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Abstract: This paper presented a physico-mathematical model for dynamic fracture propagation in
brittle materials with a purely continuum mechanics hemi-variational-based strain gradient theory. As
for the quasi-static case, the simulation results, obtained by means of finite elements, revealed that
strain gradient effects significantly affected the fracture propagation, leading to finite fracture thickness
that was independent of the mesh size. It was also observed that nonsymmetric loading rate lead to a
deviation from standard mode-I crack propagation that cannot be revealed in the quasi-static case. The
model results were compared against experimental data from fracture tests on notched specimens taken
from the literature. The comparison showed good agreement between the model predictions and the
experimental measurements. The presented model and simulation results can be useful in the design
and optimization of structural components subjected to dynamic loading conditions.

Keywords: strain gradient; 2D continua; damage mechanics; variational procedure; kinetic energy;
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1. Introduction

Fracture mechanics is a fundamental field of study in mechanical sciences. Over the years, extensive
research has focused on studying fracture processes under static loading conditions, providing valuable
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insights into crack initiation, propagation, and structural failure. However, in many real-world scenarios,
materials are subjected to dynamic loading conditions, where cracks can propagate at high speeds
and exhibit unique fracture behaviors [7, 39, 43, 45, 64, 73, 77, 80]. Understanding the mechanics of
dynamic fracture is hence crucial for enhancing the safety and reliability of structural components
and advancing the design of resilient materials. The mechanics underlying dynamic fractures presents
many more intricacies than underlying quasi-static fracture [58–61]. Experimental studies, however,
show its practical relevance [6, 17, 20, 23, 25, 68, 79, 81] and also elucidate its loading rate-dependent
behavior [18, 24, 26, 27, 30, 40, 44, 70, 72, 78]. More specifically, the study of dynamic fracture finds
application in engineering [8, 18, 54], automotive safety [33], medicine [69], material science [28],
and biology [74]. Examples of dynamic fracture events include rapid crack propagation in structural
components under time-dependent loading due to, e.g., impacts, explosions, or earthquakes [24],
fragmentation of brittle materials under high-velocity impacts, and crack propagation in geological
formations due to seismic activity. The study of dynamic fracture mechanics aims to unravel the
underlying mechanisms governing the initiation, propagation, and arrest of cracks under these extreme
loading conditions.

This paper presents a physico-mathematical model that addresses dynamic fracture propagation in
brittle materials by applying a purely hemi-variational continuum mechanics-based strain gradient theory.
This paper is based on experimental analyses conducted in [41], which delved into the dependence of the
fracture path on the loading rate. In a theoretical paper aimed at predicting mathematically the fracture
path and the related branching phenomena, the same authors utilized a microplane model [42] in a 3D
numerical simulation. In works [5, 22, 55, 71], in order to describe the experimental results on dynamic
fracture propagation reported in [41], different approaches were used like peridynamic, microplane,
and phase-field damage modeling. The recent work of Nguyen et al. [38] gives a reformulation, in
terms of sprain and spress, of a subset of micromorphic theories discussed more than half a century ago
by Germain [21], Mindlin [34], and Eringen [16], whose micromechanical foundations for granular
systems have been elaborated in a variational approach for finite deformation [36], geometrically
nonlinear strain gradient models [4], and n-th order micromorphic materials [37]. Following this
granular micromechanical approach and utilizing hemivariational methods, a group of researchers in a
series of papers [10, 35, 47, 49, 50, 52, 67] have clearly established the physical meaning of boundary
conditions associated with strain gradient theories [2,3,11–15,62,63,66,76]. Moreover, they have shown
that for heterogeneous systems, strain gradient theories with appropriate elastic and dissipative energies
can predict a multitude of phenomena, such as evolution of chirality and size of localization/fracture
zone, that are oftentimes ignored or overlooked in classical approaches [9,19,29,31]. The strain gradient
with the inertia gradient effects approach was used in [46, 65], the treatment being purely analytical,
without application of numerical methods such as the finite element method (FEM). In the papers of
Rao et al. [56, 57], strain gradient effects in the modeling of fracture mechanics have been considered
with a two-scale asymptotic analysis. In this study, we employ an isotropic model to investigate the
behavior of experiments presented in [41]. Our objective is to tune the evolution of damage based on
discerning the local strain/stress state, namely, tension/compression. Specifically, we aim at mitigating,
avoiding actually, its occurrence in compression. The utilization of an isotropic model accounts for
uniformity of the microstructure with respect to directions.

The paper is organized as follows. In Section 2, we introduce the strain-gradient continuum model–
elastic and damage components-employed to investigate numerically the propagation of dynamic
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fracture. In Section 3, we apply the presented model to an experimental case study that is then used
for comparison with experimental data and other theoretical approaches available in the literature by
solving through the weak form package of the software COMSOL Multiphysics and the weak form of
its governing equations. Finally, conclusions are drawn in Section 4.

2. Formulation of the problem

2.1. Preliminary definitions

Let us consider a 2D continuum bodyV ⊂ E2, where the domain E2 is the Euclidean two-dimensional
space. The position of every point in the body is established through the utilization of X coordinates in
a frame of reference. The set of kinematic descriptors for such a model contains both the displacement
field u = u(X, t) and the damage field ω = ω(X, t). The damage state of a material point X is therefore
characterized, at time t, by a scalar internal variable ω, which is assumed to take values within the range
[0, 1]. The case ω = 0 corresponds to the undamaged state, while ω = 1 corresponds to complete
failure. We assume the material to be not self-healing and, hence, ω is assumed to be a nondecreasing
function of time. If we consider the material as a microstructured one, it becomes significant to allow the
deformation energy density to vary based on the second gradient of the displacement. Thus, because of
objectivity, the potential energy U is assumed to be a function of the strain tensor G, of its gradient ∇G,
and of the damage ω, i.e., U = U(G,∇G, ω). Here, G = 1

2

(
FT F − I

)
, where F = ∇χ is the deformation

gradient tensor, χ = X + u is the placement function, and FT is the transpose of F. For the small
displacement approximation that is dealt with in this work, the strain tensor G is assumed to be equal to
E = S ym(∇u), the symmetric part of the displacement gradient.

2.2. The Energy functional

The energy functional E(u, ω) depends on the displacement u and the damage ω and is given as
follows [53]:

E(u, ω) =
∫
V

[
Ue(G,∇G, ω) + Ud(ω) − bext · u − mext : ∇u

]
dA

−

∫
∂V

[text · u + τext · [(∇u)n]]ds −
∫

[∂∂V]
f ext · u

(2.1)

where ∂B are the regular parts of the boundary of B, the symbol [∂∂B] denotes the regular parts of the
boundary of ∂B, i.e., its wedges, and n is the unit external normal. The symbols (·) and (:) indicate the
scalar product between vectors or tensors, respectively. The quantities bext and mext are, respectively, the
external body force and double force (per unit area), while the quantities text and τext are, respectively, the
external force and double force (per unit length). Finally, the quantity f ext is the external concentrated
force which is applied on the vertices [∂∂B].

2.3. Variational principle

In order to get governing equations for this model, we resort to the variational principle thoroughly
presented in [32, 48, 49, 51, 53, 75], where the case of one-dimensional bodies was considered. We
assume that the descriptors u(X, t) and ω(X, t) verify the condition
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δE(u, ω, u̇, ω̇) ≤ δE(u, ω, ν, β), ∀ν, ∀β ≥ 0, (2.2)

where ν and β are compatible virtual velocities and dots represent derivation with respect to time.

2.4. Reduction from the 3D Mindlin elastic strain gradient energy to the 2D explicit form

A general form of the deformation energy density of an elastic 3D isotropic strain gradient elastic
material is provided in [34]. In our case, we have

Ue(G,∇G, ω) = H(−TrG + γ)(U I
e + U II

e ) + H(TrG − γ)
[
(1 − rω)U I

e + (1 − mω)U II
e

]
(2.3)

where H is the Heaviside function, TrG is the trace of G, r affects on the 1st gradient residual inside
the fracture, and m affects on microstructure due to damage. Parameters r and m should be as close
as possible to the value 1. γ is a constitutive parameter representing the threshold of the trace of G
controlling the bi-modular behavior of damage, which stipulates that damage evolution occurs only
when the trace of the strain tensor G is positive and exceeds a predefined threshold. By implementing
this condition, we ensure that damage progression is assessed solely in regions experiencing tensile
stresses. The first gradient part U I

e of the deformation energy density above reads as

U I
e(G,∇G) =

λ

2
GiiG j j + µGi jGi j (2.4)

and the strain gradient part U II
e reads as

U II
e (G,∇G, ω) = 2c3Gii, jG jh,h +

c4

2
Gii,kGll,k + 2c5Gi j,iG jm,m + c6Gi j,kGi j,k + 2c7Gi j,kGki, j (2.5)

where λ, µ, c3, c4, c5, c6, c7 ∈ R are independent parameters. Our model accounts for an isotropic
material, because the key focus is on the examination of damage evolution exclusively under tension
while avoiding its manifestation in compression, aimed at capturing the behavior of cementitious
materials. The quantities λ and µ in Eq (2.4) are referred to as Lamé parameters and it is a classical
result in mechanics that they can be easily related to the Young modulus Y and to the Poisson’s ratio ν.
For the 2D case, we have

λ =
Yν

(1 + ν)(1 − 2ν)
, µ =

Y
2(1 + ν)

. (2.6)

The coefficients c3–c7 can instead be identified in terms of Young modulus and Lamé parameters,
and an internal characteristic length–also referred to as the intergranular distance–within the granular
micro-mechanics-based framework presented in [4] is as follows:

c3 = YL2 ν
112(1+ν)(1−2ν) =

L2

112λ,

c4 = YL2 ν
112(1+ν)(1−2ν) =

L2

112λ,

c5 = YL2 7−8ν
2240(1+ν)(1−2ν) =

L2

1120 (7µ + 3λ),

c6 = YL2 7−18ν
1120(1+ν)(1−2ν) =

L2

1120 (7µ − 4λ),

c7 = YL2 7−8ν
2240(1+ν)(1−2ν) =

L2

1120 (7µ + 3λ).

(2.7)
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We now introduce the dissipated energy Ud as

Ud(ω) =
1
2

kωω2 (2.8)

where kω represents the resistance to damage. The kinetic energy Uk is instead assumed to having the
following expression:

Uk =
1
2
ρ
∥∥∥∂u
∂t

∥∥∥2
=

1
2
ρ

(
∂2u1

∂t2 +
∂2u2

∂t2

)
. (2.9)

where ρ is material density per unit area and u1 and u2 are the displacement components in the horizontal
and vertical directions, respectively. It is easy to prove [1] that having a nonzero kinetic energy in the
form above is equivalent to have bext = −ρü.

3. Numerical results

The weak form package of the commercial software COMSOL Multiphysics has been employed to
perform the numerical simulation presented in this section, based on the modeling presented so far.

3.1. Description of the numerical experiments

In the current section, we present numerical simulations to show the capabilities of the presented
model to describe initiation and growth of damage localization zones. Following [41], we consider a 2D
square specimen with a notch (pre-crack). The followig type of numerical experiment is considered: the
left edge of the notch (the blue line) is fixed, i.e., cannot move, along the direction êx, while the right
edge of the notch (the red line) is subjected to an applied velocity in the êx direction (from left to right).
Such an applied velocity will be also referred to as crack-opening velocity.

Figure 1. Schematics of analyzed domains and considered boundary conditions.

Figure 1 illustrates this loading condition. In the original paper [41], there are twelve cases of different
applied velocities, the loading-rates being in the range from 0.045 m/s to 4.298 m/s. In this section, only
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four cases of tested velocities are considered for the study, which are Case 1: 0.491 m/s; Case 2: 1.375
m/s; Case 3: 3.268 m/s, and Case 4: 4.298 m/s. In the current study, the applied velocity is assumed to
depend upon time–the data of the actual loading history used in the experiments was not reported in the
original paper, as follows:

v =

 t
t0

v0 t ≤ t0

v0 t > t0
(3.1)

with t0 = 100 µs and t = 500 µs. The prescribed displacement velocity as a function of time for v0 =

3.268 m/s is reported in Figure 2.

Figure 2. Representation of the prescribed displacement velocity versus time for v0 = 3.268
m/s.

The constitutive parameters used in the numerical simulations are reported in Table 1, where t f is the
time horizon of the simulations and △t the time step. It should be noted that since simulations were
performed for the 2D case, to take into account the (uniform) thickness of the specimen–25 mm–some
constitutive parameters were adapted by multiplying them by this value.

Table 1. Values of constitutive parameters used in numerical tests.

Y ν L ρ kω t f △t γ r m

15 GPa 0.18 0.01118 m 2400 kg/m3 5 J/m2 500 µs 0.5 µs 0.0012 0.99999 0.99999
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𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.001 𝑚 𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.002 𝑚 𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.004 𝑚

𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 75.5 𝑘𝑁𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 75.17 𝑘𝑁𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 74.8 𝑘𝑁

𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.008 𝑚 𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.0106 𝑚 𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.0134 𝑚

𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 75.52 𝑘𝑁 𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 75.43 𝑘𝑁
𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 75.32 𝑘𝑁

61.58 𝑘𝑁61.23 𝑘𝑁60.75 𝑘𝑁

61.72 𝑘𝑁61.7 𝑘𝑁
61.62𝑘𝑁

Figure 3. Diagrams of the reaction force versus time for different maximum finite element
sizes. Data was taken from the convergence analysis performed without implementing the
strain gradient regularization.

𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 76.01 𝑘𝑁
𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 76.16 𝑘𝑁

𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.02 𝑚 𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.026 𝑚 𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.04 𝑚

𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 76.17 𝑘𝑁

𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.066 𝑚 𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.08 𝑚 𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.1 𝑚

𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 76.87 𝑘𝑁 𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 77.35 𝑘𝑁
𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 77.15 𝑘𝑁

62.12 𝑘𝑁62.05 𝑘𝑁61.75 𝑘𝑁

62.35 𝑘𝑁62.35 𝑘𝑁
62.33 𝑘𝑁

Figure 4. Diagrams of the reaction force versus time for different maximum finite element
sizes. Data was taken from the convergence analysis performed without implementing the
strain gradient regularization.
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3.2. Convergence analysis

For convergence analysis, we employed two kinds of numerical simulations: elastic and with damage.
In the former kind of simulations, to avoid damage and have only an elastic behavior, the threshold
on the trace of G was set to 1, an extremely large value, that was never reached in the simulations. In
the elastic simulations, it was shown that strain gradient regularization gives better convergence with
respect to maximum finite element size (the numbers of degrees of freedom (DOF), and finite elements
grow with respect to maximum finite element size). Meanwhile without it, the mesh should be more
refined to get the same accuracy.

Table 2. Data from convergence analysis without implementation of strain gradient for
different mesh sizes.

DOF N. of elements Max. element size, m Reaction force, kN Reaction integration over time

656 110 0.1 77.35 17.6204
684 115 0.08 76.87 17.5195
752 128 0.066 77.15 17.5876
796 136 0.04 76.16 17.4080
1108 195 0.026 76.17 17.4330
1614 292 0.02 76.01 17.3816
2768 514 0.0134 75.43 17.2840
3526 661 0.0106 75.52 17.3038
5200 987 0.008 75.32 17.2693
14500 2818 0.004 75.50 17.3041
51046 10060 0.002 75.17 17.2411
186276 36991 0.001 74.80 17.1749

17.15

17.2

17.25

17.3

17.35

17.4
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17.55

17.6

17.65
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Convergence analysis

only 1st gradient

Figure 5. Diagram reporting the time integral of the reaction force versus the number of finite
elements. Data was taken from the convergence analysis performed without implementing the
strain gradient regularization.
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𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.001 𝑚 𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.002 𝑚 𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.004 𝑚

𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 23, 61 𝑘𝑁 𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 80.18 𝑘𝑁

63.03 𝑘𝑁

𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 79.99 𝑘𝑁

62.96 𝑘𝑁

𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 79.99 𝑘𝑁

62.89 𝑘𝑁

𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.008 𝑚 𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.0106 𝑚 𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.0134 𝑚

𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 80.24 𝑘𝑁 𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 80.36 𝑘𝑁

62.88 𝑘𝑁62.89 𝑘𝑁

𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 80.19 𝑘𝑁

62.92 𝑘𝑁

Figure 6. Diagrams of the reaction force versus time for different maximum finite element
sizes. Data was taken from the convergence analysis performed implementing the strain
gradient regularization.

𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 80, 56 𝑘𝑁
𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 80,39 𝑘𝑁

𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.02 𝑚 𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.026 𝑚 𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.04 𝑚

𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 80,67 𝑘𝑁

63 𝑘𝑁
62,95 𝑘𝑁62,94 𝑘𝑁

𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.066 𝑚 𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.08 𝑚 𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.1 𝑚

𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 82,94 𝑘𝑁 𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 88,64 𝑘𝑁

66,42 𝑘𝑁63,67 𝑘𝑁

𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 82, 18 𝑘𝑁

63,69 𝑘𝑁

Figure 7. Diagrams of the reaction force versus time for different maximum finite element
sizes. Data was taken from the convergence analysis performed implementing the strain
gradient regularization.
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Table 3. Data from convergence analysis with implementation of strain gradient for different
mesh sizes.

DOF N. of elements Max. element size, m Reaction force, kN Reaction integration over time

656 110 0.1 88.64 19.5598
684 115 0.08 88.94 18.5620
752 128 0.066 82.18 18.4343
796 136 0.04 80.39 18.1514
1108 195 0.026 80.67 18.2078
1614 292 0.02 80.56 18.1968
2768 514 0.0134 80.35 18.0792
3526 661 0.0106 80.24 18.1218
5200 987 0.008 80.19 18.1218
14500 2818 0.004 80.18 18.1952
51046 10060 0.002 79.99 18.0683
186276 36991 0.001 79.99 18.0746
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Figure 8. Diagram reporting the time integral of the reaction force versus the number of finite
elements. Data was taken from the convergence analysis performed implementing the strain
gradient regularization.

From Table 2 and Figure 5, we can see that, without implementation of the strain gradient regularization,
there is no convergence for the considered values of the maximum finite element size, however the
implementation of this term leads us to convergence with refinement of mesh. From Table 3 and Figure
8, we can see that enhanced convergence was achieved making use of the strain gradient regularization,
convergence is indeed obtained for maximum finite element size equal to 0.002 m. The same approach
to mesh and convergence analysis utilized for the purely elastic case was employed also in the damage
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case, with applied displacement velocity v0 = 3.268 m/s.

𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.004 𝑚 𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.002 𝑚 𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.001 𝑚 𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.0005 𝑚

Figure 9. Different utilized meshes with indication of the associated maximum element size.

𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.004 𝑚 𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.002 𝑚 𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.001 𝑚 𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.0005 𝑚

𝑡 = 350 𝜇𝑠 𝑡 = 321 𝜇𝑠 𝑡 = 314 𝜇𝑠 𝑡 = 310 𝜇𝑠

𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 5 𝑘𝑁 𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 5.6 𝑘𝑁 𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 5 𝑘𝑁
𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 5 𝑘𝑁

Figure 10. Synoptical comparison of reaction force versus time diagrams (first row) and
damage contour plots at complete failure (second row) for different maximum finite element
sizes.

Figure 9 shows the different utilized meshes, each characterized by a different maximum element
size. Figure 10 shows synoptically reaction force versus time diagrams (in the first row) and damage
contour plots at complete failure (i.e., the fracture pattern, in the second row) for different maximum
finite element sizes. It is seen that the fracture pattern is similar in all cases. Figure 11 compares the
fracture thickness for different meshes. For the maximum finite element size equal to 0.004 m, we can
see only one damaged element in the crack-transverse direction. However, as the element size decreases,
the number of damaged elements in the crack-transverse direction increases. Most importantly, the
thickness of the crack is almost the same for all simulations, which leads us to conclude the mesh
independence of the results. From Figure 12 we can see that the evolution of the reaction force in time is
almost the same for the different considered maximum element sizes, except that it attains its maximum
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value at different time instants. Additionally, fracture reaches the specimen’s boundary at different times.
A maximum mesh size of 0.001 m. was chosen for the simulations that follow in the next subsection.

𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.004 𝑚 𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.002 𝑚 𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.001 𝑚 𝑀𝑎𝑥 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 = 0.0005 𝑚

1 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 1 − 2 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 2 − 4 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 4 − 7 𝑓𝑖𝑛𝑖𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

Figure 11. Comparison of fracture in the specimen’s central area for different maximum finite
element sizes.
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Figure 12. Comparison of the reaction force diagram versus time for different maximum
finite element sizes.
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3.3. Numerical results with varying loading rate.

According to the convergence analysis presented above, a set of numerical simulations was performed
making use of the same set of constitutive parameters in Table 1 and a mesh with maximum element
size equal to 0.001 m. The difference between the different performed simulations lies in the value of
the applied displacement velocity. The obtained results were compared with the experimental data.

𝑡 = 1000 𝜇𝑠

Numerical 
simulation

Experimental
data

Maximum reaction 
force

2.88 kN 4.05 kN
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0.085 mm 012 mm
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fracture

Single crack Single crack
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Figure 13. Comparison of numerical simulation results with experimental test for applied
crack-opening velocity v0 = 0.491 m/s.

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.015 0.03 0.045 0.06 0.075 0.09 0.105 0.12 0.135 0.15

R
ea

ct
io

n
 f

o
rc

e 
, k

N

Imposed displacement, mm

Numerical analisys

Experimental data

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300 350R
ea

ct
io

n
 f

o
rc

e 
, k

N

Time, 𝜇s

Figure 14. Contour plots of damage evolution for applied crack-opening velocity v0=0.491
m/s.
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𝐸𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑓𝑜𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑉 = 0,491 𝑚/𝑠

𝑡 = 125 𝜇𝑠 𝑡 = 167 𝜇𝑠 𝑡 = 248 𝜇𝑠

𝑡 = 276 𝜇𝑠 𝑡 = 302 𝜇𝑠 𝑡 = 350 𝜇𝑠

Figure 15. Contour plots of kinetic energy density evolution for applied crack-opening
velocity v0=0.491 m/s.

Figures 13–15 show, respectively, a comparison of numerical simulation results with experimental
ones in terms of reaction force versus imposed displacement diagram and fracture pattern, contour plots
of damage evolution, and contour plots of kinetic energy density evolution for applied crack-opening
velocity v0 = 0.491 m/s.

𝑡 = 321 𝜇𝑠

Numerical 
simulation

Experimental
data
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Figure 16. Comparison of numerical simulation results with experimental test for applied
crack-opening velocity v0 = 1.375 m/s.
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𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 4,65 𝑘𝑁
𝑑𝑖𝑠𝑝 = 0,65 𝑚𝑚-1

0

1

2

3

4

5

0 50 100 150 200 250 300 350

R
ea

ct
io

n
 f

o
rc

e 
, k

N

Time, 𝜇s
0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300 350

R
ea

ct
io

n
 f

o
rc

e 
, k

N

Time, 𝜇s

Figure 17. Contour plots of damage evolution for applied crack-opening velocity v0 = 1.375
m/s.

𝐸𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑓𝑜𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑉 = 1.375 𝑚/𝑠

𝑡 = 100 𝜇𝑠 𝑡 = 155 𝜇𝑠 𝑡 = 182 𝜇𝑠

𝑡 = 215 𝜇𝑠 𝑡 = 268 𝜇𝑠 𝑡 = 321 𝜇𝑠

Figure 18. Contour plots of kinetic energy density evolution for applied crack-opening
velocity v0 = 1.375 m/s.
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𝑡 = 314 𝜇𝑠

Numerical 
simulation

Experimental
data

Maximum reaction 
force

4.99 kN 4.59 kN

Imposed 
displacement

0.63 mm 0.68 mm

Character of 
fracture

Branching Branching

Figure 19. Comparison of numerical simulation results with experimental test for applied
crack-opening velocity v0 = 3.268 m/s.

𝑀𝑎𝑥. 𝑟𝑒𝑎𝑐𝑡 ≈ 4,65 𝑘𝑁
𝑑𝑖𝑠𝑝 = 0,65 𝑚𝑚
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Figure 20. Contour plots of damage evolution for applied crack-opening velocity v0 = 3.268
m/s.
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𝐸𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑓𝑜𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑉 = 3.268 𝑚/𝑠

𝑡 = 75 𝜇𝑠 𝑡 = 130 𝜇𝑠 𝑡 = 160 𝜇𝑠

𝑡 = 241 𝜇𝑠 𝑡 = 275 𝜇𝑠 𝑡 = 314 𝜇𝑠

Figure 21. Contour plots of kinetic energy density evolution for applied crack-opening
velocity v0 = 3.268 m/s.
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Figure 22. Comparison of numerical simulation results with experimental test for applied
crack-opening velocity v0 = 4.298 m/s.
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Figure 23. Contour plots of damage evolution for applied crack-opening velocity v0 = 4.298
m/s.

𝐸𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑓𝑜𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑉 = 4.298 𝑚/𝑠

𝑡 = 75 𝜇𝑠 𝑡 = 125 𝜇𝑠 𝑡 = 175 𝜇𝑠

𝑡 = 245 𝜇𝑠 𝑡 = 275 𝜇𝑠 𝑡 = 318 𝜇𝑠

Figure 24. Contour plots of kinetic energy density evolution for applied crack-opening
velocity v0 = 4.298 m/s.
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Figure 25. Comparison of reaction force versus imposed displacement diagrams computed
for different loading rates.
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Figure 26. Comparison of reaction force versus imposed time diagrams computed for different
loading rates.

Figures 16 –18 are analogous but refer to an applied crack-opening velocity v0 = 1.375 m/s, while
Figures 19–21 and Figures 22–24 do refer to an applied crack-opening velocity v0 = 3.268 m/s and v0 =

4.298 m/s, respectively. It is possible to observe that the path and character of the fracture match the
experimental data, except for the higher loading rate. The reaction force versus imposed displacement
diagram properties match relatively well, too. Furthermore, we observe that, for low loading rate,
the propagation is almost vertical, leading to standard mode-I crack propagation, while for increasing
crack-opening velocity the fracture deviates from the vertical direction and branching phenomena are
observed. For the applied crack-opening velocity v0 = 1.375 m/s, the computed kink angle is the
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same as in the experimental data. However, at the end of the fracture process, the computed fracture
touches a different point of the boundary. For the applied crack-opening velocity v0 = 3.375 m/s, one
can see simple branching, while for the applied crack-opening velocity v0 = 4.298 m/s, we can see
multiple branching. With this difference, we can explain that it does not correspond that all twelve
experimental specimens were done from the same concrete and have exactly the same properties. As
well, it is not enough that the statistics and some errors could occur during the experiments. Anyway
numerical simulations are the way to predict the behavior and it could be improved. Table 4 reports
synoptically, for comparison, the reaction force measured experimentally and computed with various
approaches–including the one presented in this paper–for different applied velocities.

Table 4. Reaction force measured experimentally and computed with various approaches–
including the one presented in this paper–for different applied velocities. Results are reported
in kN.

Applied v0

(m/s)
Exp. results
[41]

Numerical results obtained with various approaches by
Ozbolt
[42]

This paper
Hai
[22]

Wu’s IH-PD
[71]

Wu’s FH-PD
[71]

Bui
[5]

Qinami
[55]

0.491 4.05 4.12 2.88 - - - - -
1.375 4.64 3.54 3.68 3.75 ≈ 4.3 ≈ 5.5 ≈ 3.3 ≈ 4.7
3.268 4.59 4.76 4.99 4.70 ≈ 4.6 ≈ 6.1 ≈ 3.3 ≈ 6.1
4.298 5.66 5.15 5.00 - ≈ 5.6 ≈ 6.1 - ≈ 6.5

4. Conclusions

In this paper, we have focused on the loading rate effect on fracture propagation in brittle materials
with strain gradient effects. We have demonstrated that, the slower the applied loading velocity, the
less the maximum reaction force; and the faster the applied loading velocity, the higher must be the
imposed displacement to reach the maximum value of the reaction force; cfr. Figure 25. It is also
observed that the nonsymmetric increasing loading rate leads to a deviation from standard mode-I crack
propagation consisting of crack deviation and simple and multiple branching that cannot be revealed in
the quasi-static case. It is worth it to note that, as expected, kinetic energy concentrates in the specimen’s
region, directly putting in movement by the loading and by the occurrence of fracture, which allows
crack opening and, hence, movement of the body particles in that region. Increasing the applied loading
velocity, one can also see the growth of some orders of magnitude of the kinetic energy, which suggests
that this is the key quantity underlying the loading rate dependent behavior of fracture propagation.
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