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Abstract: Numerical simulation was performed for unsteady natural convection flow and heat transfer 
in a porous medium using the generalized Maxwell model and fractional Darcy’s law with distributed 
order time fractional derivatives. The finite volume method combined with the fractional L1 scheme 
was used to solve strongly coupled governing equations with nonlinear fractional convection terms. 
Numerical solutions were validated via grid independence tests and comparisons with special exact 
solutions. The effects of porosity, Darcy number, and relaxation time parameters on transport fields 
are presented. The results illustrate that porosity and permeability have opposite influences on 
temperature and velocity profiles. Moreover, the relaxation time parameters have remarkable effects 
on velocity profiles, and the variations possess significant differences. 
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1. Introduction 

Transport phenomena in porous media have widespread applications throughout manifold aspects 
of nature and industrial engineering, such as groundwater utilization, oil and gas extraction, chemical 
industry, building materials, biomedical development, etc. [1–2]. The relevant studies on heat transfer 
theory also permeate many scientific and technical fields [3]. On account of the structural complexity 
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inside porous media and the diversity of fluids, convective flow and heat transfer in porous media have 
strongly nonlinear characteristics, and the classical linear Darcy’s law is not applicable. Moreover, the 
coupled effects of velocity and temperature fields have important influences on the heat transfer 
process. Because of this, a novel constitutive equation and heat transfer model should be derived to 
characterize and simulate the internal physical mechanism inside the porous medium. 

For the last few years, constitutive relationship equations with fractional derivatives have been 
frequently adopted in the description of complex dynamics [4–7], and simultaneously relevant research 
on fractional porous media has also been carried out widely. Wei et al. [8] proposed two fractional 
derivative models to describe non-Darcy flow in porous media. Yang et al. [9] discussed anomalous 
imbibition of non-Newtonian fluid in a porous medium by a spatiotemporal fractional model. 
Ahmed [10] used Caputo fractional derivatives to govern the mixed convective flow of hybrid 
nanofluids together with the Darcy model. Ai et al. [11] presented a viscoelastic model with fractional 
derivatives to simulate multilayered cross-anisotropic porous media. Jiang et al. [12] solved the 
governing equations of fractional second-grade fluid through a porous medium. Jiang et al. [13] 
developed a fractional Burgers model to simulate non-Newtonian fluid in porous media with complex 
physical-chemical conditions. 

Nevertheless, the restrictions of the mentioned research are fixed fractional derivative parameters 
that manifest a rather limited class of memory characteristics and nonlocal properties [14]. Recent 
developments in various fields, such as thermal management, manufacturing, blood flow, etc., 
emphasize the need to resolve the limitations of conventional models. The convective flow and heat 
transfer problems of viscoelastic fluids involve complex molecule internal structures and multi-scale 
effects. Therefore, the distributed order fractional derivative that was proposed by Caputo to develop 
the fractional derivative models [15] has been frequently applied to boundary layer flow and heat 
transfer in view of the advantage of integrating over a given range within a continuum. Liu et al. [16] 
utilized distributed order fractional derivatives to investigate boundary layer flow and heat transfer 
through a moving plate. Qiao et al. [17] solved the pipe flow governing equations of viscoelastic 
Maxwell fluids with distributed order time fractional derivatives. Long et al. [18] developed the 
generalized Maxwell and Cattaneo model with distributed order time fractional derivative to study 
unsteady Marangoni convective boundary layer flow and heat transfer. Yang et al. [19] discussed 
boundary layer flow and heat transfer by way of the space distributed-order constitution relationship. 
Feng et al. [20] investigated anomalous transport in a binary medium on finite domains and analyzed 
the properties of the distributed-order space fractional derivatives with nonlocal operators.       
Chen et al. [21] presented a study on start-up pipe flow with double time-distributed order Maxwell 
model. Niu et al. [22] proposed a fast numerical algorithm for the fractional Sobolev model, with non-
smooth solutions for the nonlinear distributed-order equations in porous media. Liu et al. [23] 
constructed a novel distributed order time fractional model to solve heat conduction, anomalous 
diffusion, and viscoelastic flow problems. Hu et al. [24] applied a distributed order time fractional 
Maxwell constitutive fluid model to simulate viscoelastic blood flowing in a narrowing blood vessel 
with a uniform magnetic field. Zhang et al. [25] introduced the distributed-order time fractional 
derivative to establish the generalized fractional Bloch-Torrey equation in heterogeneous biological 
tissues. 

On the other hand, there are very few studies on natural convective flow and heat transfer in 
porous media with distributed order time fractional derivatives. This is because the momentum and 
energy governing equations are strongly coupled, and the analytical solutions are difficult to obtain for 
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the nonlinear fractional convection terms. Given this, the paper aims to further discuss the internal 
transport mechanism in natural convective flow and heat transfer of porous media within distributed 
order time fractional derivative models. The following Section 2 presents unsteady natural convective 
flow and heat transfer governing equations using the generalized Maxwell model and Darcy’s law with 
initial and boundary conditions. Section 3 presents the fractional finite volume method together with 
the fractional L1 scheme to solve the nonlinear governing equations. A mid-point quadrature rule is 
employed to discretize the distributed order time fractional derivatives. Section 4 validates the 
acceptable accuracy of the numerical solutions after the grid independence test and comparisons with 
exact solutions. Section 5 analyzes and discusses the effects of active physical parameters on velocity 
and temperature distributions in detail. Section 6 summarizes the main conclusions of this paper. 

2. Mathematical formulation 

Consider unsteady convective flow and heat transfer of viscoelastic fluid over a vertical plate 
embedded in a porous medium. The wall temperature is denoted as Tw and is always maintained as a 
constant. The ambient temperature far away from the plate is T∞. Particularly, the direction of the 
vertical plate is selected as the x-axis, while the y-axis is horizontal accordingly. It is assumed that the 
fluid is incompressible, and the Boussinesq approximation can apply to the external body force. The 
porous medium is also assumed to be isotropic and homogeneous. Under these assumptions, the 
momentum conservation equation in the porous medium follows 

 xy
T

u u u
u v g T T R

t x y y


  

   
          

, (2.1) 

where ρ is the fluid constant density, u and v are the corresponding velocity components, σxy is the 
shear stress tensor component, g is the acceleration due to gravity, βT is the thermal expansion 
coefficient, T is the temperature, and R is the Darcy resistance. 

The microscopic structure of the porous medium and associated environments introduce 
complexity via porosity and permeability. The distributed order fractional derivative provides more 
flexibility for simulating anomalous diffusion behaviors with multi-scale characteristics [26]. Thus, 
the generalized distributed order Maxwell model and Darcy’s law are developed by integrating the 
order of the time-fractional derivative, respectively: 
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where α is the velocity fractional derivative parameter that characterizes the frequency-dependent 
complex modulus, λ1 is the velocity relaxation time, ω1(α) is the weight coefficient that follows ω1(α) 

≥ 0 and 
1

10
( ) 1d     [27], μ is the dynamic viscosity of the fluid, Κ and ε are the permeability and 
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porosity of the porous medium, respectively, and 
t








  denotes the Caputo fractional derivative 

operator defined as in (2.4) [28]. 
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where mℕ+, Γ(∙) denotes the gamma function, and f(x,y,t) is simplified as f(t). Combining Eqs (2.1)–
(2.3) to eliminate the terms σxy and R, the nonlinear coupled momentum equation with distributed order 
fractional derivative is derived as follows: 
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Similarly, the homologous energy equation with distributed order fractional derivative is obtained 
in the following: 

     

 

1
1 1

2 2 2 210 0

2
1

2 2 20

( ) ( )

( ) ,f

T T
uT vT d uT d

t x y t t x

T
vT d

t y y

 
 

 






       

    





                 
   

     

 


 (2.6) 

where ω2(β) denotes the weight coefficient that is suitable for certain conditions as ω2(β) ≥ 0 and 
1

20
( ) 1d    , β is the temperature fractional derivative parameter that improves the efficiency of 

the thermoelectric material figure-of-merit, λ2 is the temperature relaxation time, and αf is the thermal 
diffusion coefficient. 

The initial conditions and boundary conditions of the natural convective flow in the porous 
medium are assumed as follows: 
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where L is the total length of the plate, Da is the Darcy number, Gr is the Grashof number, and Pr is 
the Prandtl number. 

Non-dimensional distributed order governing equations for the porous medium are derived with 
time-fractional derivatives after omitting the dimensionless sign “*”: 
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The non-dimensional initial conditions and boundary conditions are subject to 
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3. Numerical technique 

Figure 1 shows the collocated grid system of the physical problem, where the computational 
domain is divided into discrete control volumes, and the general central nodal point is denoted as ΡP. 
The grid distances between the inner nodes in the x and y directions are denoted as Δx and Δy, 
respectively. The time step is denoted as Δt. 

 

Figure 1. The grid system of the control volume. 
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First, the following integral equation is derived by the integration of Eq (2.9): 
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(3.1) 

where ΔV is the control volume that equals Δx·Δy. 
The backward difference scheme is implemented to discretize the first item of the time term in 

Eq (3.1) as follows: 

 1 ( )
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The volume integrals inside the convective terms and diffusive term are substituted by surface 
integrals, which are carried out by the first-order upwind difference scheme. In addition, the gradient 
at the interface is approximated by the central difference format. After these methods of processing, 
the following discretized equations of integer derivatives are formulated: 
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where A represents the face area of the control volume, and Aw = Ae = Δx, An = As = Δy. 
Second, the mid-point quadrature rule is adopted to approximate the distributed order time 

fractional derivatives. Distributed-order fractional partial differential equations (PDEs) can be 
regarded as the limiting case of multi-term fractional PDEs [29]. Diethelm and Ford [30] have observed 
that small changes in the order of a fractional PDE lead to only slight changes in the final solution, 
which gives initial support to the employed numerical integration method. Thus, the summations of 
multi-fractional terms are acquired [31]: 
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K   denotes the fractional parameter step, and 
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Utilizing Eqs (3.9) and (3.10), Eqs (3.6)–(3.8) can be transformed into the discretized forms 
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where the truncation errors are 1 ( )R C t  , 2 ( )R C t x    , 3 ( )R C t y    . 

Finally, the iterative difference equation of Eq (2.9) is established: 

k k k k
P P S S W W E E Pa a a a S       , (3.15) 

1 1

1

2
1

K
k k

P s P P
s

V x
a r y u x v

t Pr y
 



                   
 , 

1

1

1
K

k
S s S

s

a r y u 



     
 

 ， w

x
a

Pr y





， 1

1

1
K

k
E s E

s

x
a r x v

Pr y




         
 ， 

  

  

  

1
1 1

1
1 1 1

1
1 1

1
1 1

1
1 1

1
1 1

1

,

K K k
k s s k j k j

P s P s j j P P
s s j

K k
s s k j k j k j k j

s j j P P S S
s j

K k
s s k j k j k j k j

s j j E E P P
s j

V V
S r r

t t

y r u u

x r v v

    

   

   


   


  


     


 


     


 

             

   

   

  

 

 

  

where    
2

2 2

s s

s s
s

t
r h

 


 






 
. 

The velocity terms of Eq (2.8) are carried out to deduce the discretized forms similarly. The semi-
implicit scheme is utilized for the integration of the single velocity and temperature terms: 
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where 
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h
K  , 
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Meanwhile, Eq (2.7) is integrated to obtain the velocity component in the y direction as follows: 
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4. Validation of the numerical results 

4.1. Solvability of the iterative difference equation 

Theorem 1. The iterative difference equation (3.14) is uniquely solvable. 
Proof. The values of θ at the kth time level are acquired from the iterative difference equation (3.14). 
We summarize the difference scheme on a particular i-level in matrix form: 
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where Gi is a tri-diagonal and full-rank matrix. 

Therefore, the difference scheme (3.20) is uniquely solvable. The numerical solutions of k
iu  and 

k
iv  are similarly proved. 

□ 

4.2. Grid independence verification 

The computational domain is regarded as a rectangle with sides Xmax =1 and Ymax = 12, 
respectively, where Ymax represents y→∞ approximately. The coordinate mesh sizes are fixed as Δx 
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= 0.05 and Δy = 0.1, respectively, and the time step is selected as Δt = 0.1. To compromise between 
numerical precision and computation time, the absolute differences between two consecutive time 
steps are set as smaller than 10−3 within the whole domain. To measure the grid independence, Figure 2 
presents the numerical solutions through different groups of grid systems. The velocity curves are in 
good coincidence, which demonstrates that the selected mesh sizes are appropriate for the calculations. 

 

Figure 2. Grid independence test. 

4.3. Numerical test with source terms 

To verify the numerical error accuracy of the presented fractional finite volume method, 
comparisons are implemented between numerical solutions and exact solutions with two source terms: 
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The homogeneous initial conditions and boundary conditions are given as follows: 
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The eligible exact solutions are chosen specially as 
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Figure 3. Comparison between numerical solutions and exact solutions. 

Figure 3 illustrates the comparisons between the exact solutions and numerical solutions of u and 
θ. The velocity and temperature distributions are both in fine consistency, which verifies that the 
presented fractional finite volume method has reliable convergence accuracy. 
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5. Results and discussion 

In this section, the effects of the active physical parameters on velocity and temperature 
distributions are illustrated graphically: namely, the porosity, Darcy number, and the relaxation time 
parameters. The distributed order fractional derivatives are integrated over a given range [0,1], and the 
summations of multi-fractional terms are acquired by the mid-point quadrature rule in Eqs (3.6)–(3.8). 
For this reason, the effects of the fractional derivative parameters are not discussed in this paper. The 
Prandtl number and Grashof number are both fixed as constants for brevity. 

 

Figure 4. Temperature profiles with different ε. 

 

Figure 5. Velocity profiles with different ε. 

Figure 4 shows temperature profiles with different values of porosity. The temperature 
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velocity profiles with different ε are depicted in Figure 5. Each velocity profile is not monotone and 
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possesses a maximum value. As the porosity increases, the velocity distribution declines, and the 
velocity boundary layer becomes thinner. In addition, the point location of the maximum value gets 
closer to the vertical plate. These results demonstrate that larger porosity imposes negative restrictions 
on momentum transfer. 

The effects of Darcy number on temperature and velocity profiles are illustrated in Figures 6 and 7. 
It is found in Figure 6 that the temperature distribution shifts down with the increase of Da, but the 
thickness of the temperature boundary layer declines slightly. In Figure 7, the velocity distribution 
rises with the increase of Da, but the increasing magnitude lessens distinctly. The result proves that 
the permeability accelerates the development of the velocity. It can be concluded that the porosity and 
permeability have opposite influences on temperature and velocity fields. 

 

Figure 6. Temperature profiles with different Da. 

 

Figure 7. Velocity profiles with different Da. 
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Figure 8. Temperature profiles with different λ2. 

 

Figure 9. Velocity profiles with different λ1. 

Figures 8–10 present the effects of the relaxation time λ1 and λ2 on velocity and temperature. It 
can be seen from Figure 8 that the temperature distribution decreases apparently with the increase of 
λ2. In Figure 9, the velocity distribution rises as the relaxation time λ1 increases, where the Newtonian 
fluid that responds to λ1 = 0 has the smallest velocity values. The result verifies that the velocity 
relaxation time promotes the momentum transfer. In Figure 10, the velocity distribution descends with 
the augment of λ2, which has inverse effects compared with the relaxation time λ1. The velocity profiles 
stay close to each other near the plate and separate evidently at a certain distance from the plate. 
Meanwhile, the velocity boundary layer thickness reduces slightly with the increase of λ2.  
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Figure 10. Velocity profiles with different λ2. 

6. Conclusions 

This paper discussed the unsteady natural convective flow and heat transfer of generalized 
Maxwell viscoelastic fluids with distributed order time fractional derivatives embedded in a porous 
medium. The finite volume method combined with the fractional L1 scheme rule was applied to solve 
the nonlinear governing equations. Numerical solutions of velocity and temperature were discussed 
after the grid independence test and comparisons with exact solutions. Results are concluded as follows: 
(i). The temperature distribution rises with the increase of ε but declines as Da and λ2 become larger. 
(ii). The velocity distribution ascends with the augment of Da and λ1 but reduces with the increase of 
ε and λ2. 
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