This paper is concerned with the spreading properties for a reaction-diffusion equation with free boundary condition. We obtained a complete description of the long-time dynamical behavior of this problem. By introducing a parameter $ \sigma $ in the initial data, we revealed a threshold value $ \sigma^* $ such that spreading happens when $ \sigma > \sigma^* $ and vanishing happens when $ \sigma\leq \sigma^* $. There exists a unique $ L^* > 0 $ independent of the initial data such that $ \sigma^* = 0 $ if and only if the length of initial occupying interval is no smaller than $ 2L^* $. These theoretical results may have important implications for prediction and prevention of biological invasions.
Citation: Di Zhang, Ningkui Sun, Xuemei Han. Dynamical behavior of solutions of a free boundary problem[J]. Mathematical Modelling and Control, 2024, 4(1): 1-8. doi: 10.3934/mmc.2024001
This paper is concerned with the spreading properties for a reaction-diffusion equation with free boundary condition. We obtained a complete description of the long-time dynamical behavior of this problem. By introducing a parameter $ \sigma $ in the initial data, we revealed a threshold value $ \sigma^* $ such that spreading happens when $ \sigma > \sigma^* $ and vanishing happens when $ \sigma\leq \sigma^* $. There exists a unique $ L^* > 0 $ independent of the initial data such that $ \sigma^* = 0 $ if and only if the length of initial occupying interval is no smaller than $ 2L^* $. These theoretical results may have important implications for prediction and prevention of biological invasions.
[1] | Y. Du, Z. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377–405. https://doi.org/10.1137/090771089 doi: 10.1137/090771089 |
[2] | Z. Lin, A free boundary problem for a predator-prey model, Nonlinearity, 20 (2007), 1883–1892. https://doi.org/10.1088/0951-7715/20/8/004 doi: 10.1088/0951-7715/20/8/004 |
[3] | D. G. Aronson, H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., 30 (1978), 33–76. https://doi.org/10.1016/0001-8708(78)90130-5 doi: 10.1016/0001-8708(78)90130-5 |
[4] | H. Matano, Y. Du, Convergence and sharp thresholds for propagation in nonlinear diffusion problems, J. Eur. Math. Soc., 12 (2010), 279–312. https://doi.org/10.4171/JEMS/198 doi: 10.4171/JEMS/198 |
[5] | Y. Du, B. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., 17 (2015), 2673–2724. https://doi.org/10.4171/JEMS/568 doi: 10.4171/JEMS/568 |
[6] | Y. Du, Propagation and reaction-diffusion models with free boundaries, Bull. Math. Sci., 12 (2022), 2230001. https://doi.org/10.1142/S1664360722300018 doi: 10.1142/S1664360722300018 |
[7] | Y. Kaneko, H. Matsuzawa, Y. Yamada, Asymptotic profiles of solutions and propagating terrace for a free boundary problem of nonlinear diffusion equation with positive bistable nonlinearity, SIAM J. Math. Anal., 52 (2020), 65–103. https://doi.org/10.1137/18M1209970 doi: 10.1137/18M1209970 |
[8] | C. Lei, Z. Lin, Q. Zhang, The spreading front of invasive species in favorable habitat or unfavorable habitat, J. Differ. Equations, 257 (2014), 145–166. https://doi.org/10.1016/j.jde.2014.03.015 doi: 10.1016/j.jde.2014.03.015 |
[9] | N. Sun, C. Lei, Long-time behavior of a reaction-diffusion model with strong Allee effect and free boundary: effect of protection zone, J. Dyn. Differ. Equations, 35 (2023), 737–770. https://doi.org/10.1007/s10884-021-10027-z doi: 10.1007/s10884-021-10027-z |
[10] | M. Wang, A diffusive logistic equation with a free boundary and sign-changing coefficient in time-periodic environment, J. Funct. Anal., 270 (2016), 483–508. https://doi.org/10.1016/j.jfa.2015.10.014 doi: 10.1016/j.jfa.2015.10.014 |
[11] | P. Zhou, D. Xiao, The diffusive logistic model with a free boundary in heterogeneous environment, J. Differ. Equations, 256 (2014), 1927–1954. https://doi.org/10.1016/j.jde.2013.12.008 doi: 10.1016/j.jde.2013.12.008 |
[12] | R. Cui, J. Shi, B. Wu, Strong Allee effect in a diffusive predator-prey system with a protection zone, J. Differ. Equations, 256 (2014), 108–129. https://doi.org/10.1016/j.jde.2013.08.015 doi: 10.1016/j.jde.2013.08.015 |
[13] | Y. Jin, R. Peng, J. Shi, Population dynamics in river networks, J. Nonlinear Sci., 29 (2019), 2501–2545. https://doi.org/10.1007/s00332-019-09551-6 doi: 10.1007/s00332-019-09551-6 |
[14] | S. Li, J. Wu, The effects of diffusion on the dynamics of a Lotka-Volterra predator-prey model with a protection zone, Calc. Var. Partial Differ. Equations, 61 (2022), 213. https://doi.org/10.1007/s00526-022-02338-w doi: 10.1007/s00526-022-02338-w |
[15] | K. Du, R. Peng, N. Sun, The role of protection zone on species spreading governed by a reaction-diffusion model with strong Allee effect, J. Differ. Equations, 266 (2019), 7327–7356. https://doi.org/10.1016/j.jde.2018.11.035 doi: 10.1016/j.jde.2018.11.035 |