[1]
|
N. W. Ashcroft and N. D. Mermin,
Solide State Physics, Holt, Rinehart and Winston, Philadelphia, PA, 1976.
|
[2]
|
Stochastic two-scale convergence in the mean and applications. J. Reine Angew. Math. (1994) 456: 19-51. |
[3]
|
H. Brezis,
Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans Les Espaces de Hilbert, North Holland, 1973.
|
[4]
|
P. G. Ciarlet,
Mathematical Elasticity. Vol. Ⅰ, In Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam, 1988.
|
[5]
|
Nonlinear stochastic homogenization. Ann. Mat. Pura Appl. (1986) 144: 347-389.
|
[6]
|
Nonlinear stochastic homogenization and ergodic theory. J. Reine Angew. Math. (1986) 386: 28-42. |
[7]
|
L. C. Evans,
Partial Differential Equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010.
|
[8]
|
S. Fitzpatrick, Representing monotone operators by convex functions, in Workshop/Miniconference on Functional Analysis and Optimization, vol. 20 (eds. Centre for Mathematics and its Applications, Mathematical Sciences Institute, The Australian National University), Canberra, (1988), 59–65.
|
[9]
|
M. Heida and S. Nesenenko, Stochastic homogenization of rate-dependent models of monotone type in plasticity, preprint, arXiv: 1701.03505.
|
[10]
|
V. V. Jikov, S. M. Kozlov and O. A. Oleinik,
Homogenization of Differential Operators and Integral Functionals, Springer, 1994.
|
[11]
|
The averaging of random operators. Math. Sb. (1979) 109: 188-202. |
[12]
|
L. Landau and E. Lifshitz,
Electrodynamics of Continuous Media, Pergamon Press, Oxford, 1960.
|
[13]
|
K. Messaoudi and G. Michaille, Stochastic homogenization of nonconvex integral functionals. Duality in the convex case,
Sém. Anal. Convexe, 21 (1991), Exp. No. 14, 32 pp.
|
[14]
|
Stochastic homogenization of nonconvex integral functionals. RAIRO Modél. Math. Anal. Numér. (1994) 28: 329-356.
|
[15]
|
Compacité par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (1978) 5: 489-507. |
[16]
|
Strong $G$
-convergence of nonlinear elliptic operators and homogenization. Constantin Carathéodory: An International Tribute: (In 2 Volumes) (eds. World Scientific) (1991) Ⅰ/Ⅱ: 1075-1099. |
[17]
|
A. Pankov,
G-convergence and Homogenization of Nonlinear Partial Differential Operators, Kluwer Academic Publisher, Dordrecht, 1997.
|
[18]
|
Boundary value problems with rapidly oscillating random coefficients, in Random fields, vol. Ⅰ and Ⅱ. Colloq. Math. Soc. János Bolyai, North Holland, Amsterdam. (1981) 27: 835-873. |
[19]
|
Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe. Math. Ann. (1927) 97: 737-755.
|
[20]
|
Stochastic two-scale convergence of an integral functional. Asymptotic Anal. (2011) 73: 97-123. |
[21]
|
Averaging of flows with capillary hysteresis in stochastic porous media. European J. Appl. Math. (2007) 18: 389-415.
|
[22]
|
R. E. Showalter,
Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, volume 49 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1997.
|
[23]
|
L. Tartar,
Cours Peccot au College de France, Partially written by F. Murat in Séminaire d'Analyse Fonctionelle et Numérique de l'Université d'Alger, unpublished, 1977.
|
[24]
|
Stochastic homogenization of subdifferential inclusions via scale integration. Intl. J. of Struct. Changes in Solids (2011) 3: 83-98. |
[25]
|
Scale-integration and scale-disintegration in nonlinear homogenization. Calc. Var. Partial Differential Equations (2009) 36: 565-590.
|
[26]
|
Scale-transformations and homogenization of maximal monotone relations with applications. Asymptotic Anal. (2013) 82: 233-270. |
[27]
|
Variational formulation and structural stability of monotone equations. Calc. Var. Partial Differential Equations. (2013) 47: 273-317.
|