Research article

A second order numerical method for a Volterra integro-differential equation with a weakly singular kernel

  • Received: 27 May 2024 Revised: 05 July 2024 Accepted: 22 July 2024 Published: 24 July 2024
  • In this paper, a second finite difference method on a graded grid is proposed for a Volterra integro-differential equation with a weakly singular kernel. The proposed scheme is obtained by using the two-step backward differentiation formula (BDF2) to discretize the first derivative term and the first-order interpolation scheme to approximate the integral term. The analysis of stability is proved and used to prove the convergence of our presented numerical method in the discrete maximum norm. Finally, Numerical experiments are given to verify the theoretical results.

    Citation: Li-Bin Liu, Limin Ye, Xiaobing Bao, Yong Zhang. A second order numerical method for a Volterra integro-differential equation with a weakly singular kernel[J]. Networks and Heterogeneous Media, 2024, 19(2): 740-752. doi: 10.3934/nhm.2024033

    Related Papers:

  • In this paper, a second finite difference method on a graded grid is proposed for a Volterra integro-differential equation with a weakly singular kernel. The proposed scheme is obtained by using the two-step backward differentiation formula (BDF2) to discretize the first derivative term and the first-order interpolation scheme to approximate the integral term. The analysis of stability is proved and used to prove the convergence of our presented numerical method in the discrete maximum norm. Finally, Numerical experiments are given to verify the theoretical results.



    加载中


    [1] H. Brunner, D. Schötzau, hp-Discontinuous galerkin time-stepping for Volterra integro differential equattions, SIAM J Numer Anal, 44 (2006), 224–245. https://doi.org/10.1137/040619314 doi: 10.1137/040619314
    [2] A. M. Wazwaz, Volterra Integro-Differential Equations, Berlin Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-21449-3_5
    [3] B. Hermann, Volterra integral equations: an introduction to theory and applications, Cambridge: Cambridge University Press, 2017. https://doi.org/10.1017/9781316162491
    [4] I. Amirali, B. Fedaka, G. M. Amiraliyev, On the second-order neutral Volterra integro-differential equation and its numerical solution, Appl. Math. Comput., 476 (2024), 128765. https://doi.org/10.1016/j.amc.2024.128765 doi: 10.1016/j.amc.2024.128765
    [5] H. Chen, W. Qiu, M. A. Zaky, A. S. Hendy, A two-grid temporal second-order scheme for the two-dimensional nonlinear Volterra integro-differential equation with weakly singular kernel, Calcolo, 60 (2023), 13–42. https://doi.org/10.1007/s10092-023-00508-6 doi: 10.1007/s10092-023-00508-6
    [6] I. Amirali, H. Acar, Stability inequalities and numerical solution for neutral Volterra delay integro-differential equation, J. Comput. Appl. Math., 436 (2024), 115343. https://doi.org/10.1016/j.cam.2023.115343 doi: 10.1016/j.cam.2023.115343
    [7] M. Kassem, A superconvergent discontinuous Galerkin method for Volterra integro-differential equations, smooth and non-smooth kernels, Math. Comput., 82 (2013), 1987–2005. http://doi:10.1090/s0025-5718-2013-02689-0 doi: 10.1090/s0025-5718-2013-02689-0
    [8] Z. Wang, Y. Guo, L. Yi, An $hp$-version Legendre-Jacobi spectral collocation method for Volterra integro-differential equations with smooth and weakly singular kernels, Math. Comput., 86 (2017), 2285–2324. https://doi.org/10.1090/mcom/3183 doi: 10.1090/mcom/3183
    [9] Y. X. Wei, Y. P. Chen, Convergence analysis of the spectral methods for weakly singular Volterra integro-differential equations with smooth solutions, Adv Appl Math Mech, 4 (2012), 1–20. https://doi.org/10.4208/aamm.10-m1055 doi: 10.4208/aamm.10-m1055
    [10] C. L. Wang, B. Y. Chen, An hp-version spectral collocation method for nonlinear Volterra integro-differential equation with weakly singular kernels, AIMS. Math, 8 (2023), 19816–19841. http://doi.org/10.3934/math.20231010 doi: 10.3934/math.20231010
    [11] H. L. Jia, Y. Yang, Z. Q. Wang, An hp-version Chebyshev spectral collocation method for nonlinear Volterra integro-differential equations with weakly singular kernels, Numer. Math. Theor. Meth. Appl., 12 (2019), 969–994. http://doi.org/10.4208/nmtma.OA-2018-0104 doi: 10.4208/nmtma.OA-2018-0104
    [12] X. M. Wang, An efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier-Stokes equations, Numer. Math., 121 (2012), 753–779. http://doi.org/10.1007/s00211-012-0450-3 doi: 10.1007/s00211-012-0450-3
    [13] K. L. Cheng, C. Wang, Long time stability of high order multistep numerical schemes for two-dimensional incompressible Navier-Stokes equations, SIAM. J. Numer. Anal., 54 (2016), 3123–3144. http://doi.org/10.1137/16M1061588 doi: 10.1137/16M1061588
    [14] H. L. Liao, Z. Zhang, Analysis of adaptive BDF2 scheme for diffusion equations, Math. Comp., 90 (2020), 1207–1226. https://doi.org/10.1090/mcom/3585 doi: 10.1090/mcom/3585
    [15] H. Liao, X. Song, T. Tang, T. Zhou, Analysis of the second order BDF scheme with variable steps for the molecular beam epitaxial model without slope selection, Sci. China Math., 64 (2021), 887–902. https://doi.org/10.1007/s11425-020-1817-4 doi: 10.1007/s11425-020-1817-4
    [16] W. S. Wang, M. L. Mao, Z. Wang, Stability and error estimates for the variable step-size BDF2 method for linear and semilinear parabolic equations, Adv. Comput. Math., 47 (2021), 8–35. https://doi.org/10.1007/s10444-020-09839-2 doi: 10.1007/s10444-020-09839-2
    [17] W. Wang, Z. Wang, M. Mao, Linearly implicit variable step-size BDF schemes with Fourier pseudospectral approximation for incompressible Navier-Stokes equations, Appl. Numer. Math., 172 (2022), 393–412. https://doi.org/10.1016/j.apnum.2021.10.019 doi: 10.1016/j.apnum.2021.10.019
    [18] Y. L. Zhao, X. M. Gu, A. A. Ostermann, A preconditioning technique for an all-at-once system from Volterra subdiffusion equations with graded time steps, J Sci Comput, 88 (2021), 11. https://doi.org/10.1007/s10915-021-01527-7 doi: 10.1007/s10915-021-01527-7
    [19] C. P. Li, Q. Yi, A. Chen, Finite difference methods with non-uniform meshes for nonlinear fractional differential equations, J. Comput. Phys., 316 (2016), 614–631. https://doi.org/10.1016/j.jcp.2016.04.039 doi: 10.1016/j.jcp.2016.04.039
    [20] T. Linß, Error expansion for a first-order upwind difference scheme applied to a model convection-diffusion problem, IMA. J. Numer. Anal., 24 (2004), 239–253. http://doi.org/10.1093/imanum/24.2.239
    [21] H. L. Liao, T. Tang, T. Zhou, Discrete energy analysis of the third-order variable-step BDF time-stepping for diffusion equation, J. Comput. Math. 41 (2023), 325–344. https://doi.org/10.4208/jcm.2207-m2022-0020 doi: 10.4208/jcm.2207-m2022-0020
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(735) PDF downloads(59) Cited by(0)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog