Research article Special Issues

Dynamical behavior of solutions of a free boundary problem

  • Received: 20 February 2023 Revised: 04 May 2023 Accepted: 07 June 2023 Published: 13 March 2024
  • This paper is concerned with the spreading properties for a reaction-diffusion equation with free boundary condition. We obtained a complete description of the long-time dynamical behavior of this problem. By introducing a parameter $ \sigma $ in the initial data, we revealed a threshold value $ \sigma^* $ such that spreading happens when $ \sigma > \sigma^* $ and vanishing happens when $ \sigma\leq \sigma^* $. There exists a unique $ L^* > 0 $ independent of the initial data such that $ \sigma^* = 0 $ if and only if the length of initial occupying interval is no smaller than $ 2L^* $. These theoretical results may have important implications for prediction and prevention of biological invasions.

    Citation: Di Zhang, Ningkui Sun, Xuemei Han. Dynamical behavior of solutions of a free boundary problem[J]. Mathematical Modelling and Control, 2024, 4(1): 1-8. doi: 10.3934/mmc.2024001

    Related Papers:

  • This paper is concerned with the spreading properties for a reaction-diffusion equation with free boundary condition. We obtained a complete description of the long-time dynamical behavior of this problem. By introducing a parameter $ \sigma $ in the initial data, we revealed a threshold value $ \sigma^* $ such that spreading happens when $ \sigma > \sigma^* $ and vanishing happens when $ \sigma\leq \sigma^* $. There exists a unique $ L^* > 0 $ independent of the initial data such that $ \sigma^* = 0 $ if and only if the length of initial occupying interval is no smaller than $ 2L^* $. These theoretical results may have important implications for prediction and prevention of biological invasions.



    加载中


    [1] Y. Du, Z. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377–405. https://doi.org/10.1137/090771089 doi: 10.1137/090771089
    [2] Z. Lin, A free boundary problem for a predator-prey model, Nonlinearity, 20 (2007), 1883–1892. https://doi.org/10.1088/0951-7715/20/8/004 doi: 10.1088/0951-7715/20/8/004
    [3] D. G. Aronson, H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., 30 (1978), 33–76. https://doi.org/10.1016/0001-8708(78)90130-5 doi: 10.1016/0001-8708(78)90130-5
    [4] H. Matano, Y. Du, Convergence and sharp thresholds for propagation in nonlinear diffusion problems, J. Eur. Math. Soc., 12 (2010), 279–312. https://doi.org/10.4171/JEMS/198 doi: 10.4171/JEMS/198
    [5] Y. Du, B. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., 17 (2015), 2673–2724. https://doi.org/10.4171/JEMS/568 doi: 10.4171/JEMS/568
    [6] Y. Du, Propagation and reaction-diffusion models with free boundaries, Bull. Math. Sci., 12 (2022), 2230001. https://doi.org/10.1142/S1664360722300018 doi: 10.1142/S1664360722300018
    [7] Y. Kaneko, H. Matsuzawa, Y. Yamada, Asymptotic profiles of solutions and propagating terrace for a free boundary problem of nonlinear diffusion equation with positive bistable nonlinearity, SIAM J. Math. Anal., 52 (2020), 65–103. https://doi.org/10.1137/18M1209970 doi: 10.1137/18M1209970
    [8] C. Lei, Z. Lin, Q. Zhang, The spreading front of invasive species in favorable habitat or unfavorable habitat, J. Differ. Equations, 257 (2014), 145–166. https://doi.org/10.1016/j.jde.2014.03.015 doi: 10.1016/j.jde.2014.03.015
    [9] N. Sun, C. Lei, Long-time behavior of a reaction-diffusion model with strong Allee effect and free boundary: effect of protection zone, J. Dyn. Differ. Equations, 35 (2023), 737–770. https://doi.org/10.1007/s10884-021-10027-z doi: 10.1007/s10884-021-10027-z
    [10] M. Wang, A diffusive logistic equation with a free boundary and sign-changing coefficient in time-periodic environment, J. Funct. Anal., 270 (2016), 483–508. https://doi.org/10.1016/j.jfa.2015.10.014 doi: 10.1016/j.jfa.2015.10.014
    [11] P. Zhou, D. Xiao, The diffusive logistic model with a free boundary in heterogeneous environment, J. Differ. Equations, 256 (2014), 1927–1954. https://doi.org/10.1016/j.jde.2013.12.008 doi: 10.1016/j.jde.2013.12.008
    [12] R. Cui, J. Shi, B. Wu, Strong Allee effect in a diffusive predator-prey system with a protection zone, J. Differ. Equations, 256 (2014), 108–129. https://doi.org/10.1016/j.jde.2013.08.015 doi: 10.1016/j.jde.2013.08.015
    [13] Y. Jin, R. Peng, J. Shi, Population dynamics in river networks, J. Nonlinear Sci., 29 (2019), 2501–2545. https://doi.org/10.1007/s00332-019-09551-6 doi: 10.1007/s00332-019-09551-6
    [14] S. Li, J. Wu, The effects of diffusion on the dynamics of a Lotka-Volterra predator-prey model with a protection zone, Calc. Var. Partial Differ. Equations, 61 (2022), 213. https://doi.org/10.1007/s00526-022-02338-w doi: 10.1007/s00526-022-02338-w
    [15] K. Du, R. Peng, N. Sun, The role of protection zone on species spreading governed by a reaction-diffusion model with strong Allee effect, J. Differ. Equations, 266 (2019), 7327–7356. https://doi.org/10.1016/j.jde.2018.11.035 doi: 10.1016/j.jde.2018.11.035
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(736) PDF downloads(157) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog