Review Special Issues

Functional behavior of AlF3 coatings for high-performance cathode materials for lithium-ion batteries

  • Received: 11 March 2019 Accepted: 04 May 2019 Published: 21 May 2019
  • In response to the ever worsening of the environment by consumption of fossil fuels, energy storage systems like lithium-ion batteries that offer high energy efficiency have evoked a great interest as power sources from portable electronics to electric vehicles. However, the improvement of calendar and cycling life together with safety issues require sophisticated technology to prevent degradation mechanisms. The surface modification of the electrode materials is part of the solution. In this paper, the surface coverage of cathode materials by aluminum fluoride is reviewed. The effect of AlF3 coating on electrochemical performance is examined at various deposit amounts with a comparison of the capacity retention and cycling stability of the different systems proposed in the literature.

    Citation: Christian M. Julien, Alain Mauger. Functional behavior of AlF3 coatings for high-performance cathode materials for lithium-ion batteries[J]. AIMS Materials Science, 2019, 6(3): 406-440. doi: 10.3934/matersci.2019.3.406

    Related Papers:

  • In response to the ever worsening of the environment by consumption of fossil fuels, energy storage systems like lithium-ion batteries that offer high energy efficiency have evoked a great interest as power sources from portable electronics to electric vehicles. However, the improvement of calendar and cycling life together with safety issues require sophisticated technology to prevent degradation mechanisms. The surface modification of the electrode materials is part of the solution. In this paper, the surface coverage of cathode materials by aluminum fluoride is reviewed. The effect of AlF3 coating on electrochemical performance is examined at various deposit amounts with a comparison of the capacity retention and cycling stability of the different systems proposed in the literature.


    加载中


    [1] Julien CM, Mauger A, Vijh A, et al. (2016) Lithium Batteries, Switzerland: Springer, Cham.
    [2] Vetter J, Novák P, Wagner MR, et al. (2005) Ageing mechanisms in lithium-ion batteries. J Power Sources 147: 269–281. doi: 10.1016/j.jpowsour.2005.01.006
    [3] Tröltzsch U, Kanoun O, Tränkler HR (2006) Characterizing aging effects of lithium ion batteries by impedance spectroscopy. Electrochim Acta 51: 1664–1672. doi: 10.1016/j.electacta.2005.02.148
    [4] Kiziltas-Yavuz N, Herklotz M, Hashem AM, et al. (2013) Synthesis, structural, magnetic and electrochemical properties of LiNi1/3Mn1/3Co1/3O2 prepared by a sol-gel method using table sugar as chelating agent. Electrochim Acta 113: 313–321. doi: 10.1016/j.electacta.2013.09.065
    [5] Birkl CR, Roberts MR, McTurk E, et al. (2017) Degradation diagnostics for lithium ion cells. J Power Sources 341: 373–386. doi: 10.1016/j.jpowsour.2016.12.011
    [6] Cabana J, Kwon BJ, Hu L (2018) Mechanisms of degradation and strategies for the stabilization of cathode–electrolyte interfaces in Li-ion batteries. Accounts Chem Res 51: 299–308. doi: 10.1021/acs.accounts.7b00482
    [7] Xu Z, Rahman MM, Mu L, et al. (2018) Chemomechanical behaviors of layered cathode materials in alkali metal ion batteries. J Mater Chem A 6: 21859–21884. doi: 10.1039/C8TA06875E
    [8] Zheng JM, Gu M, Xiao J, et al. (2014) Functioning mechanism of AlF3 coating on the Li- and Mn-rich cathode materials. Chem Mater 26: 6320–6327. doi: 10.1021/cm502071h
    [9] Tasaki K, Kanda K, Nakamura S, et al. (2003) Decomposition of LiPF6 and stability of PF5 in Li-ion battery electrolytes. J Electrochem Soc 150: A1628–A1636. doi: 10.1149/1.1622406
    [10] Myung ST, Izumi K, Komaba S, et al. (2005) Role of alumina coating on Li-Ni-Co-Mn-O particles as positive electrode material for lithium-ion batteries. Chem Mater 17: 3695–3704. doi: 10.1021/cm050566s
    [11] Chen Z, Qin Y, Amine K, et al. (2010) Role of surface coating on cathode materials for lithium-ion batteries. J Mater Chem 20: 7606–7612. doi: 10.1039/c0jm00154f
    [12] Mauger A, Julien CM (2014) Surface modifications of electrode materials for lithium-ion batteries: status and trends. Ionics 20: 751–787. doi: 10.1007/s11581-014-1131-2
    [13] Jin X, Xu Q, Liu H, et al. (2014) Excellent rate capability of Mg doped Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material for lithium-ion battery. Electrochim Acta 136: 19–26.
    [14] Zheng J, Wu X, Yang Y (2013) Improved electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material by fluorine incorporation. Electrochim Acta 105: 200–208.
    [15] Zhang SS (2006) A review on electrolyte additives for lithium-ion batteries. J Power Sources 162: 1379–1394. doi: 10.1016/j.jpowsour.2006.07.074
    [16] Li M, Zhou Y, Wu X, et al. (2018) The combined effect of CaF2 coating and La-doping on electrochemical performance of layered lithium-rich cathode material. Electrochim Acta 275: 18–24. doi: 10.1016/j.electacta.2018.04.077
    [17] Lu Y, Shi S, Yang F, et al. (2018) Mo-doping for improving the ZrF4 coated-Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as high performance cathode materials in lithium-ion batteries. J Alloy Compd 767: 23–33.
    [18] Hashem AMA, Abdel-Ghany AE, Eid AE, et al. (2011) Study of the surface modification of LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion battery. J Power Sources 196: 8632–8637. doi: 10.1016/j.jpowsour.2011.06.039
    [19] Yang ZX, Qiao QD, Yang WS (2011) Improvement of structural and electrochemical properties of commercial LiCoO2 by coating with LaF3. Electrochim Acta 56: 4791–4796. doi: 10.1016/j.electacta.2011.03.017
    [20] Sun SH, Kim SB, Park YJ (2009) The effects of LaF3 coating on the electrochemical property of Li[Ni0.3Co0.4Mn0.3]O2 cathode material. B Korean Chem Soc 30: 2584–2588.
    [21] Xie QL, Hu ZB, Zhao CH, et al. (2015) LaF3-coated Li[Li0.2Mn0.56Ni0.16Co0.08]O2 as cathode material with improved electrochemical performance for lithium ion batteries. RSC Adv 5: 50859–50864.
    [22] Lee HJ, Park YJ (2013) Interface characterization of MgF2-coated LiCoO2 thin films. Solid State Ionics 230: 86–91. doi: 10.1016/j.ssi.2012.08.003
    [23] Shi SJ, Tu JP, Mai YJ, et al. (2012) Structure and electrochemical performance of CaF2 coated LiMn1/3Ni1/3Co1/3O2 cathode material for Li-ion batteries. Electrochim Acta 83: 105–112. doi: 10.1016/j.electacta.2012.08.029
    [24] Liu X, Liu J, Huang T, et al. (2013) CaF2-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries. Electrochim Acta 109: 52–58.
    [25] Zhang X, Yang Y, Sun S, et al. (2016) Multifunctional ZrF4 nanocoating for improving lithium storage performances in layered Li[Li0.2Ni0.17Co0.07Mn0.56]O2. Solid State Ionics 284: 7–13.
    [26] Li JG, Wang L, Zhang Q, et al. (2009) Electrochemical performance of SrF2-coated LiMn1/3Ni1/3Co1/3O2 cathode materials for Li-ion batteries. J Power Sources 190: 149–153. doi: 10.1016/j.jpowsour.2008.08.011
    [27] Liu BL, Zhang Z, Wan J, et al. (2017) Improved electrochemical properties of YF3-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode for Li-ion batteries. Ionics 23: 1365–1374.
    [28] Sun YK, Cho SW, Myung ST, et al. (2007) Effect of AlF3 coating amount on high voltage cycling performance of LiCoO2. Electrochim Acta 53: 1013–1019. doi: 10.1016/j.electacta.2007.08.032
    [29] Wang Z, Wang Z, Guo H, et al. (2014) Enhanced high-voltage electrochemical performance of LiCoO2 coated with ZrOxFy. Mater Lett 123: 93–96. doi: 10.1016/j.matlet.2014.03.021
    [30] Lee KS, Myung ST, Amine K, et al. (2009) Dual functioned BiOF-coated Li[Li0.1Al0.05Mn1.85]O4 for lithium batteries. J Mater Chem 19: 1995–2005.
    [31] Hao Y, Yand F, Luo D, et al. (2018) Improved electrochemical performances of yttrium oxyfluoride-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion batteries. J Energy Chem 27: 1239–1246.
    [32] Bai Y, Jiang K, Sun S, et al. (2014) Performance improvement of LiCoO2 by MgF2 surface modification and mechanism exploration. Electrochim Acta 134: 347–354. doi: 10.1016/j.electacta.2014.04.155
    [33] Shi SJ, Tu JP, Tang YY, et al. (2013) Enhanced electrochemical performance of LiF-modified LiMn1/3Ni1/3Co1/3O2 cathode materials for Li-ion batteries. J Power Sources 225: 338–346. doi: 10.1016/j.jpowsour.2012.10.065
    [34] Chen Q, Wang Y, Zhang T, et al. (2012) Electrochemical performance of LaF3-coated LiMn2O4 cathode materials for lithium ion batteries. Electrochim Acta 83: 65–72. doi: 10.1016/j.electacta.2012.08.025
    [35] Amatucci GG, Pereira N (2007) Fluoride based electrode materials for advanced energy storage devices. J Fluorine Chem 128: 243–262. doi: 10.1016/j.jfluchem.2006.11.016
    [36] Cabana J, Monconduit L, Larcher D, et al. (2010) Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater 22: E170–E192. doi: 10.1002/adma.201000717
    [37] Badway F, Cosandey F, Pereira N, et al. (2003) Carbon metal fluoride nanocomposites: High-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries. J Electrochem Soc 150: A1318–A1327. doi: 10.1149/1.1602454
    [38] Bervas M, Badway F, Klein LC, et al. (2005) Bismuth fluoride nanocomposite as a positive electrode material for rechargeable lithium batteries. Electrochem Solid-State Lett 8: A179–A183. doi: 10.1149/1.1861040
    [39] Owen N, Zhang Q (2017) Investigations of aluminum fluoride as a new cathode material for lithium-ion batteries. J Appl Electrochem 47: 417–431. doi: 10.1007/s10800-017-1049-2
    [40] Le Bail A, Calvayrac F (2006) Hypothetical AlF3 crystal structures. J Solid State Chem 179: 3159–3166.
    [41] Navarro JL, Albanesi E, Vidal RA, et al. (2016) A study on the structural, electronic and optical properties of the α-AlF3 compound. Mater Res Bull 83: 615–622. doi: 10.1016/j.materresbull.2016.07.007
    [42] Bridou F, Cuniot-Ponsard M, Desvignes JM, et al. (2010) Experimental determination of optical constants of MgF2 and AlF3 thin films in the vacuum ultra-violet wavelength region (60–124 nm), and its application to optical designs. Opt Commun 283: 1351–1358. doi: 10.1016/j.optcom.2009.11.062
    [43] Myung ST, Lee KS, Yoon CS, et al. (2010) Effect of AlF3 coating on thermal behavior of chemically delithiated Li0.35[Ni1/3Co1/3Mn1/3]O2. J Phys Chem C 114: 4710–4718.
    [44] Kemnitz E, Menz DH (1998) Fluorinated metal oxides and metal fluorides as heterogeneous catalysts. Prog Solid State Ch 26: 97–153. doi: 10.1016/S0079-6786(98)00003-X
    [45] Sun YK, Lee MJ, Yoon CS, et al. (2012) The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv Mater 24: 1192–1196. doi: 10.1002/adma.201104106
    [46] Kanamura K, Okagawa T, Takehara ZI (1995) Electrochemical oxidation of propylene carbonate (containing various salts) on aluminum electrodes. J Power Sources 57: 119–123. doi: 10.1016/0378-7753(95)02265-1
    [47] Morita M, Shibata T, Yoshimoto N, et al. (2002) Anodic behavior of aluminum in organic solutions with different electrolytic salts for lithium ion batteries. Electrochim Acta 47: 2787–2793. doi: 10.1016/S0013-4686(02)00164-0
    [48] Ma T, Xu GL, Li Y, et al. (2017) Revisiting the corrosion of the aluminum current collector in lithium-ion batteries. J Phys Chem Lett 8: 1072–1077. doi: 10.1021/acs.jpclett.6b02933
    [49] Kawamura T, Tanaka T, Egashira M, et al. (2005) Methyl difluoroacetate inhibits corrosion of aluminum cathode current collector for lithium ion cells. Electrochem Solid-State Lett 8: A459–A463. doi: 10.1149/1.1993367
    [50] Hennessy J, Jewell AD, Balasubramanian K, et al. (2016) Ultraviolet optical properties of aluminum fluoride thin films deposited by atomic layer deposition. J Vac Sci Technol A 34: 01A120.
    [51] Lee Y, DuMont JW, Cavanagh AS, et al. (2015) Atomic layer deposition of AlF3 using trimethylaluminum and hydrogen fluoride. J Phys Chem C 119: 14185–14194. doi: 10.1021/acs.jpcc.5b02625
    [52] Mane AU, Elam JW, Park JS, et al. (2016) Metal fluoride passivation coatings prepared by atomic layer deposition on LiCoO2 for Li-ion batteries. US Patent 2016/0260962A1.
    [53] Zhou Y, Lee Y, Sun H, et al. (2017) Coating solution for high-voltage cathode: AlF3 atomic layer deposition for freestanding LiCoO2 electrodes with high energy density and excellent flexibility. ACS Appl Mater Inter 9: 9614–9619. doi: 10.1021/acsami.6b15628
    [54] Pang S, Wang Y, Chen T, et al. (2016) The effect of AlF3 modification on the physicochemical and electrochemical properties of Li-rich layered oxide. Ceram Int 42: 5397–5402. doi: 10.1016/j.ceramint.2015.12.076
    [55] Jackson DHK (2016) Optimizing AlF3 atomic layer deposition using trimethylaluminum and TaF5: Application to high voltage Li-ion battery cathodes. J Vac Sci Technol A 34: 031503. doi: 10.1116/1.4943385
    [56] Lee HJ, Kim SB, Park YJ (2012) Enhanced electrochemical properties of fluoride-coated LiCoO2 thin films. Nanoscale Res Lett 7: 16. doi: 10.1186/1556-276X-7-16
    [57] Hao S, Wolverton C (2013) Lithium transport in amorphous Al2O3 and AlF3 for discovery of battery coatings. J Phys Chem C 117: 8009–8013. doi: 10.1021/jp311982d
    [58] Jung SC, Han YK (2013) How do Li atoms pass through the Al2O3 coating layer during lithiation in Li-ion batteries? J Phys Chem Lett 4: 2681–2685. doi: 10.1021/jz401231e
    [59] Xu S, Jacobs RM, Nguyen HM, et al. (2015) Lithium transport through lithium-ion battery cathode coatings. J Mater Chem A 3: 17248–17272. doi: 10.1039/C5TA01664A
    [60] Riley LA, Van Atta S, Cavanagh AS, et al. (2011) Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Mn1/3Co1/3O2 as a layered-cathode material. J Power Sources 196: 3317–3324. doi: 10.1016/j.jpowsour.2010.11.124
    [61] Cheng HM, Wang FM, Chu JP, et al. (2012) Enhanced cyclability in lithium ion batteries: resulting from atomic layer deposition of Al2O3 or TiO2 on LiCoO2 electrodes. J Phys Chem C 116: 7629–7637.
    [62] Li X, Liu J, Meng X, et al. (2014) Significant impact on cathode performance of lithium-ion batteries by precisely controlled metal oxide nanocoatings via atomic layer deposition. J Power Sources 247: 57–69. doi: 10.1016/j.jpowsour.2013.08.042
    [63] Kim JH, Park MH, Song JH, et al. (2012) Effect of aluminum fluoride coating on the electrochemical and thermal properties of 0.5Li2MnO3·0.5LiNi0.5Co0.2Mn0.3O2 composite material. J Alloy Compd 517: 20–25.
    [64] Oi T, Miyauchi K, Uehara K (1982) Electrochromism of WO3/LiAlF4/LiIn thin-film overlayers. J Appl Phys 53: 1823. doi: 10.1063/1.330597
    [65] Stechert TR, Rushton MJD, Grimes RW, et al. (2012) Predicted structure, thermo-mechanical properties and Li ion transport in LiAlF4 glass. J Non-Cryst Solids 358: 1917–1923. doi: 10.1016/j.jnoncrysol.2012.05.044
    [66] Xie J, Sendek AD, Cubuk ED, et al. (2017) Atomic layer deposition of stable LiAlF4 lithium ion conductive interfacial layer for stable cathode cycling. ACS Nano 11: 7019–7027. doi: 10.1021/acsnano.7b02561
    [67] Oi T (1984) Ionic conductivity of LiF thin films containing di- and trivalent metal fluorides. Mater Res Bull 19: 451–457. doi: 10.1016/0025-5408(84)90105-3
    [68] Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22: 587–603.
    [69] Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: A perspective. J Am Chem Soc 135: 1167–1176. doi: 10.1021/ja3091438
    [70] Goodenough JB (2014) Electrochemical energy storage in a sustainable modern society. Energ Environ Sci 7: 14–18. doi: 10.1039/C3EE42613K
    [71] Sun YK, Han JM, Myung ST, et al. (2006) Significant improvement of high voltage cycling behavior AlF3-coated LiCoO2 cathode. Electrochem Commun 8: 821–826. doi: 10.1016/j.elecom.2006.03.040
    [72] Sun YK, Yoon CS, Myung ST, et al. (2009) Role of AlF3 coating on LiCoO2 particles during cycling to cutoff voltage above 4.5 V. J Electrochem Soc 156: A1005–A1010. doi: 10.1149/1.3236501
    [73] Aboulaich A, Ouzaoult K, Faqir H, et al. (2016) Improving thermal and electrochemical performances of LiCoO2 cathode at high cut-off charge potentials by MF3 (M = Ce, Al) coating. Mater Res Bull 73: 362–368. doi: 10.1016/j.materresbull.2015.09.020
    [74] Sun YK, Park BC, Yashiro H (2008) Improvement of the electrochemical properties of Li[Ni0.5Mn0.5]O2 by AlF3 coating. J Electrochem Soc 155: A705–A710.
    [75] Abdel-Ghany A, El-Tawil RS, Hashem AM, et al. (2019) Improved electrochemical performance of LiNi0.5Mn0.5O2 by Li-enrichment and AlF3 coating. Materialia 5: 100207.
    [76] Woo SU, Yoon CS, Amine K, et al. (2007) Significant improvement of electrochemical performance of AlF3-coated Li[Ni0.8Co0.1Mn0.1]O2 cathode materials. J Electrochem Soc 154: A1005–A1009.
    [77] Sun YK, Cho SW, Lee SW, et al. (2007) AlF3-coating to improve high voltage cycling performance of Li[Ni1 ∕ 3Co1 ∕ 3Mn1 ∕ 3]O2 cathode materials for lithium secondary batteries. J Electrochem Soc 154: A168–A172. doi: 10.1149/1.2422890
    [78] Lee KS, Myung ST, Kim DW, et al. (2011) AlF3-coated LiCoO2 and Li[Ni1/3Co1/3Mn1/3]O2 blend composite cathode for lithium ion batteries. J Power Sources 196: 6974–6977. doi: 10.1016/j.jpowsour.2010.11.014
    [79] Park BC, Kim HB, Myung ST, et al. (2008) Improvement of structural and electrochemical properties of AlF3-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode materials on high voltage region. J Power Sources 178: 826–831. doi: 10.1016/j.jpowsour.2007.08.034
    [80] Wang HY, Tang AD, Huang KL, et al. (2010) Uniform AlF3 thin layer to improve rate capability of LiNi1/3Co1/3 Mn1/3O2 material for Li-ion batteries. T Nonferr Metal Soc 20: 803–808.
    [81] Shi SJ, Tu JP, Tang YY, et al. (2013) Enhanced electrochemical performance of LiF-modified LiMn1/3Ni1/3Co1/3O2 cathode materials for Li-ion batteries. J Power Sources 225: 338–346. doi: 10.1016/j.jpowsour.2012.10.065
    [82] Lin H, Yang Y (2009) Structural characterization and electrochemical performance of AlF3-coated LiNi0.45Mn0.45Co0.10O2 as cathode materials for lithium ion batteries. Acta Chim Sinica 67: 104–108.
    [83] Myung ST, Lee KS, Yoon CS, et al. (2010) Effect of AlF3 coating on thermal behavior of chemically delithiated Li0.35[Ni1/3Co1/3Mn1/3]O2. J Phys Chem C 114: 4710–4718.
    [84] Song HG, Park YJ (2012) LiLaPO4-coated Li[Ni0.5Co0.2Mn0.3]O2 and AlF3-coated Li[Ni0.5Co0.2Mn0.3]O2 blend composite for lithium ion batteries. Mater Res Bull 47: 2843–2846.
    [85] Yang K, Fan LZ, Guo J, et al. (2012) Significant improvement of electrochemical properties of AlF3-coated LiNi0.5Co0.2Mn0.3O2 cathode materials. Electrochim Acta 63: 363–368.
    [86] Amalraj F, Talianker M, Markovsky B, et al. (2013) Studies of Li and Mn-rich Lix[MnNiCo]O2 electrodes: electrochemical performance, structure, and the effect of the aluminum fluoride coating. J Electrochem Soc 160: A2220–A2233.
    [87] Sun S, Yin Y, Wan N, et al. (2015) AlF3 surface‐coated Li[Li0.2Ni0.17Co0.07Mn0.56]O2 nanoparticles with superior electrochemical performance for lithium‐ion batteries. ChemSusChem 8: 2544–2550.
    [88] Xiao QC, Sun KL, Zhang HL, et al. (2014) High performance Li1.2(Mn0.54Co0.13Ni0.13)O2 with AlF3/carbon hybrid shell for lithium ion batteries. Mater Technol 29: A70–A76.
    [89] Deng H, Belharouak I, Yoon CS, et al. (2010) High temperature performance of surface-treated Li1.1(Ni0.15Co0.1Mn0.55)O1.95 layered oxide. J Electrochem Soc 157: A1035–A1039.
    [90] Zhao T, Chen S, Chen R, et al. (2014) The positive roles of integrated layered-spinel structures combined with nanocoating in low-cost Li-rich cathode Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 for lithium-ion batteries. ACS Appl Mater Inter 6: 21711–21720.
    [91] Li GR, Feng X, Ding Y, et al. (2012) AlF3-coated Li(Li0.17Ni0.25Mn0.58)O2 as cathode material for Li-ion batteries. Electrochim Acta 78: 308–315.
    [92] Ding J, Lu Z, Wu M, et al. (2017) Preparation and performance characterization of AlF3 as interface stabilizer coated Li1.24Ni0.12Co0.12Mn0.56O2 cathode for lithium-ion batteries. Appl Surf Sci 406: 21–29.
    [93] Rosina KJ, Jiang M, Zeng D, et al. (2012) Structure of aluminum fluoride coated Li[Li1/9Ni1/3Mn5/9]O2 cathodes for secondary lithium-ion batteries. J Mater Chem 22: 20602–20610. doi: 10.1039/c2jm34114j
    [94] Wang XY, Ye XH, Zhi XK, et al. (2013) Effects of AlF3 coating on the electrochemical performance of Li1.2Mn0.52Ni0.2Co0.08O2 cathode materials. Chinese J Inorg Chem 29: 774–778.
    [95] Li Y, Liu KY, Lü MY, et al. (2014) Synthesis, characterization and electrochemical performance of AlF3-coated Li1.2(Mn0.54Ni0.16Co0.08)O2 as cathode for Li-ion battery. T Nonferr Metal Soc 24: 3534–3540.
    [96] Park K, Park JH, Hong SG, et al. (2016) Induced AlF3 segregation for the generation of reciprocal Al2O3 and LiF coating layer on self-generated LiMn2O4 surface of over-lithiated oxide based Li-ion battery. Electrochim Acta 222: 830–837. doi: 10.1016/j.electacta.2016.11.044
    [97] Zhao S, Sun B, Yan K, et al. (2018) Aegis of lithium-rich cathode materials via heterostructured LiAlF4 coating for high-performance lithium-ion batteries. ACS Appl Mater Inter 10: 33260–33268. doi: 10.1021/acsami.8b11471
    [98] Chen D, Tu W, Chen M, et al. (2016) Synthesis and performances of Li-rich@AlF3@graphene as cathode of lithium ion battery. Electrochim Acta 193: 45–53. doi: 10.1016/j.electacta.2016.02.043
    [99] Zhu L, Liu Y, Wu W, et al. (2015) Surface fluorinated LiNi0.8Co0.15Al0.05O2 as a positive electrode material for lithium ion batteries. J Mater Chem A 3: 151456–15162.
    [100] Kim HB, Park BC, Myung ST, et al. (2008) Electrochemical and thermal characterization of AlF3-coated Li[Ni0.8Co0.15Al0.05]O2 cathode in lithium-ion cells. J Power Sources 179: 347–350.
    [101] Park BC, Kim HB, Bang HJ, et al. (2008) Improvement of electrochemical performance of Li[Ni0.8Co0.15Al0.05]O2 cathode materials by AlF3 coating at various temperatures. Ind Eng Chem Res 47: 3876–3882.
    [102] Zhang L, Luo F, Wang J, et al. (2014) Surface coating and electrochemical properties of LiNi0.8Co0.15Al0.05O2 cathode in lithium-ion cells. Adv Mater Res 1058: 317–320.
    [103] Lee SH, Yoon CS, Amine K, et al. (2013) Improvement of long-term cycling performance of Li[Ni0.8Co0.15Al0.05]O2 by AlF3 coating. J Power Sources 234: 201–207.
    [104] Lee DJ, Lee KS, Myung ST, et al. (2011) Improvement of electrochemical properties of Li1.1Mn1.85Al0.05O4 achieved by an AlF3 coating. J Power Sources 196: 1353–1357.
    [105] Liu H, Tang D (2009) The effect of nanolayer AlF3 coating on LiMn2O4 cycle life in high temperature for lithium secondary batteries. Russ J Electrochem 45: 762–764. doi: 10.1134/S1023193509070088
    [106] Tron A, Park YD, Mun J (2016) AlF3-coated LiMn2O4 as cathode material for aqueous rechargeable lithium battery with improved cycling stability. J Power Sources 325: 360–364. doi: 10.1016/j.jpowsour.2016.06.049
    [107] Liu Y, Lv J, Fei Y, et al. (2013) Improvement of storage performance of LiMn2O4/graphite battery with AlF3-coated LiMn2O4. Ionics 19: 1241–1246. doi: 10.1007/s11581-013-0853-x
    [108] Wang MS, Wang J, Zhang J, et al. (2015) Improving electrochemical performance of spherical LiMn2O4 cathode materials for lithium ion batteries by Al-F codoping and AlF3 surface coating. Ionics 21: 27–35. doi: 10.1007/s11581-014-1164-6
    [109] Zhu Z, Cai F, Yu J (2016) Improvement of electrochemical performance for AlF3-coated Li1.3Mn4/6Ni1/6Co1/6O2.40 cathode materials for Li-ion batteries. Ionics 22: 1353–1359.
    [110] Wu Q, Yin Y, Sun S, et al. (2015) Novel AlF3 surface modified spinel LiMn1.5Ni0.5O4 for lithium-ion batteries: performance characterization and mechanism exploration. Electrochim Acta 158: 73–80.
    [111] Li J, Zhang Y, Li J, et al. (2011) AlF3 coating of LiNi0.5Mn1.5O4 for high-performance Li-ion batteries. Ionics 17: 671–675.
    [112] Ke X, Zhao Z, Liu J, et al. (2016) Spinel oxide cathode material for high power lithium ion batteries for electrical vehicles. Energy Procedia 88: 689–692. doi: 10.1016/j.egypro.2016.06.099
    [113] Ochsner A, Murch GE, Shokuhfar A, et al. (2009) Improvement of the electrochemical properties in nano-sized Al2O3 and AlF3-coated LiFePO4 cathode materials. Defect Diffusion Forum 297–301: 906–911.
    [114] Song GM, Wu Y, Liu G, et al. (2009) Influence of AlF3 coating on the electrochemical properties of LiFePO4/graphite Li-ion batteries. J Alloy Compd 487: 214–217. doi: 10.1016/j.jallcom.2009.06.153
    [115] Tron A, Jo YN, Oh SH, et al. (2017) Surface modification of the LiFePO4 cathode for the aqueous rechargeable lithium ion battery. ACS Appl Mater Inter 9: 12391–12399. doi: 10.1021/acsami.6b16675
    [116] Wang Y, Qiu J, Yu Z, et al. (2018) AlF3-modified LiCoPO4 for an advanced cathode towards high energy lithium-ion battery. Ceram Int 44: 1312–1320. doi: 10.1016/j.ceramint.2017.08.084
    [117] Ding F, Xu W, Choi D, et al. (2012) Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries. J Mater Chem 22: 12745–12751. doi: 10.1039/c2jm31015e
    [118] Xu W, Chen X, Wang W, et al. (2013) Simply AlF3-treated Li4Ti5O12 composite anode materials for stable and ultrahigh power lithium-ion batteries. J Power Sources 236: 169–174. doi: 10.1016/j.jpowsour.2013.02.055
    [119] Li W, Li X, Chen M, et al. (2014) AlF3 modification to suppress the gas generation of Li4Ti5O12 composite anode battery. Electrochim Acta 139: 104–110. doi: 10.1016/j.electacta.2014.07.017
    [120] Liang G, Pillai AS, Peterson VK, et al. (2018) Effect of AlF3-coated Li4Ti5O12 on the performance and function of the LiNi0.5Mn1.5O4||Li4Ti5O12 full battery-An in operando neutron powder diffraction study. Front Energy Res 6: 89.
    [121] Kim JW, Kim DH, Oh DY, et al. (2015) Surface chemistry of LiNi0.5Mn1.5O4 particles coated by Al2O3 using atomic layer deposition for lithium-ion batteries. J Power Sources 274: 1254–1262.
    [122] Han JM, Myung ST, Cho SW, et al. (2006) Significant of AlF3-coated LiCoO2 cathode in high voltage cycling. Extended Abstract of the 210th ECS Meeting, Cancun, Mexico.
    [123] Makimura Y, Ohzuku T (2003) Lithium insertion material of LiNi1/2Mn1/2O2 for advanced lithium-ion batteries. J Power Sources 119–121: 156–160.
    [124] Lin H, Zheng J, Yang Y (2010) The effects of quenching treatment and AlF3 coating on LiNi0.5Mn0.5O2 cathode materials for lithium-ion battery. Mater Chem Phys 119: 519–523.
    [125] Amalraj F, Sclar H, Shilina Y, et al. (2018) Horizons for Li-ion batteries relevant to electro-mobility: high-specific-energy cathodes and chemically active separators. Adv Mater 30: 1801348. doi: 10.1002/adma.201801348
    [126] Zhao F, Mu D, Hou X, et al. (2015) Co-effect of AlF3 and MgF2 on the electrochemical performance of LiNi0.5Mn0.3Co0.2O2 cathode material under high voltage. Adv Mater Res 1088: 327–331.
    [127] Nayak PK, Erickson EM, Schipper F, et al. (2018) Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries. Adv Energy Mater 8: 1702397. doi: 10.1002/aenm.201702397
    [128] Schipper F, Nayak PK, Erickson EM, et al. (2017) Studies of cathode materials for lithium-ion batteries: recent progress and new challenges. Inorganics 5: 32. doi: 10.3390/inorganics5020032
    [129] Li H, Cormier M, Zhang N, et al. (2019) Is cobalt needed in Ni-rich positive electrode materials for lithium ion batteries? J Electrochem Soc 166: A429–A439. doi: 10.1149/2.1381902jes
    [130] Park J, Seo JH, Plett G, et al. (1993) Numerical simulation of the effect of the dissolution of LiMn2O4 particles on Li-ion battery performance. Electrochem Solid-State Lett 14: A14–A18.
    [131] Oh RG, Hong JE, Yang WG, et al. (2015) Effects of Al2O3 and AlF3 coating on the electrochemical performance of Li3V2(PO4)3/C cathode material in lithium ion batteries. Solid State Ionics 283: 131–136. doi: 10.1016/j.ssi.2015.10.004
    [132] Hovington P, Lagacé M, Guerfi A, et al. (2015) New lithium metal polymer solid state battery for an ultrahigh energy: nano C-LiFePO4 versus nano Li1.2V3O8. Nano Lett 15: 2671–2678.
    [133] Wang H, Yu Y, Jin G, et al. (2013) AlF3 coated LiV3O8 nanosheets with significantly improved cycling stability as cathode material for Li-ion battery. Solid State Ionics 236: 37–42. doi: 10.1016/j.ssi.2013.01.021
    [134] Julien CM, Mauger A (2018) In situ Raman analyses of electrode materials for Li-ion batteries. AIMS Mater Sci 5: 650–698. doi: 10.3934/matersci.2018.4.650
    [135] Julien CM (2000) 4-volt cathode materials for rechargeable lithium batteries wet-chemistry synthesis, structure and electrochemistry. Ionics 6: 30–46. doi: 10.1007/BF02375545
    [136] Julien CM, Massot M (2003) Lattice vibrations of materials for lithium rechargeable batteries III. Lithium manganese oxides. Mat Sci Eng B-Adv 100: 69–78.
    [137] Gross U, Rüdiger S, Kemnitz E, et al. (2007) Vibrational analysis study of aluminum trifluoride phases. J Phys Chem A 111: 5813–5819. doi: 10.1021/jp072388r
    [138] Boulard B, Jacoboni C, Rousseau M (1989) Raman spectroscopy vibrational analysis of octahedrally coordinated fluorides: Application to transition metal fluoride glasses. J Solid State Chem 80: 17–31. doi: 10.1016/0022-4596(89)90027-3
    [139] Makarowicz A, Bailey CL, Weiher N, et al. (2009) Electronic structure of Lewis acid sites on high surface area aluminium fluorides: a combined XPS and ab initio investigation. Phys Chem Chem Phys 11: 5664–5673. doi: 10.1039/b821484k
    [140] Tatara R, Karayaylali P, Yu Y, et al. (2019) The effect of electrode-electrolyte interface on the electrochemical impedance spectra for positive electrode in Li-ion battery. J Electrochem Soc 166: A5090–A5098. doi: 10.1149/2.0121903jes
    [141] Kendig M, Scully J (1990) Basic aspects of electrochemical impedance application for the life prediction of organic coatings on metals. Corrosion 46: 22–29. doi: 10.5006/1.3585061
    [142] Fletcher S (1994) Tables of degenerate electrical networks for use in the equivalent-circuit analysis of electrochemical systems. J Electrochem Soc 141: 1823–1826. doi: 10.1149/1.2055011
    [143] Zheng JM, Zhang ZR, Wu XB, et al. (2008) The effects of AlF3 coating on the performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 positive electrode material for lithium-ion battery. J Electrochem Soc 155: A775–A782.
    [144] Li D, Sasaki Y, Kobayakawa K, et al. (2006) Preparation and electrochemical characteristics of LiNi1/3Mn1/3Co1/3O2 coated with metal oxides coating. J Power Sources 160: 1342–1348. doi: 10.1016/j.jpowsour.2006.02.080
    [145] Kang SH, Amine K (2007) Layered cathode materials for lithium ion rechargeable batteries. US Patent 7,205,072B2.
    [146] Gallagher KG, Nelson PA, Dees DW (2011) Simplified calculation of the area specific impedance for battery design. J Power Sources 196: 2289–2297. doi: 10.1016/j.jpowsour.2010.10.020
    [147] Belharouak I, Sun YK, Liu J, et al. (2003) Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications. J Power Sources 123: 247–252. doi: 10.1016/S0378-7753(03)00529-9
    [148] Son JT (2008) Improvement of electrochemical properties of surface modified Li1.05Ni0.35Co0.25Mn0.4O2 cathode material for lithium secondary battery. B Korean Chem Soc 29: 1695–1698.
    [149] Klett M, Gilbert JA, Pupek KZ, et al. (2017) Layered oxide, graphite and silicon-graphite electrodes for lithium-ion cells: Effect of electrolyte composition and cycling windows. J Electrochem Soc 164: A6095–A6102. doi: 10.1149/2.0131701jes
    [150] Shim J, Striebel KA (2003) Characterization of high-power lithium-ion cells during constant current cycling: Part I. Cycle performance and electrochemical diagnostics. J Power Sources 122: 188–194.
    [151] Nakura K, Ariyoshi K, Ogaki F, et al. (2014) Characterization of lithium insertion electrodes: a method to measure area-specific impedance of single electrode. J Electrochem Soc 161: A841–A846. doi: 10.1149/2.090405jes
    [152] Mauger A, Julien CM (2017) Critical review on lithium-ion batteries: are they safe? Sustainable? Ionics 23: 1933–1947.
    [153] Wang MS, Wang J, Zhang J, et al. (2015) Improving electrochemical performance of spherical LiMn2O4 cathode materials for lithium ion batteries by Al-F codoping and AlF3 surface coating. Ionics 21: 27–35. doi: 10.1007/s11581-014-1164-6
    [154] Tron A, Kang H, Kim J, et al. (2018) Electrochemical performance of AlF3-coated LiV3O8 for aqueous rechargeable lithium-ion batteries. J Electrochem Sci Te 9: 60–68. doi: 10.33961/JECST.2018.9.1.60
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(9804) PDF downloads(2960) Cited by(22)

Article outline

Figures and Tables

Figures(14)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog