This paper modeled the dynamics of microbubbles coated with viscoelastic shells using the modified Korteweg-de Vries-Burgers equation, a nonlinear third-order partial differential equation. This study focused on the well-posedness of the Cauchy problem associated with this equation.
Citation: Giuseppe Maria Coclite, Lorenzo di Ruvo. $ H^1 $ solutions for a modified Korteweg-de Vries-Burgers type equation[J]. Networks and Heterogeneous Media, 2024, 19(2): 724-739. doi: 10.3934/nhm.2024032
This paper modeled the dynamics of microbubbles coated with viscoelastic shells using the modified Korteweg-de Vries-Burgers equation, a nonlinear third-order partial differential equation. This study focused on the well-posedness of the Cauchy problem associated with this equation.
[1] | F. Bernis, A. Friedman, Higher order nonlinear degenerate parabolic equations, J Differ Equ, 83 (1990), 179–206. https://doi.org/10.1016/0022-0396(90)90074-Y doi: 10.1016/0022-0396(90)90074-Y |
[2] | J. L. Bona, M. E. Schonbek, Travelling-wave solutions to the Korteweg-de Vries-Burgers equation, P ROY SOC EDINB A, 101 (1985), 207–226. https://doi.org/10.1017/S0308210500020783 doi: 10.1017/S0308210500020783 |
[3] | J. Canosa, J. Gazdag, The Korteweg-de Vries-Burgers equation, J. Comput. Phys., 23 (1977), 393–403. https://doi.org/10.1016/0021-9991(77)90070-5 doi: 10.1016/0021-9991(77)90070-5 |
[4] | G. M. Coclite, L. di Ruvo, Convergence of the Rosenau-Korteweg-de Vries equation to the Korteweg-de Vries one, Contemp. Math., 1 (2020), 365–392. https://doi.org/10.37256/cm.152020502 doi: 10.37256/cm.152020502 |
[5] | G. M. Coclite, L. di Ruvo, $H^1$-solutions for the Hele-Shaw equation, Vietnam J. Math., 49 (2020), 673–683. https://doi.org/10.1007/s10013-020-00448-6 doi: 10.1007/s10013-020-00448-6 |
[6] | G. M. Coclite, L. di Ruvo, On the solutions for an Ostrovsky type equation, Nonlinear Anal Real World Appl, 55 (2020), 103141. https://doi.org/10.1016/j.nonrwa.2020.103141 doi: 10.1016/j.nonrwa.2020.103141 |
[7] | G. M. Coclite, L. di Ruvo, Existence results for the Kudryashov-Sinelshchikov-Olver equation, P ROY SOC EDINB A, 151 (2021), 425–450. https://doi.org/10.1017/prm.2020.23 doi: 10.1017/prm.2020.23 |
[8] | G. M. Coclite, L. di Ruvo, Well-posedness of the classical solution for the Kuramto-Sivashinsky equation with anisotropy effects, Z Angew Math Phys, 72 (2021), 68. https://doi.org/10.1007/s00033-021-01506-w doi: 10.1007/s00033-021-01506-w |
[9] | G. M. Coclite, L. D. Ruvo, On the classical solutions for the Kuramoto-Sivashinsky equation with Ehrilch-Schwoebel effects, Contemp. Math., 3 (2022), 386–431. https://doi.org/10.37256/cm.3420221607 doi: 10.37256/cm.3420221607 |
[10] | I. Fukuda, Asymptotic behavior of solutions to the generalized KdV-Burgers equation, Osaka J. Math., 56 (2019), 883–906. |
[11] | F. A. Gallego, A. F. Pazoto, On the well-posedness and asymptotic behaviour of the generalized Korteweg-de Vries-Burgers equation, P ROY SOC EDINB A, 149 (2019), 219–260. https://doi.org/10.1017/S0308210518000240 doi: 10.1017/S0308210518000240 |
[12] | N. Hayashi, P. I. Naumkin, Asymptotics for the Korteweg-de Vries-Burgers equation, Acta Math Sin Engl Ser, 22 (2006), 1441–1456. |
[13] | A. Jeffrey, M. N. B. Mohamad, Exact solutions to the KdV-Burgers equation, Wave Motion, 14 (1991), 369–375. https://doi.org/10.1016/0165-2125(91)90031-i doi: 10.1016/0165-2125(91)90031-i |
[14] | T. Kanagawa, M. Honda, Y. Kikuchi, Nonlinear acoustic theory on flowing liquid containing multiple microbubbles coated by a compressible visco-elastic shell: Low and high frequency cases, Phys Fluids, 35 (2023), 023303. https://doi.org/10.1063/5.0101219 doi: 10.1063/5.0101219 |
[15] | G. Karch, Self-similar large time behavior of solutions to Korteweg-de Vries-Burgers equation, Nonlinear Anal-Theor, 35 (1999), 199–219. https://doi.org/10.1016/S0362-546X(97)00708-6 doi: 10.1016/S0362-546X(97)00708-6 |
[16] | C. E. Kenig, G. Ponce, L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Commun Pure Appl Math, 46 (1993), 527–620. https://doi.org/10.1002/cpa.3160460405 doi: 10.1002/cpa.3160460405 |
[17] | Y. Kikuchi, T. Kanagawa, Weakly nonlinear theory on ultrasound propagation in liquids containing many microbubbles encapsulated by visco-elastic shell, Jpn. J. Appl. Phys., 60 (2021), SDDD14. https://doi.org/10.35848/1347-4065/abebba doi: 10.35848/1347-4065/abebba |
[18] | N. A. Kudryashov, D. I. Sinelshchikov, Nonlinear waves in bubbly liquids with consideration for viscosity and heat transfer, Phys Lett A, 374 (2010), 2011–2016. https://doi.org/10.1016/j.physleta.2010.02.067 doi: 10.1016/j.physleta.2010.02.067 |
[19] | M. Marin, A. Hobiny, I. Abbas, The effects of fractional time derivatives in porothermoelastic materials using finite element method, Mathematics, 9 (2021), 1606. https://doi.org/10.3390/math9141606 doi: 10.3390/math9141606 |
[20] | J. J Shu, The proper analytical solution of the Korteweg-de Vries-Burgers equation, J. Phys. A: Math. Gen., 20 (1987), L49–L56. https://doi.org/10.1088/0305-4470/20/2/002 doi: 10.1088/0305-4470/20/2/002 |
[21] | J. Simon, Compact sets in the space $L^ p(0, T;B)$, Annali di Matematica pura ed applicata, 146 (1987), 65–96. https://doi.org/10.1007/BF01762360 doi: 10.1007/BF01762360 |