Citation: William Chad Young, Adrian E. Raftery, Ka Yee Yeung. A posterior probability approach for gene regulatory network inference in genetic perturbation data[J]. Mathematical Biosciences and Engineering, 2016, 13(6): 1241-1251. doi: 10.3934/mbe.2016041
[1] | Ancheng Deng, Xiaoqiang Sun . Dynamic gene regulatory network reconstruction and analysis based on clinical transcriptomic data of colorectal cancer. Mathematical Biosciences and Engineering, 2020, 17(4): 3224-3239. doi: 10.3934/mbe.2020183 |
[2] | Qian Li, Minawaer Hujiaaihemaiti, Jie Wang, Md. Nazim Uddin, Ming-Yuan Li, Alidan Aierken, Yun Wu . Identifying key transcription factors and miRNAs coregulatory networks associated with immune infiltrations and drug interactions in idiopathic pulmonary arterial hypertension. Mathematical Biosciences and Engineering, 2023, 20(2): 4153-4177. doi: 10.3934/mbe.2023194 |
[3] | Jiaxin Luo, Lin Wu, Dinghui Liu, Zhaojun Xiong, Linli Wang, Xiaoxian Qian, Xiaoqiang Sun . Gene regulatory network analysis identifies key genes and regulatory mechanisms involved in acute myocardial infarction using bulk and single cell RNA-seq data. Mathematical Biosciences and Engineering, 2021, 18(6): 7774-7789. doi: 10.3934/mbe.2021386 |
[4] | Youlong Lv, Jie Zhang . A genetic regulatory network based method for multi-objective sequencing problem in mixed-model assembly lines. Mathematical Biosciences and Engineering, 2019, 16(3): 1228-1243. doi: 10.3934/mbe.2019059 |
[5] | Changxiang Huan, Jiaxin Gao . Insight into the potential pathogenesis of human osteoarthritis via single-cell RNA sequencing data on osteoblasts. Mathematical Biosciences and Engineering, 2022, 19(6): 6344-6361. doi: 10.3934/mbe.2022297 |
[6] | Cicely K. Macnamara, Mark A. J. Chaplain . Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences and Engineering, 2017, 14(1): 249-262. doi: 10.3934/mbe.2017016 |
[7] | Ming-Xi Zhu, Tian-Yang Zhao, Yan Li . Insight into the mechanism of DNA methylation and miRNA-mRNA regulatory network in ischemic stroke. Mathematical Biosciences and Engineering, 2023, 20(6): 10264-10283. doi: 10.3934/mbe.2023450 |
[8] | Ignacio Alvarez-Castro, Jarad Niemi . Fully Bayesian analysis of allele-specific RNA-seq data. Mathematical Biosciences and Engineering, 2019, 16(6): 7751-7770. doi: 10.3934/mbe.2019389 |
[9] | David Iron, Adeela Syed, Heidi Theisen, Tamas Lukacsovich, Mehrangiz Naghibi, Lawrence J. Marsh, Frederic Y. M. Wan, Qing Nie . The role of feedback in the formation of morphogen territories. Mathematical Biosciences and Engineering, 2008, 5(2): 277-298. doi: 10.3934/mbe.2008.5.277 |
[10] | Shengjue Xiao, Yufei Zhou, Ailin Liu, Qi Wu, Yue Hu, Jie Liu, Hong Zhu, Ting Yin, Defeng Pan . Uncovering potential novel biomarkers and immune infiltration characteristics in persistent atrial fibrillation using integrated bioinformatics analysis. Mathematical Biosciences and Engineering, 2021, 18(4): 4696-4712. doi: 10.3934/mbe.2021238 |
[1] | Bioinformatics, 22 (2006), 815-822. |
[2] | Nature Genetics, 37 (2005), 382-390. |
[3] | Annual Review of Statistics and Its Application, 1 (2014), 255-278. |
[4] | BMC Bioinformatics, 14 (2013), 128-141. |
[5] | PLoS One, 4 (2009), e6799. |
[6] | Statistical Science, 19 (2004), 81-94. |
[7] | Journal of the Royal Statistical Society. Series B (Methodological), 39 (1977), 1-38. |
[8] | Pacific Symposium on Biocomputing, 4 (1999), 41-52. |
[9] | Bioinformatics Conference, 2003. CSB 2003. Proceedings of the 2003 IEEE , (2003), 523-528. |
[10] | http://www.synapse.org/#!Synapse:syn3049712/wiki/74628 |
[11] | Nucleic Acids Research, 42 (2014), w449-w460. |
[12] | Clinica Chimica Acta, 363 (2006), 71-82. |
[13] | PLoS Biol, 5 (2007), e8. |
[14] | RECOMB '00 Proceedings of the fourth annual international conference on Computational molecular biology, (2000), 127-135. |
[15] | BMC Bioinformatics, 8 (2007), 386. |
[16] | Nature Genetics, 31 (2002), 60-63. |
[17] | Annals of the New York Academy of Sciences, 1158 (2009), 265-275. |
[18] | Biosystems, 96 (2009), 86-103. |
[19] | Statistical Science, 14 (1999), 382-417. |
[20] | Journal of the American Statistical Association, 90 (1995), 773-795. |
[21] | Briefings in Bioinformatics, 4 (2003), 228-235. |
[22] | Computational Methods in Systems Biology, 2602 (2003), 104-113. |
[23] | Bioinformatics, 26 (2010), 2160-2168. |
[24] | BMC Systems Biology, 4 (2010), article 130. |
[25] | Briefings in Bioinformatics, 10 (2009), 408-423. |
[26] | Statistical Methods in Medical Research, 22 (2013), 519-536. |
[27] | Bioinformatics, 27 (2011), 2686-2691. |
[28] | http://lincsproject.org/ |
[29] | BMC Systems Biology, 6 (2012), p101. |
[30] | BMC Systems Biology, 5 (2011), p61. |
[31] | PLoS Computational Biology, 10 (2014), e1003676. |
[32] | Journal of Computational Biology, 16 (2009), 229-239. |
[33] | Proceedings of the National Academy of Sciences, 107 (2010), 6286-6291. |
[34] | BMC Bioinformatics, 7 (2006), S7. |
[35] | BMC Bioinformatics, 8 (2007), S5. |
[36] | PLoS One, 5 (2010), e14147. |
[37] | EURASIP Journal on Bioinformatics and Systems Biology, 2007 (2007), 79879. |
[38] | BMC Bioinformatics, 9 (2008), article 461. |
[39] | Mathematical Biosciences, 246 (2013), 326-334. |
[40] | Vol. 104. Technical report, Computer Science Division, University of California, Berkeley, CA, 1999. |
[41] | PLoS One, 5 (2010), e12912. |
[42] | Journal of the American Statistical Association, 92 (1997), 179-191. |
[43] | Sociological Methods & Research, 27 (1999), 411-417. |
[44] | Bioinformatics, 21 (2005), 3131-3137. |
[45] | Computational Biology and Chemistry, 59 (2015), 3-14. |
[46] | Signal Processing Conference (EUSIPCO), 2013 Proceedings of the 21st European, (2013), 1-4. |
[47] | Nucleic Acids Research, 32 (2004), D91-D94. |
[48] | Journal of Statistical Software, 35 (2010), 1-22. |
[49] | Journal of Computational Biology, 16 (2009), 407-426. |
[50] | Bioinformatics, 26 (2010), i517-i523. |
[51] | PLoS One, 9 (2014), e82393. |
[52] | Journal of the Royal Statistical Society. Series B (Methodological), 58 (1996), 267-288. |
[53] | Proceedings of the National Academy of Sciences, 98 (2001), 5116-5121. |
[54] | Electronic Journal of Statistics, 6 (2012), 38-90. |
[55] | IEEE Transactions on Information Theory, 55 (2009), 2183-2202. |
[56] | Nucleic Acids Research, 28 (2000), 316-319. |
[57] | Proceedings of the National Academy of Sciences, 108 (2011), 19436-19441. |
[58] | Pacific Symposium on Biocomputing, 7 (2002), 498-509. |
[59] | BMC Systems Biology, 8 (2014), 47-57. |
[60] | Bayesian Inference and Decision Techniques: Essays in Honor of Bruno De Finetti, 6 (1986), 233-243. |
[61] | BMC Bioinformatics, 11 (2010), p154. |
[62] | Bioinformatics, 21 (2005), 71-79. |
1. | William Chad Young, Ka Yee Yeung, Adrian E Raftery, Identifying dynamical time series model parameters from equilibrium samples, with application to gene regulatory networks, 2019, 19, 1471-082X, 444, 10.1177/1471082X18776577 | |
2. | Feng Liu, Qicheng Mei, Fenglan Sun, Xinmei Wang, Hua O Wang, 2018, Stability and Neimark-Sacker Bifurcation Analysis for Single Gene Discrete System with Delay, 978-988-15639-5-8, 961, 10.23919/ChiCC.2018.8483728 | |
3. | Xiao Liang, William Chad Young, Ling-Hong Hung, Adrian E. Raftery, Ka Yee Yeung, Integration of Multiple Data Sources for Gene Network Inference Using Genetic Perturbation Data, 2019, 26, 1557-8666, 1113, 10.1089/cmb.2019.0036 | |
4. | Xiao Liang, William Chad Young, Ling-Hong Hung, Adrian E. Raftery, Ka Yee Yeung, 2018, Integration of Multiple Data Sources for Gene Network Inference using Genetic Perturbation Data, 9781450357944, 601, 10.1145/3233547.3233692 | |
5. | Sanrong Liu, Haifeng Wang, 2019, Chapter 15, 978-981-15-0120-3, 186, 10.1007/978-981-15-0121-0_15 | |
6. | Bei Yang, Yaohui Xu, Andrew Maxwell, Wonryull Koh, Ping Gong, Chaoyang Zhang, MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data, 2018, 12, 1752-0509, 10.1186/s12918-018-0635-1 | |
7. | William Chad Young, Adrian E. Raftery, Ka Yee Yeung, Model-based clustering with data correction for removing artifacts in gene expression data, 2017, 11, 1932-6157, 10.1214/17-AOAS1051 | |
8. | Nimrita Koul, Sunilkumar S Manvi, 2020, A Perturbation based Algorithm for Inference of Gene Regulatory Networks for Multiple Myeloma, 978-1-7281-4108-4, 862, 10.1109/ICESC48915.2020.9155886 | |
9. | Clémence Réda, Emilie Kaufmann, Andrée Delahaye-Duriez, Machine learning applications in drug development, 2020, 18, 20010370, 241, 10.1016/j.csbj.2019.12.006 | |
10. | Chengye Zou, Xiaopeng Wei, Qiang Zhang, Changjun Zhou, Passivity of Reaction–Diffusion Genetic Regulatory Networks with Time-Varying Delays, 2018, 47, 1370-4621, 1115, 10.1007/s11063-017-9682-7 | |
11. | Wenxia Zhou, Xuejun Li, Lu Han, Shengjun Fan, 2021, Chapter 2, 978-981-16-0752-3, 35, 10.1007/978-981-16-0753-0_2 |