Numerical simulation was performed for unsteady natural convection flow and heat transfer in a porous medium using the generalized Maxwell model and fractional Darcy's law with distributed order time fractional derivatives. The finite volume method combined with the fractional L1 scheme was used to solve strongly coupled governing equations with nonlinear fractional convection terms. Numerical solutions were validated via grid independence tests and comparisons with special exact solutions. The effects of porosity, Darcy number, and relaxation time parameters on transport fields are presented. The results illustrate that porosity and permeability have opposite influences on temperature and velocity profiles. Moreover, the relaxation time parameters have remarkable effects on velocity profiles, and the variations possess significant differences.
Citation: Jinhu Zhao. Natural convection flow and heat transfer of generalized Maxwell fluid with distributed order time fractional derivatives embedded in the porous medium[J]. Networks and Heterogeneous Media, 2024, 19(2): 753-770. doi: 10.3934/nhm.2024034
Numerical simulation was performed for unsteady natural convection flow and heat transfer in a porous medium using the generalized Maxwell model and fractional Darcy's law with distributed order time fractional derivatives. The finite volume method combined with the fractional L1 scheme was used to solve strongly coupled governing equations with nonlinear fractional convection terms. Numerical solutions were validated via grid independence tests and comparisons with special exact solutions. The effects of porosity, Darcy number, and relaxation time parameters on transport fields are presented. The results illustrate that porosity and permeability have opposite influences on temperature and velocity profiles. Moreover, the relaxation time parameters have remarkable effects on velocity profiles, and the variations possess significant differences.
[1] | B. Khuzhayorov, J. L. Auriault, P. Royer, Derivation of macroscopic filtration law for transient linear viscoelastic fluid flow in porous media, Int. J. Eng. Sci., 38 (2000), 487–504. https://doi.org/10.1016/S0020-7225(99)00048-8 doi: 10.1016/S0020-7225(99)00048-8 |
[2] | M. S. Malashetty, I. S. Shivakumara, S. Kulkarni, M. Swamy, Convective instability of Oldroyd-B fluid saturated porous layer heated from below using a thermal non-equilibrium model, Transp Porous Med, 64 (2006), 123–139. https://doi.org/10.1007/s11242-005-1893-0 doi: 10.1007/s11242-005-1893-0 |
[3] | I. S. Shivakumara, M. Dhananjaya, C. O Ng, Thermal convective instability in an Oldroyd-B nanofluid saturated porous layer, Int J Heat Mass Tran, 84 (2015), 167–177. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.010 doi: 10.1016/j.ijheatmasstransfer.2015.01.010 |
[4] | H. Xu, X. Jiang, Creep constitutive models for viscoelastic materials based on fractional derivatives, Comput. Math. Appl., 73 (2017), 1377–1384. https://doi.org/10.1016/j.camwa.2016.05.002 doi: 10.1016/j.camwa.2016.05.002 |
[5] | D. Yao, A fractional dashpot for nonlinear viscoelastic fluids, J. Rheol., 62 (2018), 619–629. https://doi.org/10.1122/1.5012504 doi: 10.1122/1.5012504 |
[6] | M. Shen, L. Chen, M. Zhang, F. Liu, A renovated Buongiorno's model for unsteady Sisko nanofluid with fractional Cattaneo heat flux, Int J Heat Mass Tran., 126 (2018), 277–286. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.131 doi: 10.1016/j.ijheatmasstransfer.2018.05.131 |
[7] | X. Chen, W. Yang, X. Zhang, F. Liu, Unsteady boundary layer flow of viscoelastic MHD fluid with a double fractional Maxwell model, Appl. Math. Lett., 95 (2019), 143–149. https://doi.org/10.1016/j.aml.2019.03.036 doi: 10.1016/j.aml.2019.03.036 |
[8] | Q. Wei, H. W. Zhou, S. Yang, Non-Darcy flow models in porous media via Atangana-Baleanu derivative, Chaos Soliton Fract, 141 (2020), 110335. https://doi.org/10.1016/j.chaos.2020.110335 doi: 10.1016/j.chaos.2020.110335 |
[9] | X. Yang, Y. J. Liang, W. Chen, Anomalous imbibition of non-Newtonian fluids in porous media, Chem. Eng. Sci., 211 (2020), 115265. https://doi.org/10.1016/j.ces.2019.115265 doi: 10.1016/j.ces.2019.115265 |
[10] | S. E. Ahmed, Caputo fractional convective flow in an inclined wavy vented cavity filled with a porous medium using Al2O3-Cu hybrid nanofluids, Int. Commun. Heat Mass Transf., 116 (2020), 104690. https://doi.org/10.1016/j.icheatmasstransfer.2020.104690 doi: 10.1016/j.icheatmasstransfer.2020.104690 |
[11] | Z. Y. Ai, Y. Z. Zhao, W. J. Liu, Fractional derivative modeling for axisymmetric consolidation of multilayered cross-anisotropic viscoelastic porous media, Comput. Math. Appl., 79 (2020), 1321–1334. https://doi.org/10.1016/j.camwa.2019.08.033 doi: 10.1016/j.camwa.2019.08.033 |
[12] | X. Y. Jiang, H. Zhang, S. W. Wang, Unsteady magnetohydrodynamic flow of generalized second grade fluid through porous medium with Hall effects on heat and mass transfer, Phys. Fluids., 32 (2020), 113105. https://doi.org/10.1063/5.0032821 doi: 10.1063/5.0032821 |
[13] | Y. H. Jiang, H. G. Sun, Y. Bai, Y. Zhang, MHD flow, radiation heat and mass transfer of fractional Burgers' fluid in porous medium with chemical reaction, Comput. Math. Appl., 115 (2022), 68–79. https://doi.org/10.1016/j.camwa.2022.01.014 doi: 10.1016/j.camwa.2022.01.014 |
[14] | A. V. Chechkin, R. Gorenflo, I. M. Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed order fractional diffusion equations, Phys. Rev. E, 66 (2002), 046129. https://doi.org/10.1103/PhysRevE.66.046129 doi: 10.1103/PhysRevE.66.046129 |
[15] | M. Caputo, Elasticità e dissipazione, Bologna: Zanichelli, 1969. |
[16] | L. Liu, L. B. Feng, Q. Xu, L. C. Zheng, F. W. Liu, Flow and heat transfer of generalized Maxwell fluid over a moving plate with distributed order time fractional constitutive models, Int. Commun. Heat Mass Transf., 116 (2020), 104679. https://doi.org/10.1016/j.icheatmasstransfer.2020.104679 doi: 10.1016/j.icheatmasstransfer.2020.104679 |
[17] | Y. L. Qiao, X. P. Wang, H. Y. Xu, H. T. Qi, Numerical analysis for viscoelastic fluid flow with distributed/variable order time fractional Maxwell constitutive models, Appl. Math. Mech.-Engl. Ed., 42 (2021), 1771–1786. https://doi.org/10.1007/s10483-021-2796-8 doi: 10.1007/s10483-021-2796-8 |
[18] | Z. F. Long, L. Liu, S. Yang, L. B. Feng, L. C. Zheng, Analysis of Marangoni boundary layer flow and heat transfer with novel constitution relationships, Int. Commun. Heat Mass Transf., 127 (2021), 105523. https://doi.org/10.1016/j.icheatmasstransfer.2021.105523 doi: 10.1016/j.icheatmasstransfer.2021.105523 |
[19] | W. D. Yang, X. H. Chen, X. R. Zhang, L. C. Zheng, F. W. Liu, Flow and heat transfer of viscoelastic fluid with a novel space distributed-order constitution relationship, Comput. Math. Appl., 94 (2021), 94–103. https://doi.org/10.1016/j.camwa.2021.04.023 doi: 10.1016/j.camwa.2021.04.023 |
[20] | L. B. Feng, I. Turner, T. Moroney, F. W. Liu, An investigation of space distributed-order models for simulating anomalous transport in a binary medium, Appl. Math. Comput., 434 (2022), 127423. https://doi.org/10.1016/j.amc.2022.127423 doi: 10.1016/j.amc.2022.127423 |
[21] | X. H. Chen, H. B. Xie, W. D. Yang, M. W. Chen, L. C. Zheng, Start-up flow in a pipe of a double distributed-order Maxwell fluid, Appl. Math. Lett., 134 (2022), 108302. https://doi.org/10.1016/j.aml.2022.108302 doi: 10.1016/j.aml.2022.108302 |
[22] | Y. X. Niu, Y. Liu, H. Li, F. W. Liu, Fast high-order compact difference scheme for the nonlinear distributed-order fractional Sobolev model appearing in porous media, Math Comput Simul, 203 (2023), 387–407. https://doi.org/10.1016/j.matcom.2022.07.001 doi: 10.1016/j.matcom.2022.07.001 |
[23] | L. Liu, S. Y. Chen, L. B. Feng, J. Zhu, J. S. Zhang, L. C. Zheng, et al., A novel distributed order time fractional model for heat conduction, anomalous diffusion, and viscoelastic flow problems, Comput. Fluid., 265 (2023), 105991. https://doi.org/10.1016/j.compfluid.2023.105991 doi: 10.1016/j.compfluid.2023.105991 |
[24] | Y. J. Hu, B. T. Li, C. G. Cao, On viscoelastic blood in a locally narrow artery with magnetic field: application of distributed-order time fractional Maxwell model, Phys Scr, 99 (2024), 055018. https://doi.org/10.1088/1402-4896/ad3686 doi: 10.1088/1402-4896/ad3686 |
[25] | M. C. Zhang, F. W. Liu, I. W. Turner, V. V. Anh, Numerical simulation of the distributed-order time-space fractional Bloch-Torrey equation with variable coefficients, Appl. Math. Model., 129 (2024), 169–190. https://doi.org/10.1016/j.apm.2024.01.050 doi: 10.1016/j.apm.2024.01.050 |
[26] | W. Ding, S. Patnaik, S. Sidhardh, F. Semperlotti, Applications of distributed-order fractional operators: a review, Entropy, 23 (2021), 110. https://doi.org /10.3390 /e23010110 |
[27] | L. Liu, L. B. Feng, Q. Xu, Y. P. Chen, Anomalous diffusion in comb model subject to a novel distributed order time fractional Cattaneo–Christov flux, Appl. Math. Lett., 102 (2020), 106116. https://doi.org/10.1016/j.aml.2019.106116 doi: 10.1016/j.aml.2019.106116 |
[28] | I. Podlubny, Fractional Differential Equations, San Diego: Academic Press, 1999, 78–85. |
[29] | K. Diethelm, N. J. Ford, Numerical analysis for distributed-order differential equations, J. Comput. Appl. Math., 225 (2009), 96–104. https://doi.org/10.1016/j.cam.2008.07.018 doi: 10.1016/j.cam.2008.07.018 |
[30] | K. Diethelm, N. J. Ford, Analysis of Fractional Differential Equations, J. Math. Anal. Appl., 265 (2002), 229–248. https://doi.org/10.1006/jmaa.2000.7194 doi: 10.1006/jmaa.2000.7194 |
[31] | L. Liu, S. Yang, L. B. Feng, Q. Xu, L. C. Zheng, F. W. Liu, Memory dependent anomalous diffusion in comb structure under distributed order time fractional dual-phase-lag model, Int. J. Biomath., 14 (2021), 2150048. https://doi.org/10.1142/S1793524521500480 doi: 10.1142/S1793524521500480 |
[32] | F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrage, Stability and convergence of the difference methods for the space time fractional advection diffusion equation, Appl. Math. Comput., 191 (2007), 12–20. https://doi.org/10.1016/j.amc.2006.08.162 doi: 10.1016/j.amc.2006.08.162 |
[33] | Z. Sun, X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56 (2006), 193–209. https://doi.org/10.1016/j.apnum.2005.03.003 doi: 10.1016/j.apnum.2005.03.003 |