Loading [Contrib]/a11y/accessibility-menu.js

A posterior probability approach for gene regulatory network inference in genetic perturbation data

  • Received: 01 September 2015 Accepted: 29 June 2018 Published: 01 August 2016
  • MSC : Primary: 62P10, 92D10; Secondary: 92C42.

  • Inferring gene regulatory networks is an important problem in systems biology. However, these networks can be hard to infer from experimental data because of the inherent variability in biological data as well as the large number of genes involved. We propose a fast, simple method for inferring regulatory relationships between genes from knockdown experiments in the NIH LINCS dataset by calculating posterior probabilities, incorporating prior information. We show that the method is able to find previously identified edges from TRANSFAC and JASPAR and discuss the merits and limitations of this approach.

    Citation: William Chad Young, Adrian E. Raftery, Ka Yee Yeung. A posterior probability approach for gene regulatory network inference in genetic perturbation data[J]. Mathematical Biosciences and Engineering, 2016, 13(6): 1241-1251. doi: 10.3934/mbe.2016041

    Related Papers:

    [1] Ancheng Deng, Xiaoqiang Sun . Dynamic gene regulatory network reconstruction and analysis based on clinical transcriptomic data of colorectal cancer. Mathematical Biosciences and Engineering, 2020, 17(4): 3224-3239. doi: 10.3934/mbe.2020183
    [2] Qian Li, Minawaer Hujiaaihemaiti, Jie Wang, Md. Nazim Uddin, Ming-Yuan Li, Alidan Aierken, Yun Wu . Identifying key transcription factors and miRNAs coregulatory networks associated with immune infiltrations and drug interactions in idiopathic pulmonary arterial hypertension. Mathematical Biosciences and Engineering, 2023, 20(2): 4153-4177. doi: 10.3934/mbe.2023194
    [3] Jiaxin Luo, Lin Wu, Dinghui Liu, Zhaojun Xiong, Linli Wang, Xiaoxian Qian, Xiaoqiang Sun . Gene regulatory network analysis identifies key genes and regulatory mechanisms involved in acute myocardial infarction using bulk and single cell RNA-seq data. Mathematical Biosciences and Engineering, 2021, 18(6): 7774-7789. doi: 10.3934/mbe.2021386
    [4] Youlong Lv, Jie Zhang . A genetic regulatory network based method for multi-objective sequencing problem in mixed-model assembly lines. Mathematical Biosciences and Engineering, 2019, 16(3): 1228-1243. doi: 10.3934/mbe.2019059
    [5] Changxiang Huan, Jiaxin Gao . Insight into the potential pathogenesis of human osteoarthritis via single-cell RNA sequencing data on osteoblasts. Mathematical Biosciences and Engineering, 2022, 19(6): 6344-6361. doi: 10.3934/mbe.2022297
    [6] Cicely K. Macnamara, Mark A. J. Chaplain . Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences and Engineering, 2017, 14(1): 249-262. doi: 10.3934/mbe.2017016
    [7] Ming-Xi Zhu, Tian-Yang Zhao, Yan Li . Insight into the mechanism of DNA methylation and miRNA-mRNA regulatory network in ischemic stroke. Mathematical Biosciences and Engineering, 2023, 20(6): 10264-10283. doi: 10.3934/mbe.2023450
    [8] Ignacio Alvarez-Castro, Jarad Niemi . Fully Bayesian analysis of allele-specific RNA-seq data. Mathematical Biosciences and Engineering, 2019, 16(6): 7751-7770. doi: 10.3934/mbe.2019389
    [9] David Iron, Adeela Syed, Heidi Theisen, Tamas Lukacsovich, Mehrangiz Naghibi, Lawrence J. Marsh, Frederic Y. M. Wan, Qing Nie . The role of feedback in the formation of morphogen territories. Mathematical Biosciences and Engineering, 2008, 5(2): 277-298. doi: 10.3934/mbe.2008.5.277
    [10] Shengjue Xiao, Yufei Zhou, Ailin Liu, Qi Wu, Yue Hu, Jie Liu, Hong Zhu, Ting Yin, Defeng Pan . Uncovering potential novel biomarkers and immune infiltration characteristics in persistent atrial fibrillation using integrated bioinformatics analysis. Mathematical Biosciences and Engineering, 2021, 18(4): 4696-4712. doi: 10.3934/mbe.2021238
  • Inferring gene regulatory networks is an important problem in systems biology. However, these networks can be hard to infer from experimental data because of the inherent variability in biological data as well as the large number of genes involved. We propose a fast, simple method for inferring regulatory relationships between genes from knockdown experiments in the NIH LINCS dataset by calculating posterior probabilities, incorporating prior information. We show that the method is able to find previously identified edges from TRANSFAC and JASPAR and discuss the merits and limitations of this approach.


    [1] Bioinformatics, 22 (2006), 815-822.
    [2] Nature Genetics, 37 (2005), 382-390.
    [3] Annual Review of Statistics and Its Application, 1 (2014), 255-278.
    [4] BMC Bioinformatics, 14 (2013), 128-141.
    [5] PLoS One, 4 (2009), e6799.
    [6] Statistical Science, 19 (2004), 81-94.
    [7] Journal of the Royal Statistical Society. Series B (Methodological), 39 (1977), 1-38.
    [8] Pacific Symposium on Biocomputing, 4 (1999), 41-52.
    [9] Bioinformatics Conference, 2003. CSB 2003. Proceedings of the 2003 IEEE , (2003), 523-528.
    [10] http://www.synapse.org/#!Synapse:syn3049712/wiki/74628
    [11] Nucleic Acids Research, 42 (2014), w449-w460.
    [12] Clinica Chimica Acta, 363 (2006), 71-82.
    [13] PLoS Biol, 5 (2007), e8.
    [14] RECOMB '00 Proceedings of the fourth annual international conference on Computational molecular biology, (2000), 127-135.
    [15] BMC Bioinformatics, 8 (2007), 386.
    [16] Nature Genetics, 31 (2002), 60-63.
    [17] Annals of the New York Academy of Sciences, 1158 (2009), 265-275.
    [18] Biosystems, 96 (2009), 86-103.
    [19] Statistical Science, 14 (1999), 382-417.
    [20] Journal of the American Statistical Association, 90 (1995), 773-795.
    [21] Briefings in Bioinformatics, 4 (2003), 228-235.
    [22] Computational Methods in Systems Biology, 2602 (2003), 104-113.
    [23] Bioinformatics, 26 (2010), 2160-2168.
    [24] BMC Systems Biology, 4 (2010), article 130.
    [25] Briefings in Bioinformatics, 10 (2009), 408-423.
    [26] Statistical Methods in Medical Research, 22 (2013), 519-536.
    [27] Bioinformatics, 27 (2011), 2686-2691.
    [28] http://lincsproject.org/
    [29] BMC Systems Biology, 6 (2012), p101.
    [30] BMC Systems Biology, 5 (2011), p61.
    [31] PLoS Computational Biology, 10 (2014), e1003676.
    [32] Journal of Computational Biology, 16 (2009), 229-239.
    [33] Proceedings of the National Academy of Sciences, 107 (2010), 6286-6291.
    [34] BMC Bioinformatics, 7 (2006), S7.
    [35] BMC Bioinformatics, 8 (2007), S5.
    [36] PLoS One, 5 (2010), e14147.
    [37] EURASIP Journal on Bioinformatics and Systems Biology, 2007 (2007), 79879.
    [38] BMC Bioinformatics, 9 (2008), article 461.
    [39] Mathematical Biosciences, 246 (2013), 326-334.
    [40] Vol. 104. Technical report, Computer Science Division, University of California, Berkeley, CA, 1999.
    [41] PLoS One, 5 (2010), e12912.
    [42] Journal of the American Statistical Association, 92 (1997), 179-191.
    [43] Sociological Methods & Research, 27 (1999), 411-417.
    [44] Bioinformatics, 21 (2005), 3131-3137.
    [45] Computational Biology and Chemistry, 59 (2015), 3-14.
    [46] Signal Processing Conference (EUSIPCO), 2013 Proceedings of the 21st European, (2013), 1-4.
    [47] Nucleic Acids Research, 32 (2004), D91-D94.
    [48] Journal of Statistical Software, 35 (2010), 1-22.
    [49] Journal of Computational Biology, 16 (2009), 407-426.
    [50] Bioinformatics, 26 (2010), i517-i523.
    [51] PLoS One, 9 (2014), e82393.
    [52] Journal of the Royal Statistical Society. Series B (Methodological), 58 (1996), 267-288.
    [53] Proceedings of the National Academy of Sciences, 98 (2001), 5116-5121.
    [54] Electronic Journal of Statistics, 6 (2012), 38-90.
    [55] IEEE Transactions on Information Theory, 55 (2009), 2183-2202.
    [56] Nucleic Acids Research, 28 (2000), 316-319.
    [57] Proceedings of the National Academy of Sciences, 108 (2011), 19436-19441.
    [58] Pacific Symposium on Biocomputing, 7 (2002), 498-509.
    [59] BMC Systems Biology, 8 (2014), 47-57.
    [60] Bayesian Inference and Decision Techniques: Essays in Honor of Bruno De Finetti, 6 (1986), 233-243.
    [61] BMC Bioinformatics, 11 (2010), p154.
    [62] Bioinformatics, 21 (2005), 71-79.
  • This article has been cited by:

    1. William Chad Young, Ka Yee Yeung, Adrian E Raftery, Identifying dynamical time series model parameters from equilibrium samples, with application to gene regulatory networks, 2019, 19, 1471-082X, 444, 10.1177/1471082X18776577
    2. Feng Liu, Qicheng Mei, Fenglan Sun, Xinmei Wang, Hua O Wang, 2018, Stability and Neimark-Sacker Bifurcation Analysis for Single Gene Discrete System with Delay, 978-988-15639-5-8, 961, 10.23919/ChiCC.2018.8483728
    3. Xiao Liang, William Chad Young, Ling-Hong Hung, Adrian E. Raftery, Ka Yee Yeung, Integration of Multiple Data Sources for Gene Network Inference Using Genetic Perturbation Data, 2019, 26, 1557-8666, 1113, 10.1089/cmb.2019.0036
    4. Xiao Liang, William Chad Young, Ling-Hong Hung, Adrian E. Raftery, Ka Yee Yeung, 2018, Integration of Multiple Data Sources for Gene Network Inference using Genetic Perturbation Data, 9781450357944, 601, 10.1145/3233547.3233692
    5. Sanrong Liu, Haifeng Wang, 2019, Chapter 15, 978-981-15-0120-3, 186, 10.1007/978-981-15-0121-0_15
    6. Bei Yang, Yaohui Xu, Andrew Maxwell, Wonryull Koh, Ping Gong, Chaoyang Zhang, MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data, 2018, 12, 1752-0509, 10.1186/s12918-018-0635-1
    7. William Chad Young, Adrian E. Raftery, Ka Yee Yeung, Model-based clustering with data correction for removing artifacts in gene expression data, 2017, 11, 1932-6157, 10.1214/17-AOAS1051
    8. Nimrita Koul, Sunilkumar S Manvi, 2020, A Perturbation based Algorithm for Inference of Gene Regulatory Networks for Multiple Myeloma, 978-1-7281-4108-4, 862, 10.1109/ICESC48915.2020.9155886
    9. Clémence Réda, Emilie Kaufmann, Andrée Delahaye-Duriez, Machine learning applications in drug development, 2020, 18, 20010370, 241, 10.1016/j.csbj.2019.12.006
    10. Chengye Zou, Xiaopeng Wei, Qiang Zhang, Changjun Zhou, Passivity of Reaction–Diffusion Genetic Regulatory Networks with Time-Varying Delays, 2018, 47, 1370-4621, 1115, 10.1007/s11063-017-9682-7
    11. Wenxia Zhou, Xuejun Li, Lu Han, Shengjun Fan, 2021, Chapter 2, 978-981-16-0752-3, 35, 10.1007/978-981-16-0753-0_2
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2327) PDF downloads(576) Cited by(11)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog