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Abstract: This paper is concerned with the spreading properties for a reaction-diffusion equation with free boundary condition. We
obtained a complete description of the long-time dynamical behavior of this problem. By introducing a parameter σ in the initial data,
we revealed a threshold value σ∗ such that spreading happens when σ > σ∗ and vanishing happens when σ ≤ σ∗. There exists a unique
L∗ > 0 independent of the initial data such that σ∗ = 0 if and only if the length of initial occupying interval is no smaller than 2L∗. These
theoretical results may have important implications for prediction and prevention of biological invasions.
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1. Introduction

In this paper, we consider the following free boundary
problem:

ut = uxx + F(x, u), k(t) < x < h(t), t > 0,
u(t, x) = 0, h′(t) = −µ1ux(t, x), t > 0, x = h(t),
u(t, x) = 0, k′(t) = −µ2ux(t, x), t > 0, x = k(t),
−k(0) = h(0) = h0, u(0, x) = u0(x), −h0 ≤ x ≤ h0,

(P)

where u(t, x) denotes the population density of a species over
a one dimensional space, the free boundaries x = k(t) and
x = h(t) represent the spreading fronts, and µ1, µ2 are two
given positive constants (see [1, 2] on more background of
such free boundary conditions). For some h0 > 0, the initial
function u0 belongs to X (h0), where

X (h0) :=
{
ϕ ∈ C2([−h0, h0]) : ϕ(−h0) = ϕ(h0) = 0,

ϕ(x) > 0 in (−h0, h0)
}
.

When x > 0, the nonlinear reaction term F(x, u) ≡ f (u),
where f is globally Lipschitz, satisfies f (0) = f (1) = 0 < f ′(0), f ′(1) < 0,

(1 − u) f (u) > 0, ∀u > 0, u , 1,
(1.1)

and when x < 0, the nonlinear reaction term F(x, u) ≡ g(u),
where g is globally Lipschitz, satisfies g(0) = g(θ) = g(1) = 0, g′(0) < 0, g′(1) < 0,

g(u) < 0 in (0, θ), g(u) > 0 in (1,∞),
(1.2)

for some θ ∈ (0, 1), and
∫ 1

0 g(s)ds > 0. These two types of
nonlinearities have been studied in [3, 4].

We assume that the population density is continuous and
population flux is conserved at x = 0. Then, the interface
conditions at x = 0 are given by u(t, 0 − 0) = u(t, 0 + 0), t > 0,

ux(t, 0 − 0) = ux(t, 0 + 0), t > 0.
(1.3)

Throughout the paper, in addition to conditions (1.1)
and (1.2) on f and g, we further assume that

(H) g(u) < f (u) for all 0 < u < 1 and µ2 ≤ µ1.
Problem (P) with F(x, u) ≡ f (u) or F(x, u) ≡ g(u) for x ∈

Rwas studied in [1,5]. It is shown that there are a spreading-
vanishing dichotomy for F(x, u) ≡ f (u) and a spreading-
transition-vanishing trichotomy for F(x, u) ≡ g(u). Relevant
works on the dynamics of free boundary problems in a
spatial heterogeneity environment can be found in [6–11].
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The study of the corresponding problems in bounded or
unbounded intervals can be found, for example, in [12–14].

Our primary goal in this paper is to study the dynamics
of the reaction-diffusion model (P) with (1.3). By a similar
argument as in [1, 9], we have the following basic results:

(i) For any given u0 ∈ X (h0) for h0 > 0, problem (P)
admits a unique positive solution (u, k, h) with

u ∈ C1,2((0,∞) × ([k(t), h(t)]/{0}) ∩Cα/2,1+α((0,∞) × [k(t), h(t)])

and k, h ∈ C1+ α2 ([0,∞)) for any α ∈ (0, 1).
(ii) There exist two positive constants C1 and C2 such that 0 < u(t, x) ≤ C1 for t > 0, x ∈ [k(t), h(t)],

0 < −k′(t), h′(t) ≤ C2 for t > 0.

Let us define

k∞ := lim
t→∞

k(t) and h∞ := lim
t→∞

h(t).

We are now in a position to give a description of the long-
time dynamical behavior of problem (P) with (1.3), which is
stated as follows.

Theorem 1.1. Assume that (H) holds. Let (u, k, h) be a time-

global solution of (P) with (1.3) and u0 = σϕ for some ϕ ∈

X (h0), h0 > 0 and σ ≥ 0. Then, there is σ∗ ∈ [0,∞] such

that:

(i) Vanishing happens when 0 ≤ σ ≤ σ∗ in the sense that

[k∞, h∞] is a bounded interval and

lim
t→∞
∥u(t, ·)∥L∞([k(t),h(t)]) = 0.

(ii) Spreading happens when σ > σ∗ in the sense that

(k∞, h∞) = R and

lim
t→∞

u(t, x) = 1 locally uniformly in R.

(iii) σ∗ = 0 if and only if h0 ≥ L∗, where L∗ is given in

Lemma 2.2.

Theorem 1.1 indicates that if h0 ≥ L∗, the species will
survive regardless of the choice of the initial data; if h0 < L∗,
the species will survive only for large initial data. Based on
the comparison principle, the proof of this theorem is given
in Section 2.

2. Classification of dynamical behavior

This section covers the long-time dynamical behavior
of (P) with (1.3) and the proof of Theorem 1.1. In
the first subsection, we show some properties of the
principal eigenvalues of two linear eigenvalue problems. In
Subsection 2.2, we give a general convergence theorem.
We give some conditions for vanishing and spreading in
Subsection 2.3. Subsection 2.4 is devoted to the proof of
Theorem 1.1.

2.1. Linear eigenvalue problems

First, for any given L > 0, let us consider the following
eigenvalue problem:



−φ′′ − f ′(0)φ = λφ, 0 < x < L,

−φ′′ − g′(0)φ = λφ, −∞ < x < 0,
φ(−∞) = φ(L) = 0,
φ(0 − 0) = φ(0 + 0),
φ′(0 − 0) = φ′(0 + 0),

(2.1)

and obtain the following result on the properties of its
principal eigenvalue.

Lemma 2.1. For any given L > 0, let λ1(L) be the principal

eigenvalue of (2.1). Then, λ1(L) ∈ (− f ′(0),−g′(0)) for any

L > 0, and λ1(L) is decreasing with respect to L > 0. There

exists

L∗ =
1√
f ′(0)

arctan

√
−

g′(0)
f ′(0)

+
π

2

 , (2.2)

such that λ1(L) is negative (resp. 0, or positive) when L > L∗
(resp. L = L∗, or L < L∗).

Proof. To simplify, we write λ1 = λ1(L). Let φ(x) be the
corresponding positive eigenfunction. It follows from [15]
that λ1 ∈ (− f ′(0),−g′(0)) for any L > 0. As φ(−∞) = 0 <
φ(x) for x < 0, by the second equation of (2.1), we see that
there is a constant C1 > 0 such that

φ(x) = C1e
√
−(λ1+g′(0))x for x < 0.

It is direct to check that φ′(0 − 0) > 0 and

φ′(0 − 0)
φ(0 − 0)

=
√
−(λ1 + g′(0)) > 0. (2.3)

Mathematical Modelling and Control Volume 4, Issue 1, 1–8.
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It follows from the first equation of (2.1) that φ′′ < 0 in
[0, L]. Combining this with

φ′(0 + 0) = φ′(0 − 0) > 0 > φ′(L),

we find a unique constant a∗ ∈ (0, L) such that φ′(a∗) = 0.
Thanks to this, we can find a constant C2 > 0 such that

φ(x) = C2 cos
√
λ1 + f ′(0)(x − a∗) in [0, L],

which implies that

φ′(0 + 0)
φ(0 + 0)

=
√
λ1 + f ′(0) tan

√
λ1 + f ′(0)a∗.

This, together with (2.3), produces that

a∗ =
1√

λ1 + f ′(0)
arctan

√
−
λ1 + g′(0)
λ1 + f ′(0)

. (2.4)

Moreover, it follows from φ(L) = 0 that

L − a∗ =
π

2
√
λ1 + f ′(0)

.

Combining with (2.4), we can have

L =
1√

λ1 + f ′(0)

arctan

√
−
λ1 + g′(0)
λ1 + f ′(0)

+
π

2

 .
It is obvious that λ1 is decreasing in L > 0. Moreover, we
can check that when L = L∗, then λ1 = 0. Thanks to the
monotonicity of λ1 in L, all the other assertions follows. □

For our purpose, we consider the following eigenvalue
problem: 

−φ′′ − f ′(0)φ = λφ, 0 < x < L,

−φ′′ − g′(0)φ = λφ, −l < x < 0,
φ(−l) = φ(L) = 0,
φ(0 − 0) = φ(0 + 0),
φ′(0 − 0) = φ′(0 + 0),

(2.5)

where l and L are two positive constants. We can obtain the
following lemma.

Lemma 2.2. Let L∗ be given in Lemma 2.1. For any given

L > 0, the principal eigenvalue λ1(L, l) of (2.5) is decreasing

with respect to l > 0. When

L ∈
(
L∗,

π√
f ′(0)

)
,

then there exists

l∗(L) =
ln
[
1 +

2
√
−g′(0)

√
f ′(0) tan

(√
f ′(0)L− π2

)
−
√
−g′(0)

]
2
√
−g′(0)

, (2.6)

such that λ1(L, l) is negative (resp. 0, or positive) when l >

l∗(L) (resp. l = l∗(L), or l < l∗(L)). Moreover, there exists

L∗ ∈
(
L∗,

π√
f ′(0)

)
,

such that l∗(L∗) = L∗.

Proof. It is direct to see that for any given L > 0, λ1(L, l) is
decreasing in l > 0. We check that if

L ≥
π√
f ′(0)

, λ1(L, l) < 0

for all l > 0; if L ≤ L∗, λ1(L, l) > 0 for all l > 0; and if

L ∈
(
L∗,

π√
f ′(0)

)
, λ1(L,∞) < 0 < λ1(L, 0).

Combined with the monotonicity of λ1(L, l) in l, we obtain
the existence and uniqueness of l∗(L). Let us give the
calculation of (2.6). When l = l∗(L), it follows that

−φ′′(x) − f ′(0)φ = 0, 0 < x < L,

−φ′′(x) − g′(0)φ = 0, −l∗(L) < x < 0,
φ(−l∗(L)) = 0 = φ(L),
φ(0 − 0) = φ(0 + 0),
φ′(0 − 0) = φ′(0 + 0).

(2.7)

Inspired by [15], since

φ(−l∗(L)) = 0 < φ in (−l∗(L), 0),

we can find a constant C̃1 > 0 such that

φ(x) = C̃1e−
√
−g′(0)x(e2

√
−g′(0)(x+l∗(L)) − 1

)
in (−l∗(L), 0),

which implies that

φ′(0 − 0) = C̃1
√
−g′(0)

(
1 + e2

√
−g′(0)l∗(L)) > 0

and
φ′(0 − 0)
φ(0 − 0)

=
√
−g′(0) ·

e2
√
−g′(0)l∗(L) + 1

e2
√
−g′(0)l∗(L) − 1

. (2.8)
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By the second equation of (2.7), we have φ′′(x) < 0 for
x ∈ (0, L). Combined with

φ′(0 + 0) = φ′(0 − 0) > 0 > φ′(L),

we find a unique a∗ ∈ (0, L) satisfying φ′(a∗) = 0. Thus,
there is a constant C̃2 > 0 such that

φ(x) = C̃2 cos[
√

f ′(0)(x − a∗)] for x ∈ (0, L].

A direct calculation yields that

φ′(0 + 0)
φ(0 + 0)

=
√

f ′(0) tan
√

f ′(0)a∗

and
L − a∗ =

π

2
√

f ′(0)
.

Combined with (2.8), we obtain that

L −
1√
f ′(0)

arctan


√
−

g′(0)
f ′(0)

·
e2
√
−g′(0)l∗(L) + 1

e2
√
−g′(0)l∗(L) − 1


=

π

2
√

f ′(0)
. (2.9)

Thus, (2.6) follows. Moreover, it is direct to check that l∗(L)
is decreasing in

L ∈
(
L∗,

π√
f ′(0)

)
and

lim
L→L∗

l∗(L) = ∞

and
lim

L→ π√
f ′ (0)

l∗(L) = 0,

which implies the existence and uniqueness of L∗. The proof
is complete now. □

2.2. A general convergence theorem

Let us consider the following problem

U′′ + f (U) = 0, 0 < x < h∞,

U′′ + g(U) = 0, k∞ < x < 0,
U(0 − 0) = U(0 + 0),
U′(0 − 0) = U′(0 + 0),
U(k∞) = 0 = U(h∞).

(2.10)

By a phase plane analysis, as in [15], we have the following
result.

Lemma 2.3. Assume that (H) holds, then all solutions U

of (2.10) with (k∞, h∞) = R are 0 and 1.

Now, by similar analysis to that in [5, 9], we can present
the following general convergence result.

Theorem 2.4. Assume that (H) holds and (u, k, h) is a

solution of (P) with u0 ∈ X (h0) for h0 > 0. Then, u

converges to a solution U of (2.10) as t → ∞ locally

uniformly in (k∞, h∞). When (k∞, h∞) = R, U is one of the

following types: 0, 1; when h∞ < ∞ or k∞ > −∞, then

U ≡ 0.

2.3. Vanishing and spreading phenomena

Let us start with the following condition for vanishing.

Lemma 2.5. Assume that (H) holds. Let (u, k, h) be a

solution of (P) with (1.3) and u0 ∈ X (h0) for h0 > 0. If

h∞ < ∞, we have k∞ > −∞ and

lim
t→∞
∥u∥L∞([k(t),h(t)]) = 0.

Proof. Thanks to (H), it follows from [5, Lemma 2.8] and
the comparison principle that

k∞ > −∞.

This, together with Theorem 2.4, yields that u → 0 locally
uniformly in [k∞, h∞]. Let us show that the convergence of
u to 0 is uniform in [k(t), h(t)]. Set

C := 1 + θ + ∥u0∥L∞([−h0,h0]),

then there is C1 > 0 depending on C such that

f (u), g(u) ≤ C1 for u ∈ [0,C].

Denote

w(t, x) := C[2M(x − k(t)) − M2(x − k(t))2]

for (t, x) ∈ DM , where

DM := {(t, x) : t > 0, k(t) ≤ x ≤ k(t) + M−1}

with

M := max

h−1
0 ,

√
C1

2C
,

4∥u0∥C1([−h0,h0])

3C

 .
Mathematical Modelling and Control Volume 4, Issue 1, 1–8.
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It follows from the proof of [1, Lemma 2.2] that u ≤ w in
DM . For any given ϵ > 0, let

δ := min{
ϵ

2MC
,

1
M
},

then there is T1 > 0 such that

k∞ < k(t) < k∞ + δ ≤ k∞ + M−1 for t > T1.

Thus, we have that for t > T1 and x ∈ [k(t), k∞ + δ],

u(t, x) ≤ w(t, x) ≤ w(t, k∞ + δ) ≤ C(2Mδ − M2δ2) < ϵ.

Similarly, we can prove that there exists T2 > 0 such that

u(t, x) < ϵ for t > T2, x ∈ [h∞ − δ, h(t)].

Moreover, u converges to 0 uniformly for x ∈ [k∞+δ, h∞−δ]
as t → ∞, and there is T ≥ T1 + T2 such that

u(t, x) < ϵ for t > T, x ∈ [k∞ + δ, h∞ + δ].

Let ϵ → 0, then, by standard theory for parabolic equations,
we have that the convergence of u to 0 is uniform in
[k(t), h(t)], which ends the proof. □

Next we give the following condition for vanishing.

Lemma 2.6. Let L∗ be given in Lemma 2.2 and (u, k, h) be

a solution of (P) with (1.3) and u0 ∈ X (h0) for h0 > 0.

If h0 < L∗ and ∥u0∥L∞ is sufficiently small, then vanishing

happens, that is h∞ − k∞ ≤ 2L∗ and

lim
t→∞
∥u(t, ·)∥L∞([k(t),h(t)]) = 0.

Proof. For any given h∗ ∈ (h0, L∗), it follows from
Lemma 2.2 that problem (2.5) with L = l = h∗, admits
a positive principal eigenvalue λ∗, whose corresponding
positive eigenfunction φ, can be normalized by ∥φ∥L∞ = 1.
Let x0 and x1 be the leftmost and rightmost local maximum
point of φ(·). Set

δ := min
{λ∗

2
,

h∗
h0
−1, 1

}
, η := max

{
−x0, x1, h0, h∗−

δ

4
h0

}
,

then

ε0 := min{φ(η), φ(−η)} ≤ 1,

and there exists ε1 = ε1(δ) > 0 small such that

−2(µ1 + µ2)ε1[φ′(h∗) − φ′(−h∗)] < δ2h0

and

f (s) ≤ ( f ′(0) + δ)s, g(s) ≤ (g′(0) + δ)s, s ∈ [0, ε1].

Define

w(t, x) := ε0ε1e−δtφ(x) for (t, x) ∈ [0,∞) × (−h∗, h∗).

A direct calculation shows that

wx(t, 0 − 0) = wx(t, 0 + 0), w(t, 0 − 0) = w(t, 0 + 0)

for t > 0, and wt − wxx − f (w) ≥ (λ∗ − 2δ)w ≥ 0, t > 0, 0 < x < h∗,

wt − wxx − g(w) ≥ (λ∗ − 2δ)w ≥ 0, t > 0, −h∗ < x < 0.

If u0 is chosen to be sufficiently small such that

u0(x) ≤ ε0ε1φ(x) = w(0, x) for x ∈ [−h0, h0],

it follows from the comparison theorem that u(t, x) ≤ w(t, x)
for (t, x) ∈ [0, τ) × [k(t), h(t)], where

τ := sup{t > 0 : k(t) > −h∗ and h(t) < h∗}.

We claim that τ = ∞. Once this claim is proved, we have

[k(t), h(t)] ⊂ [−h∗, h∗]

for all t > 0, and so vanishing happens by Lemma 2.5.
Let us prove τ = ∞ by contradiction, and assume that τ <

∞. Without loss of generality we may assume that h(τ) = h∗.
We define

ξ(t) := h0

(
1 + δ −

δ

2
e−δt
)
, u(t, x) := ε1e−δtφ(x − ξ(t) + h∗)

for t ≥ 0,
x ∈ I(t) := [η + ξ(t) − h∗, ξ(t)].

It follows from the choice of η that

x−ξ(t)+h∗ ≥ x1 and η+ξ(t)−h∗ > h0 for t ≥ 0, x ∈ I(t).

A direct calculation implies that for t ≥ 0, x ∈ I(t),

ūt − ūxx − f (ū) ≥ (λ∗ − 2δ)ū− ε1e−δtξ′(t)φ′(x− ξ(t)+ h∗) ≥ 0,

Mathematical Modelling and Control Volume 4, Issue 1, 1–8.
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where we have used

ξ′(t) > 0 and φ′(x − ξ(t) + h∗) ≤ 0

for t ≥ 0 and x ∈ I(t). Moreover, we can check that, for
t > 0,

ξ′(t) =
δ2h0

2
e−δt ≥ −µ1ε1e−δtφ′(h∗) = −µūx(t, ξ(t)).

Now we prove that h(t) ≤ ξ(t) for t ∈ [0, τ]. The conclusion
is true when

h(t) ≤ η + ξ(t) − h∗.

Consider the case where

Ψ := {0 ≤ t ≤ τ : h(t) > η + ξ(t) − h∗} , ∅

consists of some intervals and [τ1, τ2] is one of them. As

η + ξ(0) − h∗ > h0,

then,

τ1 > 0 and h(τi) = η + ξ(τi) − h∗ for i = 1, 2.

It is direct to check that

u(t, η + ξ(t) − h∗) ≤ w(t, η + ξ(t) − h∗)

≤ ε0ε1e−δt

≤ ū(t, η + ξ(t) − h∗), t ∈ [τ1, τ2].

Hence, (ū, ξ) is an upper solution in [τ1, τ2] × [η + k(t) −
h∗, h(t)] and by comparison we have h(t) ≤ ξ(t) for t ∈

[τ1, τ2]. Thus, we have proved that h(t) ≤ ξ(t) for t ∈ [0, τ],
which yields that

h(τ) ≤ ξ(τ) < ξ(∞) ≤ h∗,

contradicting our assumption h(τ) = h∗. This proves τ = ∞,
which completes the proof of this lemma. □

Later we show the following condition for spreading.

Lemma 2.7. Assume that (H) holds. Let L∗ be given in

Lemma 2.2 and (u, k, h) be a solution of (P) with (1.3) and

u0 ∈ X (h0) for h0 > 0. If h0 ≥ L∗, then spreading happens

in the sense that

(k∞, h∞) = R and lim
t→∞

u(t, x) = 1

locally uniformly in R.

Proof. As h0 ≥ L∗ and h′(t) > 0 > k′(t) for t > 0, then

[−L∗, L∗] ⊂ [k(1), h(1)].

It follows from Lemma 2.2 that problem (2.5) with L =

h(1) and l = −k(1), admits a negative principal eigenvalue
λ1, whose corresponding eigenfunction φ1, can be chosen
positive and normalized by ∥φ1∥L∞ = 1. Set

u(x) =

 ρφ1(x), x ∈ [k(1), h(1)],
0, x < [k(1), h(1)],

where the constant ρ > 0 can be chosen to be small such that

f (s) ≥ ( f ′(0) + λ1)s and g(s) ≥ (g′(0) + λ1)s for s ∈ [0, ρ].

A direct calculation shows that

u(0 − 0) = u(0 + 0), ux(0 − 0) = ux(0 + 0)

and  ut − uxx − f (u) ≤ 0, t > 0, 0 < x < h(1),
ut − uxx − g(u) ≤ 0, t > 0, k(1) < x < 0.

Since u(2, ·) > 0 in [k(1), h(1)], we can choose ρ to be
smaller if necessary satisfying

u(2, ·) > u(·) in [k(1), h(1)].

Thus u(x) is a subsolution of (P), and by comparison we
have

u(t + 2, x) > u(x) for t > 0, x ∈ (k(1), h(1)).

This, together with Lemma 2.5, implies that h∞ = ∞ and
u ̸→ 0. Combined with Theorem 2.4, we have k∞ = −∞ and
u → 1 locally uniformly in R, which means that spreading
happens. □

2.4. The proof of Theorem 1.1

It is easy to see that there are two possibilities: (i) h∞ <

∞; (ii) h∞ = ∞. In case (i), it follows from Lemma 2.5 that
vanishing happens. For case (ii), it follows from Lemma 2.7
and its proof that spreading happens. Thus, we can obtain
the spreading-vanishing dichotomy.
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In the rest of this proof, let us show the sharp threshold
behaviors. Define

σ∗ := sup{σ0 : vanishing happens for σ ∈ (0, σ0]}.

When h0 ≥ L∗, it follows from Lemma 2.7 that σ∗ = 0.
When h0 < L∗, by Lemma 2.6, we see that vanishing
happens for small σ > 0. So, σ∗ ∈ (0,+∞]. If σ∗ = ∞,
vanishing happens for all σ > 0, which ends the proof. Let
us consider the case that σ∗ < ∞. We claim that vanishing
happens for σ = σ∗. Otherwise it follows that spreading
must happen for σ = σ∗, which yields that there is t0 > 0
such that

(k(t0), h(t0)) ⊃ [−L∗ − 1, L∗ + 1].

Due to the continuous dependence of the solution on the
initial values, there is ϵ > 0 sufficiently small such that
(uϵ , kϵ , hϵ), the solution of (1.1) with u0 = (σ∗−ϵ)ϕ, satisfies

[kϵ(t0), hϵ(t0)] ⊃ [−L∗, L∗].

Combined with Lemma 2.7, we see that spreading happens
to (uϵ , kϵ , hϵ), which is a contradiction. Thanks to this,
we can use the comparison principle and the spreading-
vanishing dichotomy to obtain that spreading happens for
σ > σ∗ and vanishing happens for σ ≤ σ∗ in this case,
which completes the whole proof of Theorem 1.1. □

3. Conclusions

In this paper, we have studied the population dynamics of
a single species in a one-dimensional environment which is
modeled by the equation ut = uxx + F(x, u) in the domain

{(t, x) ∈ R2 : t ≥ 0, x ∈ (k(t), h(t)]},

where k(t) and h(t) are the free boundaries. By choosing the
initial data σϕ for some ϕ ∈ X (h0), h0 > 0 and σ ≥ 0, we
find that there exists a critical value σ∗ such that spreading
happens when σ > σ∗ and vanishing happens when σ ≤ σ∗.

In the current paper, we have assumed that the species live
in the domain

{(t, x) ∈ R2 : t ≥ 0, x ∈ (k(t), h(t)]}.

Nevertheless, the habitat of a biological population, in
general, can be rather complicated. For example, natural
river systems are often in a spatial network structure such as
dendritic trees. The network topology (i.e., the topological
structure of a river network) can greatly influence the species
persistence and extinction. It would be interesting to
consider the population dynamics of a single species in a
general river habitat. We plan to study this problem in future
work.
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