Stochastic homogenization of maximal monotone relations and applications

  • Received: 01 March 2017 Revised: 01 September 2017
  • Primary: 35B27, 47H05, 49J40; Secondary: 74B20, 74Q15, 78M40

  • We study the homogenization of a stationary random maximal monotone operator on a probability space equipped with an ergodic dynamical system. The proof relies on Fitzpatrick's variational formulation of monotone relations, on Visintin's scale integration/disintegration theory and on Tartar-Murat's compensated compactness. We provide applications to systems of PDEs with random coefficients arising in electromagnetism and in nonlinear elasticity.

    Citation: Luca Lussardi, Stefano Marini, Marco Veneroni. 2018: Stochastic homogenization of maximal monotone relations and applications, Networks and Heterogeneous Media, 13(1): 27-45. doi: 10.3934/nhm.2018002

    Related Papers:

  • We study the homogenization of a stationary random maximal monotone operator on a probability space equipped with an ergodic dynamical system. The proof relies on Fitzpatrick's variational formulation of monotone relations, on Visintin's scale integration/disintegration theory and on Tartar-Murat's compensated compactness. We provide applications to systems of PDEs with random coefficients arising in electromagnetism and in nonlinear elasticity.



    加载中
    [1]

    N. W. Ashcroft and N. D. Mermin, Solide State Physics, Holt, Rinehart and Winston, Philadelphia, PA, 1976.

    [2] Stochastic two-scale convergence in the mean and applications. J. Reine Angew. Math. (1994) 456: 19-51.
    [3]

    H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans Les Espaces de Hilbert, North Holland, 1973.

    [4]

    P. G. Ciarlet, Mathematical Elasticity. Vol. Ⅰ, In Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam, 1988.

    [5] Nonlinear stochastic homogenization. Ann. Mat. Pura Appl. (1986) 144: 347-389.
    [6] Nonlinear stochastic homogenization and ergodic theory. J. Reine Angew. Math. (1986) 386: 28-42.
    [7]

    L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010.

    [8]

    S. Fitzpatrick, Representing monotone operators by convex functions, in Workshop/Miniconference on Functional Analysis and Optimization, vol. 20 (eds. Centre for Mathematics and its Applications, Mathematical Sciences Institute, The Australian National University), Canberra, (1988), 59–65.

    [9]

    M. Heida and S. Nesenenko, Stochastic homogenization of rate-dependent models of monotone type in plasticity, preprint, arXiv: 1701.03505.

    [10]

    V. V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer, 1994.

    [11] The averaging of random operators. Math. Sb. (1979) 109: 188-202.
    [12]

    L. Landau and E. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, Oxford, 1960.

    [13]

    K. Messaoudi and G. Michaille, Stochastic homogenization of nonconvex integral functionals. Duality in the convex case, Sém. Anal. Convexe, 21 (1991), Exp. No. 14, 32 pp.

    [14] Stochastic homogenization of nonconvex integral functionals. RAIRO Modél. Math. Anal. Numér. (1994) 28: 329-356.
    [15] Compacité par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (1978) 5: 489-507.
    [16] Strong $G$ -convergence of nonlinear elliptic operators and homogenization. Constantin Carathéodory: An International Tribute: (In 2 Volumes) (eds. World Scientific) (1991) Ⅰ/Ⅱ: 1075-1099.
    [17]

    A. Pankov, G-convergence and Homogenization of Nonlinear Partial Differential Operators, Kluwer Academic Publisher, Dordrecht, 1997.

    [18] Boundary value problems with rapidly oscillating random coefficients, in Random fields, vol. Ⅰ and Ⅱ. Colloq. Math. Soc. János Bolyai, North Holland, Amsterdam. (1981) 27: 835-873.
    [19] Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe. Math. Ann. (1927) 97: 737-755.
    [20] Stochastic two-scale convergence of an integral functional. Asymptotic Anal. (2011) 73: 97-123.
    [21] Averaging of flows with capillary hysteresis in stochastic porous media. European J. Appl. Math. (2007) 18: 389-415.
    [22]

    R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, volume 49 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1997.

    [23]

    L. Tartar, Cours Peccot au College de France, Partially written by F. Murat in Séminaire d'Analyse Fonctionelle et Numérique de l'Université d'Alger, unpublished, 1977.

    [24] Stochastic homogenization of subdifferential inclusions via scale integration. Intl. J. of Struct. Changes in Solids (2011) 3: 83-98.
    [25] Scale-integration and scale-disintegration in nonlinear homogenization. Calc. Var. Partial Differential Equations (2009) 36: 565-590.
    [26] Scale-transformations and homogenization of maximal monotone relations with applications. Asymptotic Anal. (2013) 82: 233-270.
    [27] Variational formulation and structural stability of monotone equations. Calc. Var. Partial Differential Equations. (2013) 47: 273-317.
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6543) PDF downloads(316) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog