del Rosario-Arellano JL, Meneses-Márquez I, Leyva-Ovalle OR, et al. (2020) Morphoagronomic and industrial performance of cassava (Manihot esculenta Crantz) germplasm for the production of starch and solid byproducts. AIMS Agr Food 5: 617-634. https://doi.org/10.3934/agrfood.2020.4.617 doi: 10.3934/agrfood.2020.4.617
    [49] Edhirej A, Sapuan SM, Jawaid M, et al. (2017) Preparation and characterization of cassava bagasse reinforced thermoplastic cassava starch. Fibers Polym 18: 162-171. https://doi.org/10.1007/s12221-017-6251-7 doi: 10.1007/s12221-017-6251-7
    [50] Versino F, García MA (2018) Cassava starch-based reinforced eco-compatible materials with agronomic applications. Matéria 23: 11. https://doi.org/10.1590/s1517-707620180002.0545 doi: 10.1590/s1517-707620180002.0545
    [51] Castillo L, López O, López C, et al. (2013) Thermoplastic starch films reinforced with talc nanoparticles. Carbohyd Polym 95: 664-674. https://doi.org/10.1016/j.carbpol.2013.03.026 doi: 10.1016/j.carbpol.2013.03.026
    [52] IBM Corp. Released. IBM SPSS Statistics for Windows, Version 25.0. IBM Corp, 2017. Available from: https://www.ibm.com/docs/en/spss-statistics/25.0.0.
    [53] Oyeyinka SA, Adeloye AA, Olaomo OO, et al. (2020) Effect of fermentation time on physicochemical properties of starch extracted from cassava root. Food Biosci 33: 100485. https://doi.org/10.1016/j.fbio.2019.100485 doi: 10.1016/j.fbio.2019.100485
    [54] Tetchi FA, Rolland-Sabaté A, Guessan AGN, et al. (2007) Molecular and physicochemical characterisation of starches from yam, cocoyam, cassava, sweet potato and ginger produced in the Ivory Coast. J Sci Food Agric 87: 2527-2533. https://doi.org/10.1002/jsfa.2928 doi: 10.1002/jsfa.2928
    [55] Lebot V (2019). Tropical Root and Tuber Crops: Cassava, Sweet Potato, Yams and Aroids, Wallingford: CABI. https://doi.org/10.1079/9781789243369.0000
    [56] Hernández-Medina M, Torruco-Uco JG, Chel-Guerrero L, et al. (2008) Physicochemical characterization of starches from tubers grown in Yucatan, Mexico. Ciênc Tecnol Aliment 28: 718-726 (In Spanish). https://doi.org/10.1590/S0101-20612008000300031 doi: 10.1590/S0101-20612008000300031
    [57] Gu B, Yao Q, Li K, et al. (2013) Change in physicochemical traits of cassava roots and starches associated with genotypes and environmental factors. Starch-Starke 65: 253-263. https://doi.org/10.1002/star.201200028 doi: 10.1002/star.201200028
    [58] de Oliveira PHGA, Barbosa ACO, Diniz RP, et al. (2018) Morphological variation of starch granules in S1 cassava progenies. Euphytica 214: 14. https://doi.org/10.1007/s10681-018-2175-6 doi: 10.1007/s10681-018-2175-6
    [59] Gussem KD, Vandenabeele P, Verbeken A, et al. (2005) Raman spectroscopic study of Lactarius spores (Russulales, Fungi). Spectrochim Acta A 61: 2898-2908. https://doi.org/10.1016/j.saa.2004.10.038 doi: 10.1016/j.saa.2004.10.038
    [60] Bernardino-Nicanor A, Acosta-García G, Güemes-Vera N, et al. (2016) Fourier transform infrared and Raman spectroscopic study of the effect of the thermal treatment and extraction methods on the characteristics of ayocote bean starches. J Food Sci Tech 54: 933-943. https://doi.org/10.1007/s13197-016-2370-1 doi: 10.1007/s13197-016-2370-1
    [61] Almeida RM, Alves SR, Nascimbem LRLB, et al. (2010) Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis. Anal Bioanal Chem 397: 2693-2701. https://doi.org/10.1007/s00216-010-3566-2 doi: 10.1007/s00216-010-3566-2
    [62] Pezzotti G, Zhu W, Chikaguchi H, et al. (2021) Raman spectroscopic analysis of polysaccharides in popular Japanese rice cultivars. Food Chem 354: 129434. https://doi.org/10.1016/j.foodchem.2021.129434 doi: 10.1016/j.foodchem.2021.129434
    [63] Liu Y, Xu Y, Yan Y, et al. (2015) Application of Raman spectroscopy in structure analysis and crystallinity calculation of corn starch. Starch-Starke 67: 612-619. https://doi.org/10.1002/star.201400246 doi: 10.1002/star.201400246
    [64] Chen J, Chen L, Xie F, et al. (2019) Starch, In: Drug Delivery Applications of Starch Biopolymer Derivatives, 1 Ed., Singapore: Springer, 29-40. https://doi.org/10.1007/978-981-13-3657-7_3
    [65] Chisenga SM, Workneh TS, Bultosa G, et al. (2019) Proximate composition, cyanide contents, and particle size distribution of cassava flour from cassava varieties in Zambia. AIMS Agr Food 4: 869. https://doi.org/10.3934/agrfood.2019.4.869 doi: 10.3934/agrfood.2019.4.869
    [66] Patle S, Lal B (2008) Investigation of the potential of agro-industrial material as low cost substrate for ethanol production by using Candida tropicalis and Zymomonas mobilis. Biomass Bioenergy 32: 596-602. https://doi.org/10.1016/j.biombioe.2007.12.008 doi: 10.1016/j.biombioe.2007.12.008
    [67] Zhu F (2015) Composition, structure, physicochemical properties, and modifications of cassava starch. Carbohyd Polym 122: 456-480. https://doi.org/10.1016/j.carbpol.2014.10.063 doi: 10.1016/j.carbpol.2014.10.063
    [68] Ayetigbo O, Latif S, Abass A, et al. (2018) Comparing characteristics of root, flour and starch of biofortified yellow-flesh and white-flesh cassava variants, and sustainability considerations: A review. Sustainability 10: 3089. https://doi.org/10.3390/su10093089 doi: 10.3390/su10093089
    [69] de Azêvedo LC, Rovani S, Santos JJ, et al. (2020) Study of renewable silica powder influence in the preparation of bioplastics from corn and potato starch. J Polym Environ 29: 1-14. https://doi.org/10.1007/s10924-020-01911-8 doi: 10.1007/s10924-020-01911-8
    [70] Ploypetchara T, Gohtani S (2018) Effect of sugar on starch edible film properties: plasticized effect. J Food Sci Technol 55: 3757-3766. https://doi.org/10.1007/s13197-018-3307-7 doi: 10.1007/s13197-018-3307-7
    [71] de Carvalho GR, Marques GS, de Matos Jorge LM, et al. (2018) Cassava bagasse as a reinforcement agent in the polymeric blend of biodegradable film. J Appl Polym Sci 136: 1-7. https://doi.org/10.1002/app.47224 doi: 10.1002/app.47224
    [72] Versino F, López OV, García MA (2015) Sustainable use of cassava (Manihot esculenta) roots as raw material for biocomposites development. Ind Crop Prod 65: 79-89. https://doi.org/10.1016/j.indcrop.2014.11.054 doi: 10.1016/j.indcrop.2014.11.054
    [73] Fazeli M, Keley M, Biazar E (2018). Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers. Int J Biol Macromol 116: 272-280. https://doi.org/10.1016/j.ijbiomac.2018.04.186 doi: 10.1016/j.ijbiomac.2018.04.186
    [74] Perotti GF, Auras R, Constantino VRL (2013) Bionanocomposites of cassava starch and synthetic clay. J Carbohyd Chem 32: 483-501. https://doi.org/10.1080/07328303.2013.858726 doi: 10.1080/07328303.2013.858726
    [75] Yang J, Ching YC, Chuah CH (2019) Applications of lignocellulosic fibers and lignin in bioplastics: A review. Polymers 11: 751. https://doi.org/10.3390/polym11050751 doi: 10.3390/polym11050751
    [76] Rodríguez-Castellanos W, Flores-Ruiz FJ, Martínez-Bustos F, et al. (2015) Nanomechanical properties and thermal stability of recycled cellulose reinforced starch-gelatin polymer composite. J Appl Polym Sci 132: 7. https://doi.org/10.1002/app.41787 doi: 10.1002/app.41787
    [77] Rindlav-Westling A, Standing M, Hermansson AM, et al. (1998) Structure, mechanical and barrier properties of amylose and amylopectin films. Carbohyd Polym 36: 217-224. https://doi.org/10.1016/S0144-8617(98)00025-3 doi: 10.1016/S0144-8617(98)00025-3
    [78] López OV, García MA, Zaritzky NE (2008) Film forming capacity of chemically modified corn starches. Carbohyd Polym 73: 573-581. https://doi.org/10.1016/j.carbpol.2007.12.023 doi: 10.1016/j.carbpol.2007.12.023
    [79] Mukurumbira AR, Mellem JJ, Amonsou EO (2017) Effects of amadumbe starch nanocrystals on the physicochemical properties of starch biocomposite films. Carbohyd Polym 165: 142-148. https://doi.org/10.1016/j.carbpol.2017.02.041 doi: 10.1016/j.carbpol.2017.02.041
    [80] Lourdin D, Della VG, Colonna P (1995) Influence of amylose content on starch films and foams. Carbohyd Polym 27: 261-270. https://doi.org/10.1016/0144-8617(95)00071-2 doi: 10.1016/0144-8617(95)00071-2
    [81] Mali S, Karam LB, Ramos LP, et al. (2004) Relationships among the composition and physicochemical properties of starches with the characteristics of their films. J Agr Food Chem 52: 7720-7725. https://doi.org/10.1021/jf049225 doi: 10.1021/jf049225
    [82] Pereda M, Dufresne A, Aranguren MI, et al. (2014) Polyelectrolyte films based on chitosan/olive oil and reinforced with cellulose nanocrystals. Carbohyd Polym 101: 1018-1026. https://doi.org/10.1016/j.carbpol.2013.10.046 doi: 10.1016/j.carbpol.2013.10.046
    [83] Jimenez RM, Amaral-Fonseca M, Fernandez-Lafuente R, et al. (2019) Recovery of starch from cassava bagasse for cyclodextrin production by sequential treatment with α-amylase and cyclodextrin glycosyltransferase. Biocatal Agric Biotechnol 22: 101411. https://doi.org/10.1016/j.bcab.2019.101411 doi: 10.1016/j.bcab.2019.101411
    [84] Pason P, Tachaapaikoon C, Panichnumsin P, et al. (2020) One-step biohydrogen production from cassava pulp using novel enrichment of anaerobic thermophilic bacteria community. Biocatal Agric Biotechnol 27: 101658. https://doi.org/10.1016/j.bcab.2020.101658 doi: 10.1016/j.bcab.2020.101658
    [85] Cruz G, Rodrigues ALP, da Silva DF, et al. et al. (2020) Physical-chemical characterization and thermal behavior of cassava harvest waste for application in thermochemical processes. J Therm Anal Calorim 143: 3611-3622. https://doi.org/10.1007/s10973-020-09330-6 doi: 10.1007/s10973-020-09330-6
    [86] Luchese CL, Benelli P, Spada JC, et al. (2018) Impact of the starch source on the physicochemical properties and biodegradability of different starch-based films. J Appl Polym Sci 135: 1-11. https://doi.org/10.1002/app.46564 doi: 10.1002/app.46564
    [87] Fazeli M, Keley M, Biazar E (2018) Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers. Int J Biol Macromol 116: 272-280. https://doi.org/10.1016/j.ijbiomac.2018.04.186 doi: 10.1016/j.ijbiomac.2018.04.186
    [88] Teixeira EM, Pasquini D, Curvelo AAS, et al. (2009) Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohyd Polym 78: 422-431. https://doi.org/10.1016/j.carbpol.2009.04.034 doi: 10.1016/j.carbpol.2009.04.034
    [89] Savadekar NR, Mhaske S T (2012) Synthesis of nano cellulose fibers and effect on thermoplastics starch based films. Carbohyd Polym 89: 146-151. https://doi.org/10.1016/j.carbpol.2012.02.063 doi: 10.1016/j.carbpol.2012.02.063
    [90] de Campos A, de Sena NAR, Rodrigues VB, et al. (2017) Bionanocomposites produced from cassava starch and oil palm mesocarp cellulose nanowhiskers. Carbohyd Polym 175: 330-336. https://doi.org/10.1016/j.carbpol.2017.07.080 doi: 10.1016/j.carbpol.2017.07.080
    [91] Dufresne A (2018) Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites. Philos T Roy Soc A 376: 20170040. https://doi.org/10.1098/rsta.2017.0040 doi: 10.1098/rsta.2017.0040
    [92] Laaziz SA, Raji M, Hilali E, et al. (2017) Bio-composites based on polylactic acid and argan nut shell: Production and properties. Int J Biol Macromol 104: 30-42. https://doi.org/10.1016/j.ijbiomac.2017.05.184 doi: 10.1016/j.ijbiomac.2017.05.184
    [93] Thakur S, Chaudhary J, Sharma B, et al. (2018) Sustainability of bioplastics: Opportunities and challenges. Curr Opin Green Sustain Chem 13: 68-75. https://doi.org/10.1016/j.cogsc.2018.04.013 doi: 10.1016/j.cogsc.2018.04.013
    [94] Versino F, López OV, García MA (2019) Exploitation of by-products from cassava and ahipa starch extraction as filler of thermoplastic corn starch. Compos Part B-Eng 182: 8. https://doi.org/10.1016/j.compositesb.2019.107653 doi: 10.1016/j.compositesb.2019.107653
    [95] López GJ, Cuarán CJC, Arenas GLV, et al. (2014) Potential uses of banana peel: elaboration of a bioplastic. Rev Colomb Investig Agroind 1: 7-21 (In Spanish). https://doi.org/10.23850/24220582.109 doi: 10.23850/24220582.109
    [96] Sanyang ML, Sapuan SM, Jawaid M, et al. (2015) Effect of plasticizer type and concentration on tensile, thermal and barrier properties of biodegradable film based on sugar palm (Arenga pinnata) starch. Polymers 7: 1106-1124. https://doi.org/10.3390/polym7061106 doi: 10.3390/polym7061106
    [97] Zanatta ER, Reinehr TO, Awadallak JA, et al. (2016) Kinetic studies of thermal decomposition of sugarcane bagasse and cassava bagasse. J Therm Anal Calorim 125: 437-445 https://doi.org/10.1007/s10973-016-5378-x doi: 10.1007/s10973-016-5378-x
    [98] Budzianowski WM (2017) High-value low-volume bioproducts coupled to bioenergies with potential to enhance business development of sustainable biorefineries. Renew Sust Energ Rev 70: 793-804. https://doi.org/10.1016/j.rser.2016.11.260 doi: 10.1016/j.rser.2016.11.260
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3722) PDF downloads(153) Cited by(1)

Figures and Tables

Figures(8)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog