This paper presented a physico-mathematical model for dynamic fracture propagation in brittle materials with a purely continuum mechanics hemi-variational-based strain gradient theory. As for the quasi-static case, the simulation results, obtained by means of finite elements, revealed that strain gradient effects significantly affected the fracture propagation, leading to finite fracture thickness that was independent of the mesh size. It was also observed that nonsymmetric loading rate lead to a deviation from standard mode-Ⅰ crack propagation that cannot be revealed in the quasi-static case. The model results were compared against experimental data from fracture tests on notched specimens taken from the literature. The comparison showed good agreement between the model predictions and the experimental measurements. The presented model and simulation results can be useful in the design and optimization of structural components subjected to dynamic loading conditions.
Citation: Valerii Maksimov, Luca Placidi, Francisco James León Trujillo, Chiara De Santis, Anil Misra, Dmitry Timofeev, Francesco Fabbrocino, Emilio Barchiesi. Dynamic strain gradient brittle fracture propagation: comparison with experimental evidence[J]. Networks and Heterogeneous Media, 2024, 19(3): 1058-1084. doi: 10.3934/nhm.2024047
This paper presented a physico-mathematical model for dynamic fracture propagation in brittle materials with a purely continuum mechanics hemi-variational-based strain gradient theory. As for the quasi-static case, the simulation results, obtained by means of finite elements, revealed that strain gradient effects significantly affected the fracture propagation, leading to finite fracture thickness that was independent of the mesh size. It was also observed that nonsymmetric loading rate lead to a deviation from standard mode-Ⅰ crack propagation that cannot be revealed in the quasi-static case. The model results were compared against experimental data from fracture tests on notched specimens taken from the literature. The comparison showed good agreement between the model predictions and the experimental measurements. The presented model and simulation results can be useful in the design and optimization of structural components subjected to dynamic loading conditions.
[1] | B. E. Abali, W. H. Müller, F. dell'Isola, Theory and computation of higher gradient elasticity theories based on action principles, Arch. Appl. Mech., 87 (2017), 1495–1510. https://doi.org/10.1007/s00419-017-1266-5 doi: 10.1007/s00419-017-1266-5 |
[2] | J. J. Alibert, P. Seppecher, F. Dell'Isola, Truss modular beams with deformation energy depending on higher displacement gradients, Math Mech Solids, 8 (2003), 51–73. https://doi.org/10.1177/1081286503008001658 doi: 10.1177/1081286503008001658 |
[3] | G. Aydin, B. C. Sarar, M. E. Yildizdag, B. E. Abali, Investigating infill density and pattern effects in additive manufacturing by characterizing metamaterials along the strain-gradient theory, Math Mech Solids, 27 (2022), 2002–2016. https://doi.org/10.1177/10812865221100978 doi: 10.1177/10812865221100978 |
[4] | E. Barchiesi, A. Misra, L. Placidi, E. Turco, Granular micromechanics-based identification of isotropic strain gradient parameters for elastic geometrically nonlinear deformations, Z Angew Math Mech, 101 (2021), e202100059. |
[5] | T. Q. Bui, H. Tran, X. Hu, C. T. Wu, Simulation of dynamic brittle and quasi-brittle fracture: a revisited local damage approach, Int J Fracture, 236 (2022), 59–85. |
[6] | E. Cadoni, A. Caverzani, M. di Priscoi, Dynamic behaviour of hpfrcc in tension, EPJ Web of Conferences, 26 (2012), 01014. https://doi.org/10.1051/epjconf/20122601014 doi: 10.1051/epjconf/20122601014 |
[7] | C. H. Chen, E. Bouchbinder, A. Karma, Instability in dynamic fracture and the failure of the classical theory of cracks, Nat. Phys., 13 (2017), 1186–1190. https://doi.org/10.1038/nphys4237 doi: 10.1038/nphys4237 |
[8] | Y. Cui, X. Zeng, V. B. C. Tan, Z. Zhang, Experimental and numerical studies of niti dynamic fracture behaviors under the impact loading, Int. J. Mech. Sci., 235 (2022), 107724. https://doi.org/10.1016/j.ijmecsci.2022.107724 doi: 10.1016/j.ijmecsci.2022.107724 |
[9] | H. Darban, R. Luciano, A. Caporale, F. Fabbrocino, Higher modes of buckling in shear deformable nanobeams, Int J Eng Sci, 154 (2020), 103338. https://doi.org/10.1016/j.ijengsci.2020.103338 doi: 10.1016/j.ijengsci.2020.103338 |
[10] | F. dell'Isola, L. Placidi, Variational principles are a powerful tool also for formulating field theories, In: F. dell'Isola, S. Gavrilyuk, (eds) Variational Models and Methods in Solid and Fluid Mechanics. Vienna: Springer, 535 (2001), 1–15. https://doi.org/10.1007/978-3-7091-0983-0_1 |
[11] | F. dell'Isola, U. Andreaus, L. Placidi, At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of gabrio piola, Math Mech Solids, 20 (2015), 887–928. https://doi.org/10.1177/1081286513509811 doi: 10.1177/1081286513509811 |
[12] | F. dell'Isola, R. Fedele, Irreducible representation of surface distributions and Piola transformation of external loads sustainable by third gradient continua, Comptes Rendus. Mécanique, 351 (2023), 1–30. |
[13] | F. dell'Isola, P. Seppecher, A. Madeo, How contact interactions may depend on the shape of cauchy cuts in nth gradient continua: approach "à la d'alembert", Z. Angew. Math. Phys., 63 (2012), 1119–1141. https://doi.org/10.1007/s00033-012-0197-9 doi: 10.1007/s00033-012-0197-9 |
[14] | V. A. Eremeyev, F. dell'Isola, On weak solutions of the boundary value problem within linear dilatational strain gradient elasticity for polyhedral lipschitz domains, Math Mech Solids, 27 (2022), 433–445. https://doi.org/10.1177/10812865211025576 doi: 10.1177/10812865211025576 |
[15] | V. A. Eremeyev, S. A. Lurie, Y. O. Solyaev, F. dell'Isola, On the well posedness of static boundary value problem within the linear dilatational strain gradient elasticity, Z. Angew. Math. Phys., 71 (2020), 182. https://doi.org/10.1007/s00033-020-01395-5 doi: 10.1007/s00033-020-01395-5 |
[16] | A. C. Eringen, Microcontinuum Field Theories I: Foundations and Solids, New York: Springer-Verlang, 1999. |
[17] | O. Essersi, M. Tarfaoui, S. Boyd, R. Shenoi, F. Meraghni, Experimental study of dynamic behaviour of aluminum/aluminum and composite/composite double lap joints, Appl Mech Mater, 62 (2011), 155–163. https://doi.org/10.4028/www.scientific.net/AMM.62.155 doi: 10.4028/www.scientific.net/AMM.62.155 |
[18] | F. Fabbrocino, M. F. Funari, F. Greco, P. Lonetti, R. Luciano, R. Penna, Dynamic crack growth based on moving mesh method, Compos. B. Eng., 174 (2019), 107053. https://doi.org/10.1016/j.compositesb.2019.107053 doi: 10.1016/j.compositesb.2019.107053 |
[19] | M. F. Funari, S. Spadea, F. Fabbrocino, R. Luciano, A moving interface finite element formulation to predict dynamic edge debonding in frp-strengthened concrete beams in service conditions, Fibers, 8 (2020), 42. https://doi.org/10.3390/fib8060042 doi: 10.3390/fib8060042 |
[20] | F. Galvez, D. Cendon, N. Garcia, A. Enfedaque, V. Sanchez-Galvez, Dynamic fracture toughness of a high strength armor steel, Eng Fail Anal, 16 (2009), 2567–2575. https://doi.org/10.1016/j.engfailanal.2009.04.020 doi: 10.1016/j.engfailanal.2009.04.020 |
[21] | P. Germain, The method of virtual power in continuum mechanics. Part 2: Microstructure, SIAM J Appl Math, 25 (1973), 556–575. https://doi.org/10.1137/0125053 doi: 10.1137/0125053 |
[22] | L. Hai, J. Li, A rate-dependent phase-field framework for the dynamic failure of quasi-brittle materials, Eng. Fract. Mech., 252 (2021), 107847. https://doi.org/10.1016/j.engfracmech.2021.107847 doi: 10.1016/j.engfracmech.2021.107847 |
[23] | R. H. Cao, R. Yao, T. Hu, C. Wang, K. Li, J. Meng, Failure and mechanical behavior of transversely isotropic rock under compression-shear tests: Laboratory testing and numerical simulation, Eng. Fract. Mech., 241 (2021), 107389. https://doi.org/10.1016/j.engfracmech.2020.107389 doi: 10.1016/j.engfracmech.2020.107389 |
[24] | X. Huang, A. R. Tabkhi, V. Sadeghian, O. S. Kwon, Impact of loading rate during hybrid simulation on seismic response of steel structures, Earthq Eng Struct Dyn, 51 (2022), 2813–2836. https://doi.org/10.1002/eqe.3703 doi: 10.1002/eqe.3703 |
[25] | H. H. Jama, G. N. Nurick, M. R. Bambach, R. H. Grzebieta, X. L. Zhao, Steel square hollow sections subjected to transverse blast loads, Thin Wall Struct, 53 (2012), 109–122. https://doi.org/10.1016/j.tws.2012.01.007 doi: 10.1016/j.tws.2012.01.007 |
[26] | K. Khaled, G. Mohamed, Modelling of the influence of tensile test speed on the fracture load, ASM Sci. J., 12 (2019), 1–12. |
[27] | Q. Li, X. Jiang, T. Zeng, S. Xu, Experimental investigation on strain rate effect of high-performance fiber reinforced cementitious composites subject to dynamic direct tensile loading, Cement Concrete Res, 157 (2022), 106825. https://doi.org/10.1016/j.cemconres.2022.106825 doi: 10.1016/j.cemconres.2022.106825 |
[28] | X. Liu, P. Yu, B. Zheng, E. Oterkus, X. He, C. Lu, Prediction of graphene's mechanical and fracture properties via peridynamics, Int. J. Mech. Sci., 266 (2024), 108914. https://doi.org/10.1016/j.ijmecsci.2023.108914 doi: 10.1016/j.ijmecsci.2023.108914 |
[29] | R. Luciano, H. Darban, C. Bartolomeo, F. Fabbrocino, D. Scorza, Free flexural vibrations of nanobeams with non-classical boundary conditions using stress-driven nonlocal model, Mech Res Commun, 107 (2020), 103536. https://doi.org/10.1016/j.mechrescom.2020.103536 doi: 10.1016/j.mechrescom.2020.103536 |
[30] | K. K. Mahato, M. Biswal, D. K. Rathore, R. K. Prusty, K. Dutta, B. C. Ray, Effect of loading rate on tensile properties and failure behavior of glass fibre/epoxy composite, IOP Conference Series: Materials Science and Engineering, 115 (2016), 012017. https://dx.doi.org/10.1088/1757-899X/115/1/012017 doi: 10.1088/1757-899X/115/1/012017 |
[31] | G. Mancusi, F. Fabbrocino, L. Feo, F. Fraternali, Size effect and dynamic properties of 2d lattice materials, Compos. B. Eng., 112 (2017), 235–242. https://doi.org/10.1016/j.compositesb.2016.12.026 doi: 10.1016/j.compositesb.2016.12.026 |
[32] | J. Marigo, Modelling of brittle and fatigue damage for elastic material by growth of microvoids, Eng. Fract. Mech., 21 (1985), 861–874. https://doi.org/10.1016/0013-7944(85)90093-1 doi: 10.1016/0013-7944(85)90093-1 |
[33] | V. Mentl, J. Dzugan, Impact compression and tensile testing by means of a charpy pendulum, in WIT Transactions on The Built Environment, Ashurst: WIT Press, 2008, 55–61. |
[34] | R. D. Mindlin, Micro-structure in linear elasticity, Arch Ration Mech Anal, 16 (1964), 51–78. https://doi.org/10.1007/BF00248490 doi: 10.1007/BF00248490 |
[35] | A. Misra, P. Luca, E. Turco, Variational Methods for Discrete Models of Granular Materials, In: H. Altenbach, A. Öchsner, (eds) Encyclopedia of Continuum Mechanics, Berlin: Springer-Verlag, 2020. https://doi.org/10.1007/978-3-662-55771-6_172 |
[36] | A. Misra, L. Placidi, F. dell'Isola, E. Barchiesi, Identification of a geometrically nonlinear micromorphic continuum via granular micromechanics, Z. Angew. Math. Phys., 72 (2021), 157. https://doi.org/10.1007/s00033-021-01587-7 doi: 10.1007/s00033-021-01587-7 |
[37] | N. Nejadsadeghi, A. Misra, Extended granular micromechanics approach: a micromorphic theory of degree n, Math Mech Solids, 25 (2020), 407–429. https://doi.org/10.1177/1081286519879479 doi: 10.1177/1081286519879479 |
[38] | H. Nguyen, W. Li, Z. P. Bažant, Y. Bazilevs, Isogeometric smooth crack-band model (isCBM) using spress-sprain relations adapted to microplane theory, J Mech Phys Solids, 181 (2023), 105470. https://doi.org/10.1016/j.jmps.2023.105470 doi: 10.1016/j.jmps.2023.105470 |
[39] | Z. Nowak, Z. L. Kowalewski, T. Szymczak, Low velocity perforation of thick magnesium alloy AM60 plates impacted by rigid conical-nose impactor, Arch. Civ. Mech. Eng., 23 (2022), 5. https://doi.org/10.1007/s43452-022-00525-2 doi: 10.1007/s43452-022-00525-2 |
[40] | J. Ožbolt, K. K. Rah, D. Meštrović, Influence of loading rate on concrete cone failure, Int J Fract, 139 (2006), 239–252. https://doi.org/10.1007/s10704-006-0041-3 doi: 10.1007/s10704-006-0041-3 |
[41] | J. Ožbolt, J. Bošnjak, E. Sola, Dynamic fracture of concrete compact tension specimen: Experimental and numerical study, Int J Solids Struct, 50 (2013), 4270–4278. https://doi.org/10.1016/j.ijsolstr.2013.08.030 doi: 10.1016/j.ijsolstr.2013.08.030 |
[42] | J. Ožbolt, A. Sharma, H. W. Reinhardt, Dynamic fracture of concrete–compact tension specimen, Int J Solids Struct, 48 (2011), 1534–1543. https://doi.org/10.1016/j.ijsolstr.2011.01.033 doi: 10.1016/j.ijsolstr.2011.01.033 |
[43] | B. Paermentier, S. Cooreman, P. Verleysen, S. Chandran, S. Coppieters, R. Talemi, A dynamic tensile tear test methodology to characterise dynamic fracture behaviour of modern high-grade pipeline steels, Eng. Fract. Mech., 272 (2022), 108687. https://doi.org/10.1016/j.engfracmech.2022.108687 doi: 10.1016/j.engfracmech.2022.108687 |
[44] | A. K. Pandouria, S. Kumar and V. Tiwari, Experimental study of dynamic fracture behavior of Al7075-T651 under different loading rates, Mater. Today Commun., 33 (2022), 104529. https://doi.org/10.1016/j.mtcomm.2022.104529 doi: 10.1016/j.mtcomm.2022.104529 |
[45] | S. Patnaik, F. Semperlotti, Variable-order fracture mechanics and its application to dynamic fracture, NPJ Comput. Mater., 7 (2021), 27. https://doi.org/10.1038/s41524-021-00492-x doi: 10.1038/s41524-021-00492-x |
[46] | L. Placidi, U. Andreaus, A. Della Corte, T. Lekszycki, Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients, Z. Angew. Math. Phys., 66 (2015), 3699–3725. https://doi.org/10.1007/s00033-015-0588-9 doi: 10.1007/s00033-015-0588-9 |
[47] | L. Placidi, F. dell'Isola, N. Ianiro, G. Sciarra, Variational formulation of pre-stressed solid–fluid mixture theory, with an application to wave phenomena, Eur J Mech-A/Solid, 27 (2008), 582–606. https://doi.org/10.1016/j.euromechsol.2007.10.003 doi: 10.1016/j.euromechsol.2007.10.003 |
[48] | L. Placidi, A variational approach for a nonlinear 1-dimensional second gradient continuum damage model, Contin. Mech. Thermodyn., 27 (2015), 623–638. https://doi.org/10.1007/s00161-014-0338-9 doi: 10.1007/s00161-014-0338-9 |
[49] | L. Placidi, A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model, Contin. Mech. Thermodyn., 28 (2016), 119–137. https://doi.org/10.1007/s00161-014-0405-2 doi: 10.1007/s00161-014-0405-2 |
[50] | L. Placidi, E. Barchiesi, Energy approach to brittle fracture in strain-gradient modelling, Proc. Math. Phys. Eng. Sci., 474 (2018), 20170878. https://doi.org/10.1098/rspa.2017.0878 doi: 10.1098/rspa.2017.0878 |
[51] | L. Placidi, E. Barchiesi, A. Misra, A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results, Math. Mech. Complex Syst., 6 (2018), 77–100. https://doi.org/10.2140/memocs.2018.6.77 doi: 10.2140/memocs.2018.6.77 |
[52] | L. Placidi, E. Barchiesi, A. Misra, U. Andreaus, Variational methods in continuum damage and fracture mechanics, In: H. Altenbach, A. Öchsner, (eds) Encyclopedia of Continuum Mechanics, Berlin: Springer-Verlag, 2020. https://doi.org/10.1007/978-3-662-55771-6_172 |
[53] | L. Placidi, A. Misra, E. Barchiesi, Two-dimensional strain gradient damage modeling: a variational approach, Z. Angew. Math. Phys., 69 (2018), 56. https://doi.org/10.1007/s00033-018-0947-4 doi: 10.1007/s00033-018-0947-4 |
[54] | A. Premchander, I. Amin, S. Oterkus, E. Oterkus, N. A. Shawky Elminshawy, Peridynamic modelling of propagation of cracks in photovoltaic panels, Procedia Structural Integrity, 41 (2022), 305–316. https://doi.org/10.1016/j.prostr.2022.05.036 doi: 10.1016/j.prostr.2022.05.036 |
[55] | A. Qinami, A. Pandolfi, M. Kaliske, Variational eigenerosion for rate-dependent plasticity in concrete modeling at small strain, Int. J. Numer. Meth. Eng., 121 (2020), 1388–1409. https://doi.org/10.1002/nme.6271 doi: 10.1002/nme.6271 |
[56] | Y. Rao, M. Xiang, J. Cui, A strain gradient brittle fracture model based on two-scale asymptotic analysis, J Mech Phys Solids, 159 (2022), 104752. https://doi.org/10.1016/j.jmps.2021.104752 doi: 10.1016/j.jmps.2021.104752 |
[57] | Y. Rao, M. Xiang, Q. Li, J. Cui, A unified two-scale theory for modeling microstructural length scale, strain gradient and strain rate effects on brittle fracture, Int J Solids Struct, 268 (2023), 112176. https://doi.org/10.1016/j.ijsolstr.2023.112176 doi: 10.1016/j.ijsolstr.2023.112176 |
[58] | K. Ravi-Chandar, W. G. Knauss, An experimental investigation into dynamic fracture: Ⅰ. Crack initiation and arrest, Int J Fract, 25 (1984), 247–262. https://doi.org/10.1007/BF00963460 doi: 10.1007/BF00963460 |
[59] | K. Ravi-Chandar, W. G. Knauss, An experimental investigation into dynamic fracture: Ⅱ. Microstructural aspects, Int J Fract, 26 (1984), 65–80. https://doi.org/10.1007/BF01152313 doi: 10.1007/BF01152313 |
[60] | K. Ravi-Chandar, W. G. Knauss, An experimental investigation into dynamic fracture: Ⅲ. On steady-state crack propagation and crack branching, Int J Fract, 26 (1984), 141–154. https://doi.org/10.1007/BF01157550 doi: 10.1007/BF01157550 |
[61] | K. Ravi-Chandar, W. G. Knauss, An experimental investigation into dynamic fracture: Ⅳ. On the interaction of stress waves with propagating cracks, Int J Fract, 26 (1984), 189–200. https://doi.org/10.1007/BF01140627 doi: 10.1007/BF01140627 |
[62] | N. Rezaei, E. Barchiesi, D. Timofeev, C. A. Tran, A. Misra, L. Placidi, Solution of a paradox related to the rigid bar pull-out problem in standard elasticity, Mech Res Commun, 126 (2022), 104015. https://doi.org/10.1016/j.mechrescom.2022.104015 doi: 10.1016/j.mechrescom.2022.104015 |
[63] | N. Rezaei, M. E. Yildizdag, E. Turco, A. Misra, L. Placidi, Strain-gradient finite elasticity solutions to rigid bar pull-out test, Contin. Mech. Thermodyn., 36 (2024), 607–617. https://doi.org/10.1007/s00161-024-01285-5 doi: 10.1007/s00161-024-01285-5 |
[64] | K. Shibanuma, S. Tu, S. Suzuki, Z. Yu, R. Kato, A. Hatamoto, Ductile crack propagation path depending on material properties: Experimental results and discussions based on numerical simulations, Mater Design, 223 (2022), 111158. https://doi.org/10.1016/j.matdes.2022.111158 doi: 10.1016/j.matdes.2022.111158 |
[65] | Y. Solyaev, Steady-state crack growth in nanostructured quasi-brittle materials governed by second gradient elastodynamics, Appl. Sci., 13 (2023), 6333. https://doi.org/10.3390/app13106333 doi: 10.3390/app13106333 |
[66] | Y. Solyaev, S. Lurie, H. Altenbach, F. dell'Isola, On the elastic wedge problem within simplified and incomplete strain gradient elasticity theories, Int J Solids Struct, 239–240 (2022), 111433. https://doi.org/10.1016/j.ijsolstr.2022.111433 doi: 10.1016/j.ijsolstr.2022.111433 |
[67] | D. Timofeev, E. Barchiesi, A. Misra, L. Placidi, Hemivariational continuum approach for granular solids with damage-induced anisotropy evolution, Math Mech Solids, 25 (2020), 738–770. https://doi.org/10.1177/1081286520968149 doi: 10.1177/1081286520968149 |
[68] | A. R. Torabi, K. Hamidi, A. S. Rahimi, S. Cicero, Notch fracture in polymeric specimens under compressive stresses: The role of the equivalent material concept in estimating the critical stress of polymers, Appl. Sci., 11 (2021), 2104. https://doi.org/10.3390/app11052104 doi: 10.3390/app11052104 |
[69] | I. Vindokurov, Y. Pirogova, M. Tashkinov, V. V. Silberschmidt, Effect of heat treatment on elastic properties and fracture toughness of fused filament fabricated peek for biomedical applications, Polymers, 14 (2022), 2551. https://doi.org/10.3390/polym14245521 doi: 10.3390/polym14245521 |
[70] | O. Wall, Dynamic crack propagation in large steel specimens, Eng. Fract. Mech., 69 (2002), 835–849. https://doi.org/10.1016/S0013-7944(01)00111-4 doi: 10.1016/S0013-7944(01)00111-4 |
[71] | P. Wu, F. Yang, Z. Chen, F. Bobaru, Stochastically homogenized peridynamic model for dynamic fracture analysis of concrete, Eng. Fract. Mech., 253 (2021), 107863. https://doi.org/10.1016/j.engfracmech.2021.107863 doi: 10.1016/j.engfracmech.2021.107863 |
[72] | J. Xu, D. Cao, J. Cui, X. Zhang, G. Li, Experimental research on tensile behavior of advanced high-strength steel dp600 at high strain rate, J Mater Eng Perform, 28 (2019), 2411–2420. https://doi.org/10.1007/s11665-019-04008-z doi: 10.1007/s11665-019-04008-z |
[73] | S. Yan, H. Yang, H. Li, G. Ren, Experimental study of macro-micro dynamic behaviors of 5A0X aluminum alloys in high velocity deformation, Mat Sci Eng A-struct, 598 (2014), 197–206. https://doi.org/10.1016/j.msea.2013.12.001 doi: 10.1016/j.msea.2013.12.001 |
[74] | W. Yang, V. R. Sherman, B. Gludovatz, E. Schaible, P. Stewart, R. O. Ritchie, et al., On the tear resistance of skin, Nat Commun, 6 (2015), 6649. https://doi.org/10.1038/ncomms7649 doi: 10.1038/ncomms7649 |
[75] | M. E. Yildizdag, L. Placidi, E. Turco, Modeling and numerical investigation of damage behavior in pantographic layers using a hemivariational formulation adapted for a hencky-type discrete model, Contin. Mech. Thermodyn., 35 (2023), 1481–1494. https://doi.org/10.1007/s00161-022-01154-z doi: 10.1007/s00161-022-01154-z |
[76] | M. E. Yildizdag, A. Ciallella, G. D'Ovidio, Investigating wave transmission and reflection phenomena in pantographic lattices using a second-gradient continuum model, Math Mech Solids, 28 (2023), 1776–1789. https://doi.org/10.1177/10812865221136250 doi: 10.1177/10812865221136250 |
[77] | B. Yin, M. Kaliske, Fracture simulation of viscoelastic polymers by the phase-field method, Comput Mech, 65 (2020), 293–309. https://doi.org/10.1007/s00466-019-01769-1 doi: 10.1007/s00466-019-01769-1 |
[78] | B. Zhang, J. Wang, Y. Wang, Y. Wang, Z. Li, Strain-rate-dependent tensile response of Ti-5Al-2.5Sn alloy, Materials, 12 (2019), 659. https://doi.org/10.3390/ma12040659 doi: 10.3390/ma12040659 |
[79] | M. zhi Xing, Y. gang Wang, Z. xiu Jiang, Dynamic fracture behaviors of selected aluminum alloys under three-point bending, Def Technol, 9 (2013), 193–200. https://doi.org/10.1016/j.dt.2013.11.002 doi: 10.1016/j.dt.2013.11.002 |
[80] | W. Zhong, I. Mbarek, A. Rusinek, R. Bernier, T. Jankowiak, G. Sutter, Development of an experimental set-up for dynamic force measurements during impact and perforation, coupling to numerical simulations, Int. J. Impact Eng., 91 (2016), 102–115. https://doi.org/10.1016/j.ijimpeng.2016.01.006 doi: 10.1016/j.ijimpeng.2016.01.006 |
[81] | G. Zou, C. Zhao, Z. Chang, W. Zhao, Y. Fan, S. Liu, et al., Experimental study on dynamic fracture toughness of compact tension specimens, Exp Techniques, 43 (2019), 57–64. https://doi.org/10.1007/s40799-018-0265-y doi: 10.1007/s40799-018-0265-y |