Emotions are an integral part of problem-solving, but must emotions traditionally conceptualised as "negative" have negative consequences in learning? Frustration is one of the most prominent emotions reported during mathematical problem-solving across all levels of learning. Despite research aiming to mitigate frustration, it can play a positive role during mathematical problem solving. A systematic review method was used to explore how frustration usually appears in students during mathematical problem-solving and the typical patterns of emotions, behaviours, and cognitive processes that are associated with its occurrence. The findings are mixed, which informs the need for further research in this area. Additionally, there are theories and qualitative findings about the potential positive role of frustration that have not been followed up with empirical investigations, which illuminate how our findings about negative emotions may be limited by the questions we ask as researchers. With the support of research, I consider how educators may directly or indirectly address rethinking the role and consequences of frustration during problem-solving with their students.
Citation: Kaitlin Riegel. Frustration in mathematical problem-solving: A systematic review of research[J]. STEM Education, 2021, 1(3): 157-169. doi: 10.3934/steme.2021012
[1] | Harman Kaur, Meenakshi Rana . Congruences for sixth order mock theta functions λ(q) and ρ(q). Electronic Research Archive, 2021, 29(6): 4257-4268. doi: 10.3934/era.2021084 |
[2] | Meenakshi Rana, Shruti Sharma . Combinatorics of some fifth and sixth order mock theta functions. Electronic Research Archive, 2021, 29(1): 1803-1818. doi: 10.3934/era.2020092 |
[3] | Changjian Wang, Jiayue Zhu . Global dynamics to a quasilinear chemotaxis system under some critical parameter conditions. Electronic Research Archive, 2024, 32(3): 2180-2202. doi: 10.3934/era.2024099 |
[4] | Chang-Jian Wang, Yu-Tao Yang . Boundedness criteria for the quasilinear attraction-repulsion chemotaxis system with nonlinear signal production and logistic source. Electronic Research Archive, 2023, 31(1): 299-318. doi: 10.3934/era.2023015 |
[5] | Maoji Ri, Shuibo Huang, Canyun Huang . Non-existence of solutions to some degenerate coercivity elliptic equations involving measures data. Electronic Research Archive, 2020, 28(1): 165-182. doi: 10.3934/era.2020011 |
[6] | Nan Li . Summability in anisotropic mixed-norm Hardy spaces. Electronic Research Archive, 2022, 30(9): 3362-3376. doi: 10.3934/era.2022171 |
[7] | Lili Li, Boya Zhou, Huiqin Wei, Fengyan Wu . Analysis of a fourth-order compact θ-method for delay parabolic equations. Electronic Research Archive, 2024, 32(4): 2805-2823. doi: 10.3934/era.2024127 |
[8] | Jianxing Du, Xifeng Su . On the existence of solutions for the Frenkel-Kontorova models on quasi-crystals. Electronic Research Archive, 2021, 29(6): 4177-4198. doi: 10.3934/era.2021078 |
[9] | Zihan Zheng, Juan Wang, Liming Cai . Global boundedness in a Keller-Segel system with nonlinear indirect signal consumption mechanism. Electronic Research Archive, 2024, 32(8): 4796-4808. doi: 10.3934/era.2024219 |
[10] | Ying Hou, Liangyun Chen . Constructions of three kinds of Bihom-superalgebras. Electronic Research Archive, 2021, 29(6): 3741-3760. doi: 10.3934/era.2021059 |
Emotions are an integral part of problem-solving, but must emotions traditionally conceptualised as "negative" have negative consequences in learning? Frustration is one of the most prominent emotions reported during mathematical problem-solving across all levels of learning. Despite research aiming to mitigate frustration, it can play a positive role during mathematical problem solving. A systematic review method was used to explore how frustration usually appears in students during mathematical problem-solving and the typical patterns of emotions, behaviours, and cognitive processes that are associated with its occurrence. The findings are mixed, which informs the need for further research in this area. Additionally, there are theories and qualitative findings about the potential positive role of frustration that have not been followed up with empirical investigations, which illuminate how our findings about negative emotions may be limited by the questions we ask as researchers. With the support of research, I consider how educators may directly or indirectly address rethinking the role and consequences of frustration during problem-solving with their students.
Ramanujan's last letter to Hardy is one of the most mysterious and important mathematical letters in the history of mathematics. He introduced a class of functions that he called mock theta functions in his letter. For nearly a century, properties of these functions have been widely studied by different mathematicians. The important direction involves the arithmetic properties (see [1,2]), combinatorics (see [3,4]), identities between these functions, and generalized Lambert series (see [5,6]). For the interested reader, regarding the history and new developments in the study of mock theta functions, we refer to [7].
In 2007, McIntosh studied two second order mock theta functions in reference [8]; more details are given in reference [9]. These mock theta functions are:
A(q)=∞∑n=0q(n+1)2(−q;q2)n(q;q2)2(n+1)=∞∑n=0qn+1(−q2;q2)n(q;q2)n+1, | (1.1) |
B(q)=∞∑n=0qn(−q;q2)n(q;q2)n+1=∞∑n=0qn(n+1)(−q2;q2)n(q;q2)2n+1, | (1.2) |
where
(a;q)n=n−1∏i=0(1−aqi),(a;q)∞=∞∏i=0(1−aqi), |
(a1,a2,⋯,am;q)∞=(a1;q)∞(a2;q)∞⋯(am;q)∞, |
for |q|<1.
The functions A(q) and B(q) have been combinatorially interpreted in terms of overpartitions in [3] using the odd Ferrers diagram. In this paper, we study some arithmetic properties of one of the second order mock theta functions B(q). We start by noting, Bringmann, Ono and Rhoades [10] obtained the following identity:
B(q)+B(−q)2=f54f42, | (1.3) |
where
fkm:=(qm;qm)k∞, |
for positive integers m and k. We consider the function
B(q):=∞∑n=0b(n)qn. | (1.4) |
Followed by Eq (1.3), the even part of B(q) is given by:
∞∑n=0b(2n)qn=f52f41. | (1.5) |
In 2012, applying the theory of (mock) modular forms and Zwegers' results, Chan and Mao [5] established two identities for b(n), shown as:
∞∑n=0b(4n+1)qn=2f82f71, | (1.6) |
∞∑n=0b(4n+2)qn=4f22f44f51. | (1.7) |
In a sequel, Qu, Wang and Yao [6] found that all the coefficients for odd powers of q in B(q) are even. Recently, Mao [11] gave analogues of Eqs (1.6) and (1.7) modulo 6
∞∑n=0b(6n+2)qn=4f102f23f101f6, | (1.8) |
∞∑n=0b(6n+4)qn=9f42f43f6f81, | (1.9) |
and proved several congruences for the coefficients of B(q). Motivated from this, we prove similar results for b(n) by applying identities on the coefficients in arithmetic progressions. We present some congruence relations for the coefficients of B(q) modulo certain numbers of the form 2α⋅3β,2α⋅5β,2α⋅7β where α,β≥0. Our main theorems are given below:
Theorem 1.1. For n≥0, we have
∞∑n=0b(12n+9)qn=18[f92f123f171f36+2f52f43f6f91+28f62f33f66f141], | (1.10) |
∞∑n=0b(12n+10)qn=36[2f162f106f201f3f412−qf282f33f212f241f84f26−16q2f22f33f84f212f161f26]. | (1.11) |
In particular, b(12n+9)≡0(mod18),b(12n+10)≡0(mod36).
Theorem 1.2. For n≥0, we have
∞∑n=0b(18n+10)qn=72[f162f213f271f96+38qf132f123f241+64q2f102f33f96f211], | (1.12) |
∞∑n=0b(18n+16)qn=72[5f152f183f261f66+64qf122f93f36f231+32q2f92f126f201]. | (1.13) |
In particular, b(18n+10)≡0(mod72),b(18n+16)≡0(mod72).
Apart from these congruences, we find some relations between b(n) and restricted partition functions. Here we recall, Partition of a positive integer ν, is a representation of ν as a sum of non-increasing sequence of positive integers μ1,μ2,⋯,μn. The number of partitions of ν is denoted by p(ν) which is called the partition function. If certain conditions are imposed on parts of the partition, is called the restricted partition and corresponding partition function is named as restricted partition function. Euler proved the following recurrence for p(n) [12] [p. 12, Cor. 1.8]:
(n)−p(n−1)−p(n−2)+p(n−5)+p(n−7)−p(n−12)−p(n−15)+⋯+(−1)kp(n−k(3k−1)/2)+(−1)kp(n−k(3k+1)/2)+⋯={1, if n=0,0, otherwise. |
The numbers k(3k±1)/2 are pentagonal numbers. Following the same idea, different recurrence relations have been found by some researchers for restricted partition functions. For instance, Ewell [13] presented the recurrence for p(n) involving the triangular numbers. For more study of recurrences, see [14,15,16]. Under the influence of these efforts, we express the coefficients of mock theta function B(q) which are in arithmetic progression in terms of recurrence of some restricted partition functions.
This paper is organized as follows: Section 2, here we recall some preliminary lemmas and present the proof of Theorems 1.1 and 1.2. Section 3 includes some more congruences based on the above results. Section 4 depicts the links between b(n) and some of the restricted partition functions.
Before proving the results, we recall Ramanujan's theta function:
j(a,b)=∞∑n=−∞an(n+1)2bn(n−1)2, for|ab|<1. |
Some special cases of j(a,b) are:
ϕ(q):=j(q,q)=∞∑n=−∞qn2=f52f21f24,ψ(q):=j(q,q3)=∞∑n=0qn(n+1)/2=f22f1. |
Also,
ϕ(−q)=f21f2. |
The above function satisfy the following properties (see Entries 19, 20 in [17]).
j(a,b)=(−a,−b,ab;ab)∞,(Jacobi's triple product identity), |
j(−q,−q2)=(q;q)∞,(Euler's pentagonal number theorem). |
We note the following identities which will be used below.
Lemma 2.1. [[18], Eq (3.1)] We have
f32f31=f6f3+3qf46f59f83f18+6q2f36f29f218f73+12q3f26f518f63f9. | (2.1) |
Lemma 2.2. We have
f22f1=f6f29f3f18+qf218f9, | (2.2) |
f2f21=f46f69f83f318+2qf36f39f73+4q2f26f318f63. | (2.3) |
Proof. The first identity follows from [[19] Eq (14.3.3)]. The proof of second identity can be seen from [20].
Lemma 2.3. We have
1f41=f144f142f48+4qf24f48f102, | (2.4) |
f41=f104f22f48−4qf22f48f24. | (2.5) |
Proof. Identity (2.4) is Eq (1.10.1) from [19]. To obtain (2.5), replacing q by −q and then using
(−q;−q)∞=f32f1f4. |
Now, we present the proof of Theorems 1.1 and 1.2.
Proof of Theorems 1.1 and 1.2. From Eq (1.6), we have
∞∑n=0b(4n+1)qn=2(f32f31)3⋅f22f1. |
Substituting the values from Eqs (2.1) and (2.2) in above, we get
∞∑n=0b(4n+1)qn=2f36f29f33f18+2qf26f218f23f9+12qf66f79f103f218+18q2f96f129f173f318+36q2f56f49f18f93+90q3f86f99f163+72q3f46f9f418f83+48q4f36f718f73f29+288q4f76f69f318f153+504q5f66f39f618f143+576q6f56f918f133. | (2.6) |
Bringing out the terms involving q3n+2, dividing by q2 and replacing q3 by q, we get (1.10). Considering Eq (1.5), we have
∞∑n=0b(2n)qn=f32f31⋅f22f1. |
Substituting the values from Eqs (2.1) and (2.2), we obtain
∞∑n=0b(2n)qn=(f6f3+3qf46f59f83f18+6q2f36f29f218f73+12q3f26f518f63f9)(f6f29f3f18+qf218f9). |
Extracting the terms involving q3n,q3n+1,q3n+2 from the above equation, we have
∞∑n=0b(6n)qn=f22f23f21f6+18qf32f3f46f71, | (2.7) |
∞∑n=0b(6n+2)qn=f2f26f1f3+3f52f73f91f26+12qf22f76f61f23, | (2.8) |
∞∑n=0b(6n+4)qn=9f42f43f6f81. | (2.9) |
Using Eqs (2.4) and (2.5) in Eq (2.9), we get
∞∑n=0b(6n+4)qn=9f42f6(f144f142f48+4qf24f48f102)2(f1012f26f424−4q3f26f424f212). |
Extracting the terms involving q2n,q2n+1 from above, we arrive at
∞∑n=0b(12n+4)qn=9(f282f106f241f3f84f412+16qf42f84f106f161f3f412−32q2f162f33f412f201f26), | (2.10) |
∞∑n=0b(12n+10)qn=9(8f162f106f201f3f412−4qf282f33f412f241f84f26−16q2f42f33f84f412f161f26). | (2.11) |
From Eq (2.11), we ultimately arrive at Eq (1.11). To prove Theorem 1.2, consider Eq (2.9) as:
∞∑n=0b(6n+4)qn=9f43f6(f2f21)4. |
Using Eq (2.3) in above, we get
∞∑n=0b(6n+4)qn=9f176f249f283f1218+72qf166f219f273f918+360q2f156f189f263f618+288q3f146f159f253f318+864q3f126f159f193f618+2736q4f136f129f243+4608q5f126f99f318f233+5760q6f116f69f618f223+4608q7f106f39f918f213+2304q8f96f1218f203. | (2.12) |
Bringing out the terms involving q3n+1 and q3n+2 from Eq (2.12), we get Eqs (1.12) and (1.13), respectively.
This segment of the paper contains some more interesting congruence relations for b(n).
Theorem 3.1. For n≥0, we have
b(12n+1)≡{2(−1)k(mod6),ifn=3k(3k+1)/2,0(mod6),otherwise. | (3.1) |
Theorem 3.2. For n≥0, we have
b(2n)≡{(−1)k(2k+1)(mod4),ifn=k(k+1),0(mod4),otherwise. | (3.2) |
Theorem 3.3. For n≥0, we have
b(36n+10)≡0(mod72), | (3.3) |
b(36n+13)≡0(mod6), | (3.4) |
b(36n+25)≡0(mod12), | (3.5) |
b(36n+34)≡0(mod144), | (3.6) |
b(108n+t)≡0(mod18),for t∈{49,85}. | (3.7) |
Theorem 3.4. For n≥0, we have
b(20n+t)≡0(mod5),for t∈{8,16} | (3.8) |
b(20n+t)≡0(mod20),for t∈{6,18} | (3.9) |
b(20n+17)≡0(mod10), | (3.10) |
b(28n+t)≡0(mod14),for t∈{5,21,25}. | (3.11) |
Proof of Theorem 3.1. From Eq (2.6), picking out the terms involving q3n and replacing q3 by q, we have
∞∑n=0b(12n+1)qn=2f32f23f31f6+90qf82f93f161+72qf42f3f46f81+576q2f52f96f31. | (3.12) |
Reducing modulo 6, we obtain
∞∑n=0b(12n+1)qn≡2f3(mod6). | (3.13) |
With the help of Euler's pentagonal number theorem,
∞∑n=0b(12n+1)qn≡2∞∑k=−∞(−1)kq3k(3k+1)2(mod6), |
which completes the proof of Theorem 3.1.
Proof of Theorem 3.2. Reducing Eq (1.5) modulo 4, we get
∞∑n=0b(2n)qn≡f32(mod4). | (3.14) |
From Jacobi's triple product identity, we obtain
∞∑n=0b(2n)qn≡∞∑k=0(−1)k(2k+1)qk(k+1)(mod4), |
which completes the proof of Theorem 3.2.
Proof of Theorem 3.3. Consider Eq (1.11), reducing modulo 72
∞∑n=0b(12n+10)qn≡36qf282f33f412f241f84f26(mod72), |
∞∑n=0b(12n+10)qn≡36qf282f33f412f122f84f12=36qf162f33f312f84(mod72) |
or
∞∑n=0b(12n+10)qn≡36qf33f312(mod72). | (3.15) |
Extracting the terms involving q3n, replacing q3 by q in Eq (3.15), we arrive at Eq (3.3). Similarly, consider Eq (1.13) and reducing modulo 144, we have
∞∑n=0b(18n+16)qn≡72⋅5f152f183f261f66(mod144),≡72f152f96f132f66=72f22f36(mod144). |
Extracting the terms involving q2n+1, dividing both sides by q and replacing q2 by q, we get Eq (3.6).
From Eq (3.20), we get
∞∑n=0b(12n+1)qn≡2f3(mod6). |
Bringing out the terms containing q3n+1, dividing both sides by q and replacing q3 by q, we have b(36n+13)≡0(mod6). Reducing Eq (3.12) modulo 12, we have
∞∑n=0b(12n+1)qn≡2f32f23f31f6+90qf82f93f161(mod12), |
∞∑n=0b(12n+1)qn≡2f23f6(f6f3+3qf46f59f83f18+6q2f36f29f218f73+12q3f26f518f63f9)+6qf82f93f82. |
Extracting the terms containing q3n+2, dividing by q2 and replacing q3 by q, we obtain Eq (3.5). Reducing Eq (3.12) modulo 18,
∞∑n=0b(12n+1)qn≡2f32f23f31f6(mod18),=2f23f6(f6f3+3qf46f59f83f18+6q2f36f29f218f73+12q3f26f518f63f9). |
Extracting the terms involving q3n+1, dividing both sides by q and replacing q3 by q, we have
∞∑n=0b(36n+13)qn≡6f32f53f61f6≡6f6f53f23f6(mod18) |
or
∞∑n=0b(36n+13)qn≡6f33(mod18). |
Extracting the terms containing q3n+1,q3n+2 from above to get Eq (3.7).
Proof of Theorem 3.4. From Eqs (1.5) and (2.4), we have
∞∑n=0b(2n)qn=f52(f144f142f48+4qf24f48f102). |
Bringing out the terms containing even powers of q, we obtain
∞∑n=0b(4n)qn=f142f91f44, |
which can be written as:
∞∑n=0b(4n)qn=f152f101f54.f1f4f2≡f310f25f20.f1f4f2(mod5). |
Here
f1f4f2=(q;q)∞(q4;q4)∞(q2;q2)∞,=(q;q2)∞(q2;q2)∞(q4;q4)∞(q2;q2)∞, |
f1f4f2=(q,q3,q4;q4)∞=∞∑n=−∞(−1)nq2n2−n, | (3.16) |
where the last equality follows from Jacobi's triple product identity. Using the above identity, we have
∞∑n=0b(4n)qn≡f310f25f20∞∑n=−∞(−1)nq2n2−n(mod5). | (3.17) |
Since 2n2−n≢2,4(mod5), it follows that the coefficients of q5n+2,q5n+4 in ∑∞n=0b(4n)qn are congruent to 0(mod5), which proves that b(20n+t)≡0(mod5), for t∈{8,16}.
Consider Eq (1.7)
∞∑n=0b(4n+2)qn=4f54f51f22f4≡4f20f5f22f4(mod20). |
Now
f22f4=(q2;q2)2∞(q4;q4)∞,=(q2;q2)∞(q2;q4)∞(q4;q4)∞(q4;q4)∞, |
f22f4=(q2,q2,q4;q4)∞=∞∑n=−∞(−1)nq2n2. |
Using the above identity, we get
∞∑n=0b(4n+2)qn≡4f20f5∞∑n=−∞(−1)nq2n2(mod20). | (3.18) |
Since 2n2≢1,4(mod5), it follows that the coefficients of q5n+1,q5n+4 in ∑∞n=0b(4n+2)qn are congruent to 0(mod20), which proves Eq (3.9). For the proof of next part, consider Eq (1.6) as:
∞∑n=0b(4n+1)qn=2f52f101f31f32≡2f10f25f31f32(mod10), |
∞∑n=0b(4n+1)qn≡2f10f25∞∑k=0(−1)k(2k+1)qk(k+1)2∞∑m=0(−1)m(2m+1)qm(m+1)(mod10). | (3.19) |
Therefore, to contribute the coefficient of q5n+4, (k,m)≡(2,2)(mod5) and thus the contribution towards the coefficient of q5n+4 is a multiple of 5.
Consider Eq (1.6) as:
∞∑n=0b(4n+1)qn=2f72f71f2≡2f14f7f2(mod14). |
With the help of Euler's pentagonal number theorem,
∞∑n=0b(4n+1)qn≡2f14f7∞∑n=−∞(−1)nqn(3n+1)(mod14). | (3.20) |
As n(3n+1)≢1,5,6(mod7), it readily proves Eq (3.11).
In this section, we find some recurrence relations connecting b(n) and restricted partition functions. First we define some notations. Let ¯pl(n) denotes the number of overpartitions of n with l copies. Then
∞∑n=0¯pl(n)qn=(f2f21)l. |
Let pld(n) denotes the number of partitions of n into distinct parts with l copies. Then
∞∑n=0pld(n)qn=(f2f1)l. |
Theorem 4.1. We have
b(2n)=¯p2(n)−3¯p2(n)+5¯p2(n)+⋯+(−1)k(2k+1)¯p2(n−k(k+1))+⋯, | (4.1) |
(2n)=p4d(n)−p4d(n−2)−p4d(n−4)+p4d(n−10)+p4d(n−14)+⋯+(−1)kp4d(n−k(3k−1))+(−1)kp4d(n−k(3k+1))+⋯. | (4.2) |
Theorem 4.2.
(4n+1)=2p8d(n)−2p8d(n−1)−2p8d(n−2)+2p8d(n−5)+2p8d(n−7)+⋯+(−1)k2p8d(n−k(3k−1)2)+(−1)k2p8d(n−k(3k+1)2)+⋯, | (4.3) |
b(4n+1)=2n∑c=0b(2c)p3d(n−c). | (4.4) |
Theorem 4.3.
(6n+2)=4p10d(n)−8p10d(n−3)+8p10d(n−12)+8p10d(n−27)+⋯+8(−1)kp10d(n−3k2)+⋯. | (4.5) |
Proof of Theorem 4.1. Consider (1.5) as:
∞∑n=0b(2n)qn=(f2f21)2⋅f32. |
Then
∞∑n=0b(2n)qn=(∞∑n=0¯p2(n)qn)(∞∑k=0(−1)k(2k+1)qk(k+1)),=∞∑n=0∞∑k=0(−1)k(2k+1)¯p2(n)qn+k(k+1),=∞∑n=0(∞∑k=0(−1)k(2k+1)¯p2(n−k(k+1)))qn. |
From the last equality, we readily arrive at (4.1). To prove (4.2), consider (1.5) as:
∞∑n=0b(2n)qn=(f2f1)4⋅f2,=(∞∑n=0p4d(n)qn)(∞∑k=−∞(−1)kqk(3k+1)),=(∞∑n=0p4d(n)qn)(1+∞∑k=1(−1)kqk(3k−1)+∞∑k=1(−1)kqk(3k+1)), |
∞∑n=0b(2n)qn=∞∑n=0p4d(n)qn+∞∑n=0(∞∑k=1(−1)kp4d(n)qk(3k−1)+n)+∞∑n=0(∞∑k=1(−1)kp4d(n)qk(3k+1)+n), |
∞∑n=0b(2n)qn=∞∑n=0p4d(n)qn+∞∑n=0(∞∑k=1(−1)kp4d(n−k(3k−1))qn)+∞∑n=0(∞∑k=1(−1)kp4d(n−k(3k+1))qn), |
which proves Eq (4.2).
Proof of Theorem 4.2. Consider Eq (1.6) as:
∞∑n=0b(4n+1)qn=2(f2f1)8f1,=2(∞∑n=0p8d(n)qn)(∞∑k=−∞(−1)kqk(3k+1)2),=2(∞∑n=0p8d(n)qn)(1+∞∑k=1(−1)kqk(3k−1)/2+∞∑k=1(−1)kqk(3k+1)/2), |
∞∑n=0b(4n+1)qn=∞∑n=0p8d(n)qn+∞∑n=0∞∑k=1(−1)kp8d(n)qk(3k−1)/2+n+∞∑n=0∞∑k=1(−1)kp8d(n)qk(3k+1)/2+n, |
∞∑n=0b(4n+1)qn=∞∑n=0p8d(n)qn+∞∑n=0(∞∑k=1(−1)kp8d(n−k(3k−1)2))qn+∞∑n=0(∞∑k=1(−1)kp8d(n−k(3k+1)2))qn, |
which proves Eq (4.3). To prove Eq (4.4), consider Eq (1.6) as:
∞∑n=0b(4n+1)qn=2(f52f41)f32f31,=2(∞∑n=0b(2n)qn)(∞∑k=0p3d(k)qk),=2∞∑n=0(n∑c=0b(2c)p3d(n−c))qn. |
Comparing the coefficients of qn, we arrive at Eq (4.4).
Proof of Theorem 4.3. Consider Eq (1.8) as:
∞∑n=0b(6n+2)qn=4(f2f1)10⋅f23f6,=4(∞∑n=0p10d(n)qn)(∞∑k=−∞(−1)kq3k2),=4(∞∑n=0p10d(n)qn)(1+2∞∑k=1(−1)kq3k2),=4∞∑n=0p10d(n)qn+8∞∑n=0(∞∑k=1(−1)kp10d(n)q3k2+n),=4∞∑n=0p10d(n)qn+8∞∑n=0(∞∑k=1(−1)kp10d(n−3k2))qn. |
Comparing the coefficients of qn to obtain Eq (4.5).
In this paper, we have provided the arithmetic properties of second order mock theta function B(q), introduced by McIntosh. Some congruences are proved for the coefficients of B(q) modulo specific numbers. The questions which arise from this work are:
(i) Are there exist congruences modulo higher primes for B(q)?
(ii) Is there exist any other technique (like modular forms) that helps to look for some more arithmetic properties of B(q)?
(iii) How can we explore the other second order mock theta function A(q)?
The first author is supported by University Grants Commission (UGC), under grant Ref No. 971/(CSIR-UGC NET JUNE 2018) and the the second author is supported by Science and Engineering Research Research Board (SERB-MATRICS) grant MTR/2019/000123. The authors of this paper are thankful to Dr. Rupam Barman, IIT Guwahati, for his valuable insight during establishing Theorems 3.1 and 3.2. We would like to thank the referee for carefully reading our paper and offering corrections and helpful suggestions.
The authors declare there is no conflicts of interest.
[1] | Hannula, M., Emotions in problem solving, in Selected Regular Lectures from the 12th International Congress on Mathematical Education, S.J. Cho Ed. 2015, pp. 269-288, Springer. 10.1007/978-3-319-17187-6_16. |
[2] |
Affect in mathematics education: An introduction. Educational Studies in Mathematics (2006) 63: 113-122. ![]() |
[3] | McCleod, D.B., The role of affect in mathematical problem solving, in Affect and Mathematical Problem Solving: A New Perspective, D.B. Mcleod and V.M. Adams Ed. 1989, pp. 20-36, Springer. 10.1007/978-1-4612-3614-6_2. |
[4] |
Dynamics of affective states during complex learning. Learning and Instruction (2012) 22: 145-157. ![]() |
[5] |
Affective pathways and representation in mathematical problem solving. Mathematical Thinking and Learning (2000) 2: 209-219. ![]() |
[6] | Pekrun, R. and Stephens, E.J., Achievement emotions in higher education, in Higher Education: Handbook of Theory and Research, J.C. Smart Ed. 2010, 25: 257-306, Springer. 10.1007/978-90-481-8598-6_7. |
[7] |
Emotion research in education: Theoretical and methodological perspectives on the integration of affect, motivation, and cognition. Educational Psychology Review (2006) 18: 307-314. ![]() |
[8] |
Stimulating student aesthetic response to mathematical problems by means of manipulating the extent of surprise. The Journal of Mathematical Behaviour (2017) 46: 42-57. ![]() |
[9] |
Surprise and the aesthetic experience of university students: A design experiment. Journal of Humanistic Mathematics (2016) 6: 127-151. ![]() |
[10] |
Affect and meta-affect in mathematical problem solving: A representational perspective. Educational Studies in Mathematics (2006) 63: 131-147. ![]() |
[11] |
Curiosity...Confusion? Frustration! The role and sequencing of emotions during mathematics problem solving. Contemporary Educational Psychology (2019) 58: 121-137. ![]() |
[12] |
The role of epistemic emotions in mathematics problem solving. Contemporary Educational Psychology (2015) 42: 172-185. ![]() |
[13] |
Confused, now what? A Cognitive-Emotional Strategy Training (CEST) intervention for elementary students during mathematics problem solving. Contemporary Educational Psychology (2020) 62: 101879. ![]() |
[14] |
Elementary students' cognitive and affective responses to impasses during mathematics problem solving. Journal of Educational Psychology (2021) 113: 104-124. ![]() |
[15] |
The roles of aesthetic in mathematical inquiry. Mathematical Thinking and Learning (2004) 6: 261-284. ![]() |
[16] | Galán, F.C. and Beal, C.R., EEG estimates of engagement and cognitive workload predict math problem solving outcomes, in 20th International Conference on User Modeling, Adaptation, and Personalization, 2012, pp. 51-62, Springer. 10.1007/978-3-642-31454-4_5. |
[17] |
Achievement emotions in mathematics: Design and evidence of validity of a self-report scale. Journal of Education and Learning (2020) 9: 233-247. ![]() |
[18] | Chen, L., et al., Riding an emotional roller-coaster: A multimodal study of young child's math problem solving activities, in Proceedings of the 9th International Conference on Educational Data Mining, T. Barnes, M. Chi and M. Feng Ed. 2016, pp. 38-45. |
[19] |
Beliefs and engagement structures: Behind the affective dimension of mathematical learning. Zentralblatt für Didaktik der Mathematik (2011) 43: 547-560. ![]() |
[20] |
Problem solving heuristics, affect, and discrete mathematics. Zentralblatt für Didaktik der Mathematik (2004) 36: 56-60. ![]() |
[21] |
Affective issues in mathematical problem solving: Some theoretical considerations. Journal for Research in Mathematics Education (1988) 19: 134-141. ![]() |
[22] |
The role of affect in learning Real Analysis: A case study. Research in Mathematics Education (2008) 10: 71-85. ![]() |
[23] | Representational systems, learning, and problem solving in mathematics. Journal of Mathematical Behavior (1998) 17: 137-165. |
[24] |
Student teachers' reflections on their learning process through collaborative problem solving in geometry. Education Studies in Mathematics (2004) 55: 199-225. ![]() |
[25] |
How are motivation and self-efficacy interacting in problem-solving and problem-posing?. Educational Studies in Mathematics (2020) 105: 487-517. ![]() |
[26] | DeBellis, V.A. and Goldin, G. A., Interactions between cognition and affect in eight high school students' individual problem solving, in Proceedings of the 13th Annual Meeting of PME-NA, R.G. Underhill Ed. 1991, pp. 29-35. Virginia Polytechnic University, Division of Curriculum and Instruction. |
[27] |
The cyclic nature of problem solving: An emergent multidimensional problem-solving framework. Education Studies in Mathematics (2005) 58: 45-75. ![]() |
[28] |
Visualization and affect in nonroutine problem solving. Mathematical Thinking and Learning (2001) 3: 289-313. ![]() |
[29] | O'Dell, J.R., The interplay of frustration and joy: Elementary students' productive struggle when engaged in unsolved problems, in Proceedings of the 40th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, T.E. Hodges, G.J. Roy and A.M. Tyminski Ed. 2018, pp. 938-945. University of South Carolina & Clemson University. |
[30] |
Productive struggle in middle school mathematics classrooms. Journal of Mathematics Teacher Education (2015) 18: 375-400. ![]() |
[31] | (1960) The Psychology of Intelligence. London: Routledge. |
[32] | Vygotsky, L.S., The collected works of L. S. Vygotsky: Problems of general psychology including the volume thinking and speech, Ed. by R.W. Rieber and A.S. Carton. 10.1007/978-1-4613-1655-8 |
[33] | Pekrun, R., A social-cognitive, control-value theory of achievement emotions, in Motivational Psychology of Human Development, J. Heckhausen, Ed. 2000, pp. 143-163, Elsevier. |
[34] |
Rethinking stress: The role of mindsets in determining the stress response. Journal of Personality and Social Psychology (2013) 104: 716-733. ![]() |
[35] |
The role of stress mindset in shaping cognitive, emotional, and physiological responses to challenging and threatening stress. Anxiety, Stress, & Coping (2017) 30: 379-395. ![]() |
1. | Olivia X.M. Yao, New congruences modulo 9 for the coefficients of Gordon-McIntosh's mock theta function ξ ( q ) , 2024, 47, 1607-3606, 239, 10.2989/16073606.2023.2205604 | |
2. |
Yueya Hu, Eric H. Liu, Olivia X. M. Yao,
Congruences modulo 4 and 8 for Ramanujan’s sixth-order mock theta function ρ(q) ,
2025,
66,
1382-4090,
10.1007/s11139-024-01018-x
|