Review

Smart farming: A potential solution towards a modern and sustainable agriculture in Panama

  • Received: 22 November 2018 Accepted: 04 March 2018 Published: 28 March 2019
  • Agriculture in the Tropical region, which includes Panama and other countries in the Caribbean and Latin America, has been developed using traditional tools with very little technology that has been designed and imported from countries with different environmental conditions. Some studies have suggested that the misuse of these tools may cause a negative impact on food production systems. Therefore, it is important to study, develop, and implement technological solutions that are appropriate for the conditions of specific regions and that help mitigating problems related to climate change and the production of food. One important solution is the implementation of technologies that interact with each other through the use of communication networks in Agriculture, known as “Smart Farming”. Many developed countries have promoted Research and Development (R&D) in Smart Farming, providing great benefits to their food production sector. The objective of this work is to document and provide an overview of the current situation of the Agriculture in Panama and the opportunities and challenges in the study, development, and implementation of Smart Farming as a technological solution in the agricultural sector in this country, in order to achieve an intelligent agriculture that allows a modern and sustainable food production. Finally, this paper provides some recommendations for the successful implementation of Smart Farming in Panama.

    Citation: Edwin Collado, Anibal Fossatti, Yessica Saez. Smart farming: A potential solution towards a modern and sustainable agriculture in Panama[J]. AIMS Agriculture and Food, 2019, 4(2): 266-284. doi: 10.3934/agrfood.2019.2.266

    Related Papers:

  • Agriculture in the Tropical region, which includes Panama and other countries in the Caribbean and Latin America, has been developed using traditional tools with very little technology that has been designed and imported from countries with different environmental conditions. Some studies have suggested that the misuse of these tools may cause a negative impact on food production systems. Therefore, it is important to study, develop, and implement technological solutions that are appropriate for the conditions of specific regions and that help mitigating problems related to climate change and the production of food. One important solution is the implementation of technologies that interact with each other through the use of communication networks in Agriculture, known as “Smart Farming”. Many developed countries have promoted Research and Development (R&D) in Smart Farming, providing great benefits to their food production sector. The objective of this work is to document and provide an overview of the current situation of the Agriculture in Panama and the opportunities and challenges in the study, development, and implementation of Smart Farming as a technological solution in the agricultural sector in this country, in order to achieve an intelligent agriculture that allows a modern and sustainable food production. Finally, this paper provides some recommendations for the successful implementation of Smart Farming in Panama.


    加载中


    [1] Climate Works Foundation (2014) World Bank Group: Climate-Smart Development: Adding Up the Benefits of Actions that Help Build Prosperity, End Poverty, and Combat Climate Change. Available from: https://www.climateworks.org/report/climate-smart-development/.
    [2] World Bank Group (2017) Indicators for Agriculture & Rural Development: Rural population (% of total population). Available from: https://data.worldbank.org/indicator/SP.RUR. TOTL.ZS?view=chart.
    [3] World Bank Group (2015) Indicators for Agriculture & Rural Development: Arable land (% of land area). Available from: https://data.worldbank.org/indicator/AG.LND.ARBL.ZS?view=chart/.
    [4] Ministerio de Desarrollo Agropecuario (MIDA) (2017) Dirección de Agricultura: Informe del cierre agrícola año 2016–2017. Available from: https://www.mida.gob.pa/direcciones/ direcciones_nacionales/direcci-n-de-agricultura/cierre-agr-cola-2016-2017. html.
    [5] World Bank Group (2016) Indicators for Agriculture & Rural Development: Food production index (2004–2006 = 100). Available from: https://data.worldbank.org/indicator/AG. PRD.FOOD.XD.
    [6] World Bank Group (2016) Indicators for Agriculture & Rural Development: Crop production index (2004–2006 = 100). Available from: https://data.worldbank.org/indicator/AG. PRD.CROP.XD.
    [7] World Bank Group (2017) Indicators for Agriculture & Rural Development: Employment in agriculture, male (% of male employment) (modeled ILO estimate). Available from: https://data. worldbank.org/indicator/SL.AGR.EMPL.MA.ZS?view=chart.
    [8] Altieri MA, Nicholls CI (2009) Cambio climático y agricultura campesina: Impactos y respuestas adaptativas. LEISA Rev Agroeco 24: 5–8.9.
    [9] Nelson G, Koo J, Robertson R, et al. (2009) Cambio climático: el impacto en la agricultura y los costos de adaptación. Informe Política alimentaria. Instituto Internacional de Investigación sobre Políticas Alimentarias, Washington (EUA).
    [10] Rodríguez AG, López TT, Meza LE, et al. (2015) Innovaciones institucionales y en políticas sobre agricultura y cambio climático: Evidencia en América Latina y el Caribe (No. 678). Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    [11] Arntz W, Fahrbachl E (1996) El Niño experimento climático de la naturaleza: Causas físicas y efectos biológicos, 1 Eds., México: Fondo de Cultura Económica, 312.
    [12] Caviedes CN (2011) Droughts in the tropics. El niño in history: storming through the ages, 1 Eds., Florida, USA: University Press of Florida, 89–145.
    [13] Gameda S, Loboguerrero AM, Boa M, et al. (2014) Estado del arte en cambio climático, agricultura y seguridad alimentaria en Panamá. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).
    [14] Mora J, Ordaz JL, Acosta A, et al. (2010) Panamá: Efectos del cambio climático sobre la agricultura. Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    [15] Sempris E, Lo´ pez R (2003) Primera comunicación nacional sobre cambio climático: Capítulos sobre vulnerabilidad y adaptación al cambio climático en Panamá. Aplicación del Desarrollo Sostenible en la Adaptación del Cambio Climático, REDICA.
    [16] Aqeel-ur-Rehman (2015) Towards smart agriculture: An introduction. Smart agriculture: An approach towards better agriculture management, OMICS International, ISBN 978-1-63278-023-2, 1–10.
    [17] Abah J, Ishaq MN, Wada AC (2010) The role of biotechnology in ensuring food security and sustainable agriculture. Afr J Biotechnol 9: 8896–8900.
    [18] Mousavi SR, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1: 414–419.
    [19] Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: Present concerns and future aspects. Afr J Biotechnol 13: 705–713.
    [20] Dlodlo N, Kalezhi J (2015) The internet of things in agriculture for sustainable rural development. In: Proceedings International Conference on Emerging Trends in Networks and Computer Communications (ETNCC), Windhoek, Namibia, 13–18.
    [21] Wolfert S, Ge L, Verdouw C, et al. (2017) Big data in smart farming–a review. J Agr Syst 153: 69–80.
    [22] Chapman R, Slaymaker T (2002) ICTs and rural development: Review of the literature, current interventions and opportunities for action. In: Working Paper 192, Overseas Development Institute, London.
    [23] Jensen MH, MalterA J (1995) Protected agriculture: A global review. World Bank Publications 253.
    [24] Pilar L (2012) El cultivo en invernaderos y su relación con el clima. Cuadernos de Estudios Agroalimentarios (CEA) 3: 23–44.
    [25] Impron S (2011) A greenhouse crop production system for tropical lowland conditions. Ph.D Dissertation, Wageningnen University, Wageningen, The Netherlands.
    [26] Alpi A, Tognoni F (1999) Capítulo 1: Tipos diversos de protecciones y materiales constructivos, Cultivo en invernadero, 3 Eds., Madrid, España a: Mundi-prensa, 13–54.
    [27] Peralta O (2014) Invernaderos tropicales: Aportes para el fortalecimiento de la competitividad en el modelo de producción agrícola bajo ambiente controlado. Consejo Nacional de Investigaciones Agropecuarias y Forestales.
    [28] Rode PC, Gamarra RR, Espinosa HP, et al. (2010) Invernadero inteligente basado en un enfoque sustentable para la agricultura mexicana. In: Memorias del VIII Congreso Internacional sobre Innovación y Desarrollo Tecnológico, Cuernavaca Morelos, México, 623–630.
    [29] Rojas LJ, Veintimilla JL, Aucatoma LW (2018) Desarrollo de un sistema de telecontrol predictivo para un invernadero usando tecnología clouding para la empresa Green-House en Quito. Trabajo de tesis, Universidad Politécnica Salesiana, Ecuador.
    [30] Cando D, Caiza J (2016) Diseño e implementación de un prototipo de sistema de control, supervisión de temperatura y humedad, para cultivos caseros bajo invernadero, utilizando el mó-dulo Arduino, en la ciudad de Cayambe. Trabajo de tesis, Universidad de Israel.
    [31] Nemali KS, Van Iersel MW (2006) An automated system for controlling drought stress and irrigation in potted plants. J Sci Hort 110: 292–297.
    [32] Cardenas-Lailhacar B (2006) Sensor-based automation of irrigation of bermudagrass. Ph.D Dissertation, Gainesville: University of Florida.
    [33] Zella L, Kettab A, Chasseriaux G (2006) Design of a microirrigation system based on the control volume method. J Biotechnol Agron Soc Environ 10: 163–171.
    [34] Boman B, Smith S, Tullos B (2006) Control and automation in citrus microirrigation systems. Document No. CH194. Institute of Food and Agricultural Science, University of Florida Gainesville, Florida.
    [35] Benzekri A, Meghriche K, Refoufi L (2007) PC-based automation of a multi-mode control for an irrigation system. In: Proceedings of International Symposium on Industrial Embedded Systems SIES 2007, Lisbon, 310–315.
    [36] Somvanshi1 R, Suryawanshi A, Toraskar R (2015) Smart irrigation system using mobile phone. Int Res J Eng Tech 3: 1400–1402.
    [37] Pavithra D, Srinath S (2014) GSM based automatic irrigation control system for efficient use of resources and crop planning by using an android mobile. J of Mech Civ Eng 11: 49–55.
    [38] Lalehzari R, Nasab SB, Moazed H, et al. (2016) Multiobjective management of water allocation to sustainable irrigation planning and optimal cropping pattern. J Irrig Drain Eng 142: 1–10.
    [39] Reca J, García MA, Martínez J (2014) Optimal pumping scheduling for complex irrigation water distribution systems. J Water Res Plan Man 140: 630–637.
    [40] Collado E, Saez Y (2017) Sistema de Riego Inteligente para Optimizar el Consumo de Agua en Cultivos en Panamá. Proceedings of the 15th LACCEI International Multi-Conference for Engineering, Education and Technology 2017, LACCEI, Boca Raton, Florida, USA.
    [41] Shangguan Z, Shao M, Horton R, et al. (2002) A model for regional optimal allocation of irrigation water resources under deficit irrigation and its applications. Agr Water Manage 52: 139–154.
    [42] Verma JP, Jaiswal DK, Meena VS, et al. (2015) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. J Cleaner Prod 107: 793–794.
    [43] Helmer R, Hespanhol I, World Health Organization (1997) Chapter 2: Water quality requirements, In: Enderlein U.S., Enderlein R. and Williams W. P. (Eds), Water pollution control: A guide to the use of water quality management principles, 1 Eds., London: Taylor & Francis, 35–75.
    [44] Abbasi AZ, Islam N, Shaikh ZA (2014) A review of wireless sensors and networks' applications in agriculture. J Comp Stand Interf 36: 263–270.
    [45] Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT) (2015) Plan Estratégico Nacional de Ciencias, Tecnología e Innovación (PENCYT). Available from: http://www.senacyt.gob.pa/plan-estrategico-nacional/.
    [46] World Bank Group (2015) Indicators for Infrastructure: Mobile cellular subscriptions (per 100 people). Available from: https://data.worldbank.org/indicator/IT.CEL.SETS.P2?view=chart.
    [47] World Bank Group (2015) Indicators for Infrastructure: Fixed broadband subscriptions (per 100 people). Available from: https://data.worldbank.org/indicator/IT.NET.BBND.P2.
    [48] World Bank Group (2015) Indicators for Infrastructure: Secure Internet servers (per 1 million people). Available from: https://data.worldbank.org/indicator/IT.NET.SECR.P6?view=chart.
    [49] International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD), (2008) Agriculture on a Cross road, Executive Summary of the Synthesis Report, IAASTD Intergovernmental Plenary in Johannesburg South Africa. Available from: https://www.globalagriculture.org/fileadmin/files/weltagrarbericht/IAASTDBerichte/IAASTDExecutiveSummarySynthesisReport.pdf.
    [50] Department for International Development (DFID) (2004) Technology and Its Contribution To Pro-Poor Agricultural Development. Available from: http://www.fao.org/3/a-at358e.pdf.
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(10334) PDF downloads(1478) Cited by(14)

Article outline

Figures and Tables

Figures(5)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog