Loading [MathJax]/jax/output/SVG/jax.js
Research article

Listeria monocytogenes isolates from Western Cape, South Africa exhibit resistance to multiple antibiotics and contradicts certain global resistance patterns

  • Received: 26 October 2020 Accepted: 04 January 2021 Published: 19 January 2021
  • Food-borne disease outbreaks are common and offer valuable insights into the causes, impacts, and mechanisms underlying food pathogens. This also serves as a good foundation to validate the performance of current best practice control methods, for example antibiotics, that are used in the fight against food pathogens. Listeriosis outbreaks, caused by Listeria monocytogenes, is no exception. In 2018, South Africa experienced the largest global listeriosis outbreak recorded to date. However, despite the scale of this outbreak, information on the bacterium and its resistance towards antibiotics is still severely lacking. Furthermore, until now it remained to be determined whether L. monocytogenes antibiotic resistance patterns in South Africa mirror resistance patterns elsewhere in the world. The aim of this study was therefore to evaluate the efficacy of antibiotics that are currently used against L. monocytogenes. Using the European Committee on Antimicrobial Susceptibility Testing (EUCAST) disc diffusion method, L. monocytogenes isolates (n = 177) from diverse origins in the Western Cape, South Africa (clinical, food, and environment) were tested for susceptibility against five different antibiotics, namely ampicillin, erythromycin, chloramphenicol, gentamicin, and tetracycline. Isolates were collected over a period of two years (2017–2019). All isolates were susceptible to ampicillin, the currently recommended antibiotic, while a large number of isolates were resistant to chloramphenicol, erythromycin, and tetracycline. Also, patterns of resistance observed here are different to patterns observed elsewhere. The findings of this study demonstrate that it is imperative to continuously monitor the efficacy of currently recommended antibiotics, since resistance patterns can quickly develop when such antibiotics are overutilized, and secondly, that it is crucial to assess local antibiotic resistance patterns in conjunction with global patterns, since the latter is not necessarily generalizable to local scales.

    Citation: Rochelle Keet, Diane Rip. Listeria monocytogenes isolates from Western Cape, South Africa exhibit resistance to multiple antibiotics and contradicts certain global resistance patterns[J]. AIMS Microbiology, 2021, 7(1): 40-58. doi: 10.3934/microbiol.2021004

    Related Papers:

    [1] Xiaoming Su, Jiahui Wang, Adiya Bao . Stability analysis and chaos control in a discrete predator-prey system with Allee effect, fear effect, and refuge. AIMS Mathematics, 2024, 9(5): 13462-13491. doi: 10.3934/math.2024656
    [2] Kottakkaran Sooppy Nisar, G Ranjith Kumar, K Ramesh . The study on the complex nature of a predator-prey model with fractional-order derivatives incorporating refuge and nonlinear prey harvesting. AIMS Mathematics, 2024, 9(5): 13492-13507. doi: 10.3934/math.2024657
    [3] Nehad Ali Shah, Iftikhar Ahmed, Kanayo K. Asogwa, Azhar Ali Zafar, Wajaree Weera, Ali Akgül . Numerical study of a nonlinear fractional chaotic Chua's circuit. AIMS Mathematics, 2023, 8(1): 1636-1655. doi: 10.3934/math.2023083
    [4] A. Q. Khan, Ibraheem M. Alsulami . Complicate dynamical analysis of a discrete predator-prey model with a prey refuge. AIMS Mathematics, 2023, 8(7): 15035-15057. doi: 10.3934/math.2023768
    [5] Xiao-Long Gao, Hao-Lu Zhang, Xiao-Yu Li . Research on pattern dynamics of a class of predator-prey model with interval biological coefficients for capture. AIMS Mathematics, 2024, 9(7): 18506-18527. doi: 10.3934/math.2024901
    [6] Weili Kong, Yuanfu Shao . The effects of fear and delay on a predator-prey model with Crowley-Martin functional response and stage structure for predator. AIMS Mathematics, 2023, 8(12): 29260-29289. doi: 10.3934/math.20231498
    [7] Asharani J. Rangappa, Chandrali Baishya, Reny George, Sina Etemad, Zaher Mundher Yaseen . On the existence, stability and chaos analysis of a novel 4D atmospheric dynamical system in the context of the Caputo fractional derivatives. AIMS Mathematics, 2024, 9(10): 28560-28588. doi: 10.3934/math.20241386
    [8] Yao Shi, Zhenyu Wang . Bifurcation analysis and chaos control of a discrete fractional-order Leslie-Gower model with fear factor. AIMS Mathematics, 2024, 9(11): 30298-30319. doi: 10.3934/math.20241462
    [9] Guilin Tang, Ning Li . Chaotic behavior and controlling chaos in a fast-slow plankton-fish model. AIMS Mathematics, 2024, 9(6): 14376-14404. doi: 10.3934/math.2024699
    [10] Xuyang Cao, Qinglong Wang, Jie Liu . Hopf bifurcation in a predator-prey model under fuzzy parameters involving prey refuge and fear effects. AIMS Mathematics, 2024, 9(9): 23945-23970. doi: 10.3934/math.20241164
  • Food-borne disease outbreaks are common and offer valuable insights into the causes, impacts, and mechanisms underlying food pathogens. This also serves as a good foundation to validate the performance of current best practice control methods, for example antibiotics, that are used in the fight against food pathogens. Listeriosis outbreaks, caused by Listeria monocytogenes, is no exception. In 2018, South Africa experienced the largest global listeriosis outbreak recorded to date. However, despite the scale of this outbreak, information on the bacterium and its resistance towards antibiotics is still severely lacking. Furthermore, until now it remained to be determined whether L. monocytogenes antibiotic resistance patterns in South Africa mirror resistance patterns elsewhere in the world. The aim of this study was therefore to evaluate the efficacy of antibiotics that are currently used against L. monocytogenes. Using the European Committee on Antimicrobial Susceptibility Testing (EUCAST) disc diffusion method, L. monocytogenes isolates (n = 177) from diverse origins in the Western Cape, South Africa (clinical, food, and environment) were tested for susceptibility against five different antibiotics, namely ampicillin, erythromycin, chloramphenicol, gentamicin, and tetracycline. Isolates were collected over a period of two years (2017–2019). All isolates were susceptible to ampicillin, the currently recommended antibiotic, while a large number of isolates were resistant to chloramphenicol, erythromycin, and tetracycline. Also, patterns of resistance observed here are different to patterns observed elsewhere. The findings of this study demonstrate that it is imperative to continuously monitor the efficacy of currently recommended antibiotics, since resistance patterns can quickly develop when such antibiotics are overutilized, and secondly, that it is crucial to assess local antibiotic resistance patterns in conjunction with global patterns, since the latter is not necessarily generalizable to local scales.


    Throughout the paper, we work over an algebraically closed field k of characteristic zero. Let C be a nonsingular projective curve of genus g0, and L be a very ample line bundle on C. The complete linear system |L| embeds C into a projective space Pr:=P(H0(C,L)). For an integer k0, the k-th secant variety

    Σk=Σk(C,L)Pr

    of C in Pr is the Zariski closure of the union of (k+1)-secant k-planes to C.

    Assume that degL2g+2k+1. Then the k-th secant variety Σk can be defined by using the secant sheaf Ek+1,L and the secant bundle Bk(L) as follows. Denote by Cm the m-th symmetric product of C. Let

    σk+1:Ck×CCk+1

    be the morphism sending (ξ,x) to ξ+x, and p:Ck×CC the projection to C. The secant sheaf Ek+1,L on Ck+1 associated to L is defined by

    Ek+1,L:=σk+1,pL,

    which is a locally free sheaf of rank k+1. Notice that the fiber of Ek+1,L over ξCk+1 can be identified with H0(ξ,L|ξ). The secant bundle of k-planes over Ck+1 is

    Bk(L):=P(Ek+1,L)

    equipped with the natural projection πk:Bk(L)Ck+1. We say that a line bundle L on a variety X separates m+1 points if the natural restriction map H0(X,L)H0(ξ,L|ξ) is surjective for any effective zero-cycle ξX with length(ξ)=m+1. Notice that a line bundle L is globally generated if and only if L separates 1 point, and L is very ample if and only if L separates 2 points. Since degL2g+k, it follows from Riemann–Roch that L separates k+1 points. Then the tautological bundle OBk(L)(1) is globally generated. We have natural identifications

    H0(Bk(L),OBk(L)(1))=H0(Ck+1,Ek+1,)=H0(C,L),

    and therefore, the complete linear system |OBk(L)(1)| induces a morphism

    βk:Bk(L)Pr=P(H0(C,L)).

    The k-th secant variety Σk=Σk(C,L) of C in Pr can be defined to be the image βk(Bk(L)). Bertram proved that βk:Bk(L)Σk is a resolution of singularities (see [1,Section 1]).

    It is clear that there are natural inclusions

    C=Σ0Σ1Σk1ΣkPr.

    The preimage of Σk1 under the morphism βk is actually a divisor on Bk(L). Thus there exits a natural morphism from Bk(L) to the blowup of Σk along Σk1. Vermeire proved that B1(L) is indeed the blowup of Σ1 along Σ0=C ([3,Theorem 3.9]). In the recent work [2], we showed that Bk(L) is the normalization of the blowup of Σk along Σk1 ([2,Proposition 5.13]), and raised the problem asking whether Bk(L) is indeed the blowup itself ([2,Problem 6.1]). The purpose of this paper is to give an affirmative answer to this problem by proving the following:

    Theorem 1.1. Let C be a nonsingular projective curve of genus g, and L be a line bundle on C. If degL2g+2k+1 for an integer k1, then the morphism βk:Bk(L)Σk(C,L) is the blowup of Σk(C,L) along Σk1(C,L).

    To prove the theorem, we utilize several line bundles defined on symmetric products of the curve. Let us recall the definitions here and refer the reader to [2] for further details. Let

    Ck+1=C××Ck+1times

    be the (k+1)-fold ordinary product of the curve C, and pi:Ck+1C be the projection to the i-th component. The symmetric group Sk+1 acts on p1Lpk+1L in a natural way: a permutation μSk sends a local section s1sk+1 to sμ(1)sμ(k+1). Then p1Lpk+1L is invariant under the action of Sk+1, so it descends to a line bundle Tk+1(L) on the symmetric product Ck+1 via the quotient map q:Ck+1Ck+1. We have qTk+1(L)=p1Lpk+1L. Define a divisor δk+1 on Ck+1 such that the associated line bundle OCk+1(δk+1)=det(σk+1,(OCk×C)). Let

    Ak+1,L:=Tk+1(L)(2δk+1)

    be a line bundle on Ck+1. When k=0, we use the convention that T1(L)=E1,L=L and δ1=0.

    The main ingredient in the proof of Theorem 1.1 is to study the positivity of the line bundle Ak+1,L. Some partial results and their geometric consequences have been discussed in [2,Lemma 5.12 and Proposition 5.13]. Along this direction, we establish the following proposition to give a full picture in a general result describing the positivity of the line bundle Ak+1,L. This may be of independent interest.

    Proposition 1.2. Let C be a nonsingular projective curve of genus g, and L be a line bundle on C. If degL2g+2k+ for integers k,0, then the line bundle Ak+1,L on Ck+1 separates +1 points.

    In particular, if degL2g+2k, then Ak+1,L is globally generated, and if degL2g+2k+1, then Ak+1,L is very ample.

    In this section, we prove Theorem 1.1. We begin with showing Proposition 1.2.

    Proof of Proposition 1.2. We proceed by induction on k and . If k=0, then A1,L=L and degL2g+. It immediately follows from Riemann–Roch that L separates +1 points. If =0, then degL2g+2k. By [2,Lemma 5.12], Ak+1,L separates 1 point.

    Assume that k1 and 1. Let z be a length +1 zero-dimensional subscheme of Ck+1. We aim to show that the natural restriction map

    rz,k+1,L:H0(Ck+1,Ak+1,L)H0(z,Ak+1,L|z)

    is surjective. We can choose a point pC such that Xp contains a point in the support of z, where Xp is the divisor on Ck+1 defined by the image of the morphism CkCk+1 sending ξ to ξ+p. Let y:=zXp be the scheme-theoretic intersection, and Ix:=(Iz:IXp), which defines a subscheme x of z in Ck+1, where Iz and IXp are ideal sheaves of z and Xp in Ck+1, respectively. We have the following commutative diagram

    rz,k+1,L:H0(Ck+1,Ak+1,L)H0(z,Ak+1,L|z)

    where all rows and columns are short exact sequences. By tensoring with Ak+1,L and taking the global sections of last two rows, we obtain the commutative diagram with exact sequences

    rz,k+1,L:H0(Ck+1,Ak+1,L)H0(z,Ak+1,L|z)

    in which we use the fact that H1(Ak+1,L(Xp))=0 (see the proof of [2,Lemma 5.12]). Note that Ak+1,L(Xp)=Ak+1,L(p) and Ak+1,L|XpAk,L(2p), where we identify Xp=Ck.

    Since length(y)length(z)=+1 and degL(2p)2g+2(k1)+, the induction hypothesis on k implies that ry,k,L(2p) is surjective. On the other hand, if x=, which means that z is a subscheme of Xp, then trivially rx,k+1,L(p) is surjective. Otherwise, suppose that x. By the choice of Xp, we know that y is not empty, and therefore, we have length(x)length(z)1=. Now, degL(p)2g+2k+(1), so the induction hypothesis on implies that L(p) separates points. In particular, rx,k+1,L(p) is surjective. Hence rz,k+1,L is surjective as desired.

    Lemma 2.1. Let φ:XY be a finite surjective morphism between two varieties. If φ1(q) is scheme theoretically a reduced point for each closed point qY, then φ is an isomorphism.

    Proof. Note that φ is proper, injective, and unramifield. Then it is indeed a classical result that φ is an isomorphism. Here we give a short proof for reader's convenience. The problem is local. We may assume that X=SpecB and Y=SpecA for some rings A,B. We may regard A as a subring of B. For any qY, let p:=φ1(q)X. It is enough to show that the localizations A:=Amq and B:=Bmp are isomorphic. Let mq,mp be the maximal ideals of the local rings A,B, respectively. The assumption says that mqB=mp. We have

    B/AAA/mq=B/(mqB+A)=B/(mp+A)=0.

    By Nakayama lemma, we obtain B/A=0.

    We keep using the notations used in the introduction. Recall that C is a nonsingular projective curve of genus g0, and L is a very ample line bundle on C. Consider ξkCk and xC, and let ξ:=ξk+xCk+1. The divisor ξk spans a k-secant (k1)-plane P(H0(ξk,L|ξk)) to C in P(H0(C,L)), and it is naturally embedded in the (k+1)-secant k-plane P(H0(ξ,L|ξ)) spanned by ξ. This observation naturally induces a morphism

    αk,1:Bk1(L)×CBk(L).

    To see it in details, we refer to [1,p.432,line –5]. We define the relative secant variety Z=Zk1 of (k1)-planes in Bk(L) to be the image of the morphism αk,1. The relative secant variety Z is a divisor in the secant bundle Bk(L), and it is the preimage of (k1)-th secant variety Σk1 under the morphism βk. It plays the role of transferring the codimension two situation (Σk,Σk1) into the codimension one situation (Bk(L),Z). We collect several properties of Z.

    Proposition 2.2. ([2,Proposition 3.15,Theorem 5.2,and Proposition 5.13]) Recall the situation described in the diagram

    αk,1:Bk1(L)×CBk(L).

    Let H be the pull back of a hyperplane divisor of Pr by βk, and let IΣk1|Σk be the ideal sheaf on Σk defining the subvariety Σk1. Then one has

    1. OBk(L)((k+1)HZ)=πkAk+1,L.

    2. Riβk,OBk(L)(Z)={IΣk1|Σkifi=00ifi>0.

    3. IΣk1|ΣkOBk(L)=OBk(L)(Z).

    As a direct consequence of the above proposition, we have an identification

    H0(Ck+1,Ak+1,L)=H0(Σk,IΣk1|Σk(k+1)).

    We are now ready to give the proof of Theorem 1.1.

    Proof of Theorem 1.1. Let

    b:˜Σk:=BlΣk1ΣkΣk

    be the blowup of Σk along Σk1 with exceptional divisor E. As IΣk1|ΣkOBk(L)=OBk(L)(Z) (see Proposition 2.2), there exists a morphism α from Bk(L) to the blowup ˜Σk fitting into the following commutative diagram

    b:˜Σk:=BlΣk1ΣkΣk

    We shall show that α is an isomorphism.

    Write V:=H0(Σk,IΣk1|Σk(k+1)). As proved in [2,Theorem 5.2], IΣk1|Σk(k+1) is globally generated by V. This particularly implies that on the blowup ˜Σk one has a surjective morphism VO˜ΣkbOΣk(k+1)(E), which induces a morphism

    γ:˜ΣkP(V).

    On the other hand, one has an identification V=H0(Ck+1,Ak+1,L) by Proposition 2.2. Recall from Proposition 1.2 that Ak+1,L is very ample. So the complete linear system |V|=|Ak+1,L| on Ck+1 induces an embedding

    ψ:Ck+1P(V).

    Also note that α(bOΣk(k+1)(E))=βkOΣk(k+1)(Z)=πkAk+1,L by Proposition 2.2. Hence we obtain the following commutative diagram

    ψ:Ck+1P(V).

    Take an arbitrary closed point x˜Σk, and consider its image x:=b(x) on Σk. There is a nonnegative integer mk such that xΣmΣm1Σk. In addition, the point x uniquely determines a degree m+1 divisor ξm+1,x on C in such a way that ξm+1,x=ΛC, where Λ is a unique (m+1)-secant m-plane to C with xΛ (see [2,Definition 3.12]). By [2,Proposition 3.13], β1k(x)Ckm and πk(β1k(x))=ξm+1,x+CkmCk+1. Consider also x:=γ(x) which lies in the image of ψ. As ψ is an embedding, we may think x as a point of Ck+1. Now, through forming fiber products, we see scheme-theoretically

    α1(x)π1k(x)β1k(x).

    However, the restriction of the morphism πk on β1k(x) gives an embedding of Ckm into Ck+1. This suggests that π1k(x)β1k(x) is indeed a single reduced point, and so is α1(x). Finally by Lemma 2.1, α is an isomorphism as desired.


    Acknowledgments



    This work is based on the research supported in part by the National Research Foundation of South Africa (Grant number 108031 and 115594). The author would like to thank Microchem Lab Services (Pty) Ltd for isolates from food and environmental origin, National Health Laboratory Services (Microbiology Lab, Observatory) for isolates from clinical origin, and Dr. J-H Keet for his assistance in data analysis and statistics.

    Conflict of interest



    All authors declare no conflicts of interest in this paper.

    [1] WHO Food safety, 2019 (2019) .Available from: https://www.who.int/news-room/fact-sheets/detail/food-safety.
    [2] Forsythe SJ (2010)  The Microbiology of Safe Food, Chichester UK: Wiley-Blackwell Pub.
    [3] de Noordhout CM, Devleesschauwer B, Angulo FJ, et al. (2014) The global burden of listeriosis: a systematic review and meta-analysis. Lancet Infect Dis 14: 1073-1082. doi: 10.1016/S1473-3099(14)70870-9
    [4] Lamont R, Sobel J (2011) Listeriosis in human pregnancy: a systematic review. J Perinat Med 39: 227-236. doi: 10.1515/jpm.2011.035
    [5] Montville TJ, Matthews KR, Kniel KE (2012)  Food Microbiology: An introduction Washington, DC: ASM Press. doi: 10.1128/9781555817206
    [6] Li Z, Pérez-Osorio A, Wang Y, et al. (2017) Whole genome sequencing analyses of Listeria monocytogenes that persisted in a milkshake machine for a year and caused illnesses in Washington State. BMC Microbiol 17: 1-11. doi: 10.1186/s12866-016-0921-2
    [7] Smith A, Hearn J, Taylor C, et al. (2019) Listeria monocytogenes isolates from ready to eat plant produce are diverse and have virulence potential. Int J Food Microbiol 299: 23-32. doi: 10.1016/j.ijfoodmicro.2019.03.013
    [8] Wang XM, Lü XF, Yin L, et al. (2013) Occurrence and antimicrobial susceptibility of Listeria monocytogenes isolates from retail raw foods. Food Control 32: 153-158. doi: 10.1016/j.foodcont.2012.11.032
    [9] Fallah AA, Siavash Saei-Dehkordi S, Mahzounieh M (2013) Occurrence and antibiotic resistance profiles of Listeria monocytogenes isolated from seafood products and market and processing environments in Iran. Food Control 34: 630-636. doi: 10.1016/j.foodcont.2013.06.015
    [10] Ziegler M, Kent D, Stephan R, et al. (2019) Growth potential of Listeria monocytogenes in twelve different types of RTE salads: Impact of food matrix, storage temperature and storage time. Int J Food Microbiol 296: 83-92. doi: 10.1016/j.ijfoodmicro.2019.01.016
    [11] Rivera D, Toledo V, Reyes-Jara A, et al. (2018) Approaches to empower the implementation of new tools to detect and prevent foodborne pathogens in food processing. Food Microbiol 75: 126-132. doi: 10.1016/j.fm.2017.07.009
    [12] Pietracha D, Misiewicz A (2016) Use of products containing a phage in food industry as a new method for Listeria monocytogenes elimination from food (Listeria monocytogenes phages in food industry)–a review. Czech J Food Sci 1: 1-8. doi: 10.17221/217/2015-CJFS
    [13] Chibeu A, Agius L, Gao A, et al. (2013) Efficacy of bacteriophage LISTEX ™ P100 combined with chemical antimicrobials in reducing Listeria monocytogenes in cooked turkey and roast beef. Int J Food Microbiol 167: 208-214. doi: 10.1016/j.ijfoodmicro.2013.08.018
    [14] Chen J-Q, Regan P, Laksanalamai P, et al. (2017) Prevalence and methodologies for detection, characterization and subtyping of Listeria monocytogenes and L. ivanovii in foods and environmental sources. Food Sci Hum Wellness 6: 97-120. doi: 10.1016/j.fshw.2017.06.002
    [15] Sosnowski M, Lachtara B, Wieczorek K, et al. (2018) Antimicrobial resistance and genotypic characteristics of Listeria monocytogenes isolated from food in Poland. Int J Food Microbiol 289: 1-6. doi: 10.1016/j.ijfoodmicro.2018.08.029
    [16] CDC Listeria Outbreaks, 2019 (2019) .Available from: https://www.cdc.gov/listeria/outbreaks/index.html.
    [17] Buchanan RL, Gorris LGM, Hayman MM, et al. (2017) A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control 75: 1-13. doi: 10.1016/j.foodcont.2016.12.016
    [18] Althaus D, Jermini M, Giannini P, et al. (2017) Local outbreak of Listeria monocytogenes serotype 4b sequence type 6 due to contaminated meat pâté. Foodborne Pathog Dis 14: 219-222. doi: 10.1089/fpd.2016.2232
    [19] Gelbíčová T, Zobaníková M, Tomáštíková1 Z, et al. (2018) An outbreak of listeriosis linked to turkey meat products in the Czech Republic, 2012–2016 T. Epidemiol Infect 146: 1407-1412. doi: 10.1017/S0950268818001565
    [20] Orsi RH, Den Bakker HC, Wiedmann M (2010) Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. Int J Med Microbiol 301: 79-96. doi: 10.1016/j.ijmm.2010.05.002
    [21] Lomonaco S, Nucera D, Filipello V (2015) The evolution and epidemiology of Listeria monocytogenes in Europe and the United States. Infect Genet Evol 35: 172-183. doi: 10.1016/j.meegid.2015.08.008
    [22] Manuel CS, Stelten A Van, Wiedmann M, et al. (2015) Prevalence and distribution of Listeria monocytogenes inlA alleles prone to phase variation and inlA alleles with premature stop codon mutations among human, food, animal, and environmental isolates. Appl Environ Microbiol 81: 8339-8345. doi: 10.1128/AEM.02752-15
    [23] Gray MJ, Zadoks RN, Fortes ED, et al. (2004) Listeria monocytogenes isolates from foods and humans form distinct but overlapping populations. Appl Environ Microbiol 70: 5833-5841. doi: 10.1128/AEM.70.10.5833-5841.2004
    [24] Jeffers GT, Bruce JL, McDonough PL, et al. (2001) Comparative genetic characterization of Listeria monocytogenes isolates from human and animal listeriosis cases. Microbiology 147: 1095-1104. doi: 10.1099/00221287-147-5-1095
    [25] Goulet V, King LA, Vaillant V, et al. (2013) What is the incubation period for listeriosis? BMC Infect Dis 13: 11-18. doi: 10.1186/1471-2334-13-11
    [26] Smith AM, Naicker P, Bamford C, et al. (2016) Genome sequences for a cluster of human isolates of Listeria monocytogenes identified in South Africa in 2015. Genome Announc 4: 1-2.
    [27] NICD Division of Public Health Surveillance and Response, Clinical advisory Listeria meningitis, 2017 (2017) .Available from: https://www.nicd.ac.za/wp-content/uploads/2019/03/Listeria-statement_20171025_final.pdf.
    [28] Mateus T, Silva J, Maia RL, et al. (2013) Listeriosis during Pregnancy: A public health concern. ISRN Obstet Gynecol 2013: 851712. doi: 10.1155/2013/851712
    [29] Alonso-Hernando A, Prieto M, García-fernández C, et al. (2012) Increase over time in the prevalence of multiple antibiotic resistance among isolates of Listeria monocytogenes from poultry in Spain. Food Control 23: 37-41. doi: 10.1016/j.foodcont.2011.06.006
    [30] Fallah AA, Siavash Saei-Dehkordi S, Rahnama M, et al. (2012) Prevalence and antimicrobial resistance patterns of Listeria species isolated from poultry products marketed in Iran. Food Control 28: 327-332. doi: 10.1016/j.foodcont.2012.05.014
    [31] Escolar C, Gómez D, del Carmen Rota García M, et al. (2017) Antimicrobial resistance profiles of Listeria monocytogenes and Listeria innocua isolated from ready-to-eat products of animal origin in Spain. Foodborne Pathog Dis 14: 357-363. doi: 10.1089/fpd.2016.2248
    [32] Rahimi E, Ameri M, Momtaz H (2010) Prevalence and antimicrobial resistance of Listeria species isolated from milk and dairy products in Iran. Food Control 21: 1448-1452. doi: 10.1016/j.foodcont.2010.03.014
    [33] Vitas ANAI, Aguado V, Mari R (2007) Antimicrobial susceptibility of Listeria monocytogenes isolated from food and clinical cases in Navarra , Spain. J Food Prot 70: 2402-2406. doi: 10.4315/0362-028X-70.10.2402
    [34] Cerf O, Carpentier B, Sanders P (2010) Tests for determining in-use concentrations of antibiotics and disinfectants are based on entirely different concepts: ‘Resistance’ has different meanings. Int J Food Microbiol 136: 247-254. doi: 10.1016/j.ijfoodmicro.2009.10.002
    [35] Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74: 417-433. doi: 10.1128/MMBR.00016-10
    [36] Christensen EG, Gram L, Kastbjerg VG (2011) Sublethal triclosan exposure decreases susceptibility to gentamicin and other aminoglycosides in Listeria monocytogenesAntimicrob Agents Chemother 55: 4064-4071. doi: 10.1128/AAC.00460-11
    [37] Karmi M (2014) Detection and presumptive identification of antibiotic residues in poultry meat by using FPT. Glob J Pharmacol 8: 160-165.
    [38] Allen KJ, Wałecka-Zacharska E, Chen JC, et al. (2016) Listeria monocytogenes-An examination of food chain factors potentially contributing to antimicrobial resistance. Food Microbiol 54: 178-189. doi: 10.1016/j.fm.2014.08.006
    [39] Aureli P, Fiorucci GC, Caroli D, et al. (2000) An outbreak of febrile gastroenteritis associated wth corn contaminated by Listeria monocytogenesN Engl J Med 342: 1236-1241. doi: 10.1056/NEJM200004273421702
    [40] NICD Situation report prepared by National Listeria Incident Management Team, 2018 (2018) .Available from: http://www.nicd.ac.za/wp-content/uploads/2018/07/Listeriosis-outbreak-situation-report-_26July2018_fordistribution.pdf.
    [41] Bamford C, Bosman N, Boyles T, et al. Division of Public Health Surveillance and Response, Listeriosis: Clinical recommendations for diagnosis and treatment, 2017 (2017) .Available from: https://www.nicd.ac.za/wp-content/uploads/2017/12/Listeriosis_Clinical_Guidelines.pdf.
    [42] Schutte CM, Van Der Meyden CH, Kakaza M, et al. (2019) Life-threatening Listeria meningitis: Need for revision of South African acute bacterial meningitis treatment guidelines. South African Med J 109: 296-298. doi: 10.7196/SAMJ.2019.v109i5.13866
    [43] NICD Management of persons following exposure to Listeria -contaminated Foods (2018) .Available from: https://www.nicd.ac.za/wp-content/uploads/2019/03/FAQ_Exposure-to-Listeriosis_20180308.pdf.
    [44] WHO Listeriosis outbreak in South Africa, 2018 (2018) .Available from: https://www.afro.who.int/news/listeriosis-outbreak-south-africa.
    [45] Blais BW, Phillippe LM, Burzynski M, et al. (1995) Applicability of the PCR technique in the food testing laboratory: Identification of Listeria monocytogenesBiotechnol Tech 9: 629-632. doi: 10.1007/BF00156346
    [46] Bester IM (2011) Detection and molecular subtyping of Listeria monocytogenes isolated from a South African avocado processing facility, MSc Thesis. Stellenbosch University, Stellenbosch .
    [47] Cossart P, Fransisca Vicente M, Mengaud J, et al. (1989) Listeriolysin O is essential for virulence of Listeria monocytogenes: direct evidence obtained by gene complementation. Infect Immun 57: 3629-3636. doi: 10.1128/IAI.57.11.3629-3636.1989
    [48] Rasmussen OF, Beck T, Olsen JE, et al. (1991) Listeria monocytogenes isolates can be classified into two major types according to the sequence of the listeriolysin gene. Infect Immun 59: 3945-3951. doi: 10.1128/IAI.59.11.3945-3951.1991
    [49] Epstein FH, Southwick FS, Purich DL (1996) Intracellular pathogenesis of listeriosis. N Engl J Med 334: 770-776. doi: 10.1056/NEJM199605163342008
    [50] Doyle ME FRI Briefings, Virulence characteristics of Listeria monocytogenes, 2001 (2001) .Available from: https://fri.wisc.edu/files/Briefs_File/virulencelmono.pdf.
    [51] Rip D, Gouws PA (2020) PCR–restriction fragment length polymorphism and pulsed-field gel electrophoresis characterization of listeria monocytogenes isolates from ready-to-eat foods, the food processing environment, and clinical samples in South Africa. J Food Prot 83: 518-533. doi: 10.4315/0362-028X.JFP-19-301
    [52] EUCAST Antimicrobial susceptibility testing EUCAST disk diffusion method, 2012 (2012) .Available from: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/Manual_v_2.1_EUCAST_Disk_Test.pdf.
    [53] Maćkiw E, Modzelewska M, Mąka Ł, et al. (2016) Antimicrobial resistance profiles of Listeria monocytogenes isolated from ready-to-eat products in Poland in 2007–2011. Food Control 59: 7-11. doi: 10.1016/j.foodcont.2015.05.011
    [54] Wang J, Ray AJ, Hammons SR, et al. (2015) Persistent and transient Listeria monocytogenes strains from retail deli environments vary in their ability to adhere and form biofilms and rarely have inlA premature stop codons. Foodborne Pathog Dis 12: 151-158. doi: 10.1089/fpd.2014.1837
    [55] Wiggins GL, Albritton WL, Feeley JC (1978) Antibiotic susceptibility of clinical isolates of Listeria monocytogenesAntimicrob Agents Chemother 13: 854-860. doi: 10.1128/AAC.13.5.854
    [56] Magiorakos A., Srinivasan A, Carey RB, et al. (2012) Multidrugresistant, extensively drugresistant and pandrugresistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18: 268-281. doi: 10.1111/j.1469-0691.2011.03570.x
    [57] Noll M, Kleta S, Dahouk S Al, et al. (2017) Antibiotic susceptibility of 259 Listeria monocytogenes strains isolated from food, food-processing plants and human samples in Germany. J Infect Public Health 11: 572-577. doi: 10.1016/j.jiph.2017.12.007
    [58] Chen B, Pyla R, Kim T, et al. (2010) Antibiotic resistance in Listeria species isolated from catfish fillets and processing environment. Lett Appl Microbiol 50: 626-632. doi: 10.1111/j.1472-765X.2010.02843.x
    [59] R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2018) .Available from: https://www.R-project.org/.
    [60] Jamali H, Paydar M, Ismail S, et al. (2015) Prevalence, antimicrobial susceptibility and virulotyping of Listeria species and Listeria monocytogenes isolated from open-air fish markets. BMC Microbiol 15: 1-7. doi: 10.1186/s12866-015-0476-7
    [61] Alonso-Hernando A, Capita R, Prieto M, et al. (2009) Comparison of antibiotic resistance patterns in Listeria monocytogenes and Salmonella enterica strains pre-exposed and exposed to poultry decontaminants. Food Control 20: 1108-1111. doi: 10.1016/j.foodcont.2009.02.011
    [62] Davis JA, Jackson CR (2009) Comparative antimicrobial susceptibility of Listeria monocytogenes, L. innocua, and L. welshimeriMicrob Drug Resist 15: 27-32. doi: 10.1089/mdr.2009.0863
    [63] Haubert L, Mendonça M, Lopes GV, et al. (2016) Listeria monocytogenes isolates from food and food environment harbouring tetM and ermB resistance genes. Lett Appl Microbiol 62: 23-29. doi: 10.1111/lam.12516
    [64] Abdollahzadeh E, Ojagh M, Hosseini H, et al. (2016) Antimicrobial resistance of Listeria monocytogenes isolated from seafood and humans in Iran. Microb Pathog 100: 70-74. doi: 10.1016/j.micpath.2016.09.012
    [65] Pesavento G, Ducci B, Nieri D, et al. (2010) Prevalence and antibiotic susceptibility of Listeria spp. isolated from raw meat and retail foods. Food Control 21: 708-713. doi: 10.1016/j.foodcont.2009.10.012
    [66] Yücel N, Citak S, Önder M (2005) Prevalence and antibiotic resistance of Listeria species in meat products in Ankara, Turkey. Food Microbiol 22: 241-245. doi: 10.1016/j.fm.2004.03.007
    [67] Safdar A, Armstrong D (2003) Antimicrobial activities against 84 Listeria monocytogenes isolates from patients with systemic listeriosis at a Comprehensive Cancer Center (1955–1997). J Clin Microbiol 41: 483-485. doi: 10.1128/JCM.41.1.483-485.2003
    [68] Nyasulu P, Murray J, Perovic O, et al. (2012) Antimicrobial resistance surveillance among nosocomial pathogens in South Africa: Systematic review of published literature. J Exp Clin Med 4: 8-13. doi: 10.1016/j.jecm.2011.11.002
    [69] Charpentier E, Courvalin P (1999) Antibiotic resistance in Listeria spp. Antimicrob Agents Chemother 43: 2103-2108. doi: 10.1128/AAC.43.9.2103
    [70] Duffy G, Walsh D, Sheridan JJ, et al. (2001) Comparison of selective and non-selective enrichment media in the detection of Listeria monocytogenes from meat containing Listeria innocua. J Appl Microbiol 90: 994-999. doi: 10.1046/j.1365-2672.2001.01336.x
    [71] Li Q, Sherwood JS, Logue CM (2007) Antimicrobial resistance of Listeria spp. recovered from processed bison. Lett Appl Microbiol 44: 86-91. doi: 10.1111/j.1472-765X.2006.02027.x
    [72] Morvan A, Moubareck C, Leclercq A, et al. (2010) Antimicrobial resistance of Listeria monocytogenes strains isolated from humans in France. Antimicrob Agents Chemother 54: 2728-2731. doi: 10.1128/AAC.01557-09
    [73] Olaimat AN, Al-Holy MA, Shahbaz HM, et al. (2018) Emergence of antibiotic resistance in Listeria monocytogenes isolated from food products: A comprehensive review. Compr Rev Food Sci Food Saf 17: 1277-1292. doi: 10.1111/1541-4337.12387
    [74] Meyer E, Gastmeier P, Deja M, et al. (2013) Antibiotic consumption and resistance: Data from Europe and Germany. Int J Med Microbiol 303: 388-395. doi: 10.1016/j.ijmm.2013.04.004
    [75] Tanwar J, Das S, Fatima Z, et al. (2014) Multidrug resistance: An emerging crisis. Interdiscip Perspect Infect Dis 2014: 541340. doi: 10.1155/2014/541340
    [76] Medina E, Pieper DH (2016) Tackling threats and future problems of multidrug-resistant bacteria. How to Overcome the Antibiotic Crisis Springer, 3-33. doi: 10.1007/82_2016_492
    [77] Munita JM, Arias CA (2016) Mechanisms of antibiotic resistance. Microbiol Spectr 4: 1-37. doi: 10.1128/microbiolspec.VMBF-0016-2015
    [78] Wright GD (2019) Environmental and clinical antibiotic resistomes, same only different. Curr Opin Microbiol 51: 57-63. doi: 10.1016/j.mib.2019.06.005
    [79] Wang K, Ye K, Zhu Y, et al. (2015) Prevalence, antimicrobial resistance and genetic diversity of Listeria monocytogenes isolated from chilled pork in Nanjing, China. LWT-Food Sci Technol 64: 905-910. doi: 10.1016/j.lwt.2015.06.015
    [80] Chen B, Pyla R, Kim T, et al. (2010) Prevalence and contamination patterns of Listeria monocytogenes in catfish processing environment and fresh fillets. Food Microbiolo 27: 645-652. doi: 10.1016/j.fm.2010.02.007
    [81] Warriss P (2010)  Meat Science-An Introductory Text United Kingdom: Cabi Publishing.
    [82] Moyane J, Jideani AI, Aiyegoro O (2013) Antibiotics usage in food-producing animals in South Africa and impact on human: Antibiotic resistance. African J Microbiol Res 7: 2990-2997. doi: 10.5897/AJMR2013.5631
    [83] Agyare C, Boamah VE, Zumbi CN, et al. (2018) Antibiotic use in poultry production and its effects on bacterial resistance. Antimicrob Resist-A Global Threat 33–50.
    [84] Mund MD, Khan UH, Tahir U, et al. (2017) Antimicrobial drug residues in poultry products and implications on public health: A review. Int J Food Prop 20: 1433-1446. doi: 10.1080/10942912.2016.1212874
    [85] Gómez D, Azón E, Marco N, et al. (2014) Antimicrobial resistance of Listeria monocytogenes and Listeria innocua from meat products and meat-processing environment. Food Microbiol 42: 61-65. doi: 10.1016/j.fm.2014.02.017
    [86] Ferri M, Ranucci E, Romagnoli P, et al. (2017) Antimicrobial resistance: A global emerging threat to public health systems. Crit Rev Food Sci Nutr 57: 2857-2876. doi: 10.1080/10408398.2015.1077192
    [87] DoH Surveillance for antimicrobial resistance and comsumption of antibiotcs in South Africa, 2019 (2019) .Available from: http://www.health.gov.za/index.php/antimicrobial-resistance?download=3374:surveillance-for-antimicrobial-resistance-and-consumption-of-antibiotics-in-south-africa.
    [88] Sattar S, Hassan MM, Islam SKMA, et al. (2014) Antibiotic residues in broiler and layer meat in Chittagong district of Bangladesh. Vet World 7: 738-743. doi: 10.14202/vetworld.2014.738-743
    [89] Hakem A, Titouche Y, Houali K, et al. (2013) Screening of antibiotics residues in poultry meat by microbiological methods. Bull Univ Agric Sci Vet Med Cluj-Napoca Vet Med 70: 77-82.
    [90] Amjad H, Iqbal J, Naeem M (2005) Analysis of some residual antibiotics in muscle, kidney and liver samples of broiler chicken by various methods. The 4th Session of 2005 Workshop of Pakistan Academy of Sciences 2–10.
    [91] Henton MM, Eagar HA, Swan GE, et al. (2011) Antibiotic management and resistance in livestock production. South African Med J 101: 1-7.
    [92] Vasconcelos V De, Hofer E, Christina D, et al. (2016) Occurrence and antimicrobial resistance patterns of Listeria monocytogenes isolated from vegetables. Brazilian J Microbiol 47: 438-443. doi: 10.1016/j.bjm.2015.11.033
    [93] David OM, Odeyemi AT (2007) Antibiotic resistant pattern of environmental isolates of Listeria monocytogenes from Ado-Ekiti, Nigeria. African J Biotechnol 6: 2135-2139. doi: 10.5897/AJB2007.000-2332
    [94] Gullberg E (2014) Selection of resistance at very low antibiotic concentrations. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine Uppsala: Acta Universitatis Upsaliensi.
    [95] Javadi A (2011) Effect of roasting, boiling and microwaving cooking method on doxycline residues in edible tissues of poultry by microbial method. African J Pharm Pharmacol 5: 1034-1037.
    [96] Walsh SE, Maillard JY, Russell AD, et al. (2003) Development of bacterial resistance to several biocides and effects on antibiotic susceptibility. J Hosp Infect 55: 98-107. doi: 10.1016/S0195-6701(03)00240-8
    [97] Eagar H, Swan G, Van Vuuren M (2012) A survey of antimicrobial usage in animals in South Africa with specific reference to food animals. J S Afr Vet Assoc 83: 1-8. doi: 10.4102/jsava.v83i1.16
    [98] Bester LA, Essack SY (2012) Observational study of the prevalence and antibiotic resistance of campylobacter spp. from different poultry production systems in KwaZulu-Natal, South Africa. J Food Prot 75: 154-159. doi: 10.4315/0362-028X.JFP-11-237
    [99] Ayaz ND, Erol I (2010) Relation between serotype distribution and antibiotic resistance profiles of Listeria monocytogenes isolated from ground turkey. J Food Prot 73: 967-972. doi: 10.4315/0362-028X-73.5.967
    [100] Wang G, Qian W, Zhang X, et al. (2015) Prevalence, genetic diversity and antimicrobial resistance of Listeria monocytogenes isolated from ready-to-eat meat products in Nanjing, China. Food Control 50: 202-208. doi: 10.1016/j.foodcont.2014.07.057
    [101] Skowron K, Kwiecińska-Piróg J, Grudlewska K, et al. (2018) The occurrence, transmission, virulence and antibiotic resistance of Listeria monocytogenes in fish processing plant. Int J Food Microbiol 282: 71-83. doi: 10.1016/j.ijfoodmicro.2018.06.011
    [102] Kovacevic J, Sagert J, Wozniak A, et al. (2013) Antimicrobial resistance and co-selection phenomenon in Listeria spp. recovered from food and food production environments. Food Microbiol 34: 319-327. doi: 10.1016/j.fm.2013.01.002
  • microbiol-07-01-004-s001.pdf
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5325) PDF downloads(250) Cited by(19)

Figures and Tables

Figures(4)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog